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Abstract

Gap junctions are unique membrane channels that play a significant role in intercellular communication in the
developing and mature central nervous system (CNS). These channels are composed of connexin proteins that
oligomerize into hexamers to form connexons or hemichannels. Many different connexins are expressed in the
CNS, with some specificity with regard to the cell types in which distinct connexins are found, as well as the
timepoints when they are expressed in the developing and mature CNS. Both the main neuronal Cx36 and glial
Cx43 play critical roles in neurodevelopment. These connexins also mediate distinct aspects of the CNS response to
pathological conditions. An imbalance in the expression, translation, trafficking and turnover of connexins, as well
as mutations of connexins, can impact their function in the context of cell death in neurodevelopment and disease.
With the ever-increasing understanding of connexins in the brain, therapeutic strategies could be developed to
target these membrane channels in various neurological disorders.
Background
The complexity of the mammalian central nervous
system (CNS) is due in large part to the various cell
types from which it is composed, as well as the different
forms of cellular interactions. These include neuronal
interactions via neurotransmission, as well as glial inter-
actions mediated by direct cell-cell contact in addition
to paracrine signaling (gliotransmission). Furthermore a
number of glial-neuronal interactions exist, and these
have been implicated in both normal information pro-
cessing as well as neuronal protection in the brain. One
mechanism mediating such interactions involves gap
junctions (GJs), clusters of intercellular membrane chan-
nels which provide for direct cytoplasmic continuity
between adjacent cells [1].
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Gap junctions and connexins in the CNS
GJs allow the passive intercellular diffusion of small mole-
cules, such as glutamate, glutathione, glucose, adenosine
triphosphate (ATP), cyclic adenosine monophosphate
(cAMP), inositol 1,4,5-trisphosphate (IP3), and ions (Ca2+,
Na+, K+) [2]. In addition, cells are able to control the open
probability of these channels, providing a mean of including
the channels in the general signaling and physiology of the
cells and tissues. A single GJ channel consists of two oppos-
ing hemichannels, also known as connexons, which are
made of six proteins called connexins [3]. Hemichannels
can also function in their own right, having distinct roles in
communicating between intracellular and extracellular
compartments. Connexins are encoded by a multi-gene
family consisting of 20–21 members in mammals [4].
Within the mammalian brain, the various cell types

express over ten different connexins, making it a very di-
verse organ regarding intercellular communication. With
regard to the different cell types, neurons express seven
different connexins (see below), astrocytes express up to
three (Cx43, Cx30, Cx26), as do oligodendrocytes (Cx32,
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Cx29, Cx47), microglia (Cx43, Cx32, Cx36) and endo-
thelial cells (Cx37, Cx40, Cx43) [5–7]. These channels
have distinct functions within the different cell types and
their expression can change dramatically during neuro-
development and injury (see below). GJs in oligodendro-
cytes have been shown to be essential for proper
myelination [8], as well as potassium buffering [9].
Endothelial functions are closely regulated by junctional
interactions with astrocytes; specifically important are
the connexins expressed in astrocytic endfeet [10, 11]. In
this context, astrocytes and endothelial cells do not form
gap junctions between them, but rather the connexin in
astrocytic endfeet may solely function as hemichannels.
Cx43 is the most highly expressed connexin in the

brain because it is involved in extensive GJ coupling
(GJC) between astrocytes, the most abundant cell type
in the brain. GJ communication is also critical for the
proliferation and differentiation of neural stem cells [12].
Although microglia have been reported to express Cx43
and form GJs [13], others have not observed Cx43 im-
munoreactivity in microglia [14, 15]; while another
group showed that Cx43 does not form GJs in microglia
[16], rather it forms hemichannels [17].
Connexins are expressed in both neurons and astro-

cytes, and are regulated by numerous factors in healthy
and pathological conditions. Neuronal GJs and astrocytic
GJs are regulated during development and disease. How-
ever, given the nature of the tripartite synapse, neuroglial
interactions must also be considered in this context of
synaptic malfunction.

Expression and regulation of neuronal connexins in
neural development and adulthood
During development, neurons of the rodent CNS ex-
press a number of different connexins. These include
Cx36 [18–20], Cx30.2 [21], Cx31.1 [22], Cx40 [23], Cx45
[24] and Cx50 and Cx57 in the retina [25]. This presum-
ably reflects the diversity of neuronal cell types, express-
ing a range of connexins, and/or varying functions of
those connexins in the developing CNS. However,
knockout of specifically Cx36 results in near complete
loss of neuronal GJC in the mature CNS, indicating that
it is the primary neuronal connexin [26–29]. Cx36 in
various regions of rodent CNS, and Cx35 (the fish
orthologue of Cx36) expressed in goldfish Mauthner
cells, are often present in mixed chemical and electrical
synapses. Cx36 GJs have been observed in close proximity
to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptors (AMPARs) [25, 30] as well as N–methyl–D–as-
partate (NMDA) receptors (NMDARs) [30–32]. Multiple
reports have demonstrated that Cx36 GJs can be tethered
to the cytoskeleton via complex formation with multiple
intracellular proteins. Constituents of Cx36-interacting
complexes include structural proteins, regulators of
channel activity and gene transcription, as well as factors
involved in protein transport, assembly and localization
[33–35]. Data suggest that Cx36 may bind these proteins
simultaneously at some GJs within the same neuron and
the binding requires a four amino acid motif (SAYV)
present in the C-terminus of the Cx36 protein [34, 35].
The interaction of Cx36 with these proteins appears to be
necessary for addition into electrical synapses, since the
SAYV motif is required for incorporation [36].
Cx36 is phosphorylated and its activity is influenced

by a number of kinases including cAMP-dependent
protein kinase (PKA), cGMP-dependent protein kinase,
protein kinase C (PKC) and casein kinase II [37–39].
Ca2+/calmodulin-dependent protein kinase II (CaMKII)
interacts with and phosphorylates Cx36 in mouse infer-
ior olive neurons and Cx35 in synapses of teleost
Mauthner cells [40, 41]. The binding of Cx36 to CaMKII
may not be limited to a substrate-enzyme interaction.
Rather, there is some indication that the interaction is
associated with changes in expression and/or stability of
the kinase. It is noteworthy that neurons of Cx36 knock-
out mice have reduced CaMKII levels [42].
Neuronal GJC is finely regulated among individual

plaques (i.e., clusters of GJ channels). A given neuron
can be coupled to a variable number of neighboring
neurons and display different degrees of conductance
with each of its coupled partners [32]. Similarly, binding
to CaMKII [40] and the phosphorylation status of Cx36
[43] is not uniform within a neuron. Thus, the nature of
signaling complexes associated with individual GJs pre-
sumably facilitates the fine-tuning of individual synapses
and cell-type specific activity [43]. The interactions listed
above have also been reported for non-neuronal connex-
ins (e.g., Cx43) suggesting that modulation of GJ activity
by these interactions may be a general feature [44].
Spatial and temporal variation in GJC during develop-

ment of the mammalian CNS has been well documented
[45–49]. The expression of Cx36 and associated GJC in-
crease during the first two postnatal weeks in most rodent
CNS regions (including the cortex and hypothalamus).
This initial, relatively robust expression declines during
the third and fourth postnatal weeks [18, 50, 51]. This is
in contrast to other regions of the CNS, such as the spinal
cord, where Cx36 expression and coupling is highest
during the late embryonic period followed by a decline in
the first postnatal days [18, 52, 53]. The developmental
decline in GJC is paired with changes in localization of
Cx36 GJs to specific neuronal subtypes in the mature
CNS [54, 55]. In the developing CNS in rodents, GJC is
observed between disparate neurons; glutamatergic
cells (including pyramidal cells) were found to couple
with interneurons [20, 56] and neurons may couple
with glial cells [57]. However, in the mature CNS, Cx36
GJs are found mostly between GABAergic interneurons



The Author(s) BMC Cell Biology 2017, 18(Suppl 1):4 Page 3 of 11
(GABA, γ-aminobutyric acid). It should be noted that
connexins other than Cx36 also form GJs in the devel-
oping CNS [23, 58].
Despite the fact that chemical synaptic transmission is

absent while Cx36 expression initiates in development
[59], chemical neurotransmitter receptors regulate the
developmental expression of neuronal GJC. In the rat
and mouse hypothalamus and cortex, Cx36 expression is
up-regulated by chronic activation of group II metabo-
tropic glutamate receptors (mGluRs) and involves
cAMP/PKA-dependent pathways. Conversely, GABAA

receptor activation blocks the developmental increase in
Cx36 expression [51] and is dependent upon develop-
mental depolarization and Ca2+/PKC-dependent signals.
The developmental programs of Cx36 expression are
executed using transcriptional (up-regulation) and trans-
lational (down-regulation) regulatory mechanisms [51].
These multiple mechanisms contributing to the develop-
mental expression of Cx36 and formation of GJC likely
explain the interregional differences in the developmen-
tal timing of GJC. The magnitude of the effects of
neurotransmitter pathways on Cx36 expression suggests
a modulatory rather than a definitive role in develop-
mental regulation of neuronal GJC, primarily during the
period when both electrical and chemical synaptic path-
ways are being laid down.
Regulation of Cx36 and GJC in the mature CNS occurs

as well. It allows rapid modification of neuronal connectiv-
ity and signaling, including modulation of channel opening
probability and alterations in connexin protein homeosta-
sis. Similar to developmental regulation, these regulatory
mechanisms are influenced by neurotransmitter signaling.
For example, activation of D1 and D2 dopamine receptors,
serotonin (5-HT2) receptors, β-adrenoreceptors and eleva-
tion of nitric oxide reduces dye coupling between rat
cortical neurons within minutes [60]. Similarly, activation
of β-adrenoreceptors decreases electrotonic coupling
between rat hippocampal interneurons [61] and nitric
oxide uncouples striatal neurons [62]. Activation of group
II mGluRs in developing mouse cortical neurons induced a
rapid increase followed by a decrease in Cx36 protein over
a 24-h time period; Cx36 mRNA levels were unchanged
during this time, suggesting regulation of protein homeo-
stasis [63]. However, whether Cx36 channel opening prob-
ability is regulated in developing neurons is not yet known.

The activity and regulation of Cx36 and GJC in neuronal
injury and cell death
Every region of the mature CNS expresses Cx36 and has
GJs, though at levels below that observed during develop-
ment [54]. Transient elevation of Cx36 and GJC occurs
following a wide range of neuronal insults, including
ischemia [64–66], spinal cord injury and traumatic brain
injury (TBI) [67–69], retinal injury [70], epilepsy [71, 72]
and inflammation [73]. The up-regulation of Cx36 and
GJs in neurons following injury is very rapid, occurring
1–2 h post-injury with a decline in the subsequent 24–
48 h [66, 68, 69, 72, 73]. This is in stark contrast to the
developmental expression program outlined earlier,
which occurs on the timescale of weeks; this difference
in timing suggests that disparate regulatory mecha-
nisms may be operating in development versus injury.
The regulation of GJC expression and activity during

neuronal injury is a potential therapeutic target for redu-
cing post-injury neuronal death. Rapid upregulation of
neuronal GJC and Cx36 expression was observed follow-
ing multiple types of neuronal injury in adult mice [66]
and coincides with the period of massive glutamate
release from injured cells [74, 75]. The post-injury eleva-
tion in coupling and Cx36 was prevented by blockade of
group II mGluRs and involves post-transcriptional
mechanisms since no change in Cx36 mRNA levels were
observed [66]. In contrast to what was observed during
developmental regulation, GABAA receptors were found
to be only indirectly involved in reducing Cx36 expression
after injury, likely via inhibition of electrical activity. Given
that neuronal GJC has been shown to be, predominantly,
pro-death for neurons following injury (see below),
manipulation of pathways that modify expression of Cx36
might be a strategy for neuroprotection.
The morbidity and mortality of stroke is a direct result

of neuronal death due primarily to ischemic injury and
necrosis [76–79]. Contributing to this is excessive glu-
tamate release from ischemic cells producing NMDAR-
mediated excitotoxicity and apoptosis [80–82]. Multiple
types of CNS insult beyond stroke, including TBI, epi-
lepsy and inflammation, can produce significant neur-
onal death, which also involves, in part, NMDAR
excitotoxicity [80, 83–86]. While studies have reported a
role for GJs in cell death and survival during glutamate-
mediated excitotoxicity and neuronal injury, their
predominant association has been with cell death.
A few specific studies have reported a “pro-survival” role

of Cx36 and GJC. For example, pharmacological blockade
of GJs, using non-specific agents, augmented glutamate-
induced neuronal death in mouse neuronal cortical
cultures [87]. Similarly, secondary neuronal loss in the
mouse retina, following infrared laser photocoagulation
was most prominent 24–48 h post-injury, was increased
by GJ blockade (using non-selective and relatively
selective blockers for Cx36) and in Cx36 knockout
mice [70]. Both studies support the notion that GJC
contributes to cell survival.
The preponderance of reports, however, indicates that

Cx36 GJC promotes neuronal death, independent of
initiating injury. As noted earlier, sustained activation of
group II mGluRs increased neuronal GJC and Cx36
expression during development; this increase amplified
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NMDAR-mediated excitotoxicity. Consistent with this,
blockade of group II mGluRs prevented increased Cx36 ex-
pression and dampened neuronal death from excitotoxicity.
These findings support a model where group II mGluRs
regulate the developmental program of Cx36 GJC and by
doing so, contribute significantly to death decisions in
developing neurons [51]. Group II mGluR activation medi-
ates injury-associated increases in neuronal GJC. Not
surprisingly, blockade of group II mGluRs reduced injury-
mediated neuronal death in multiple injury models [66, 88].
Systemic administration of NMDA induced NMDAR-

mediated excitotoxicity in the forebrain of adult wild-
type mice, which was prevented by co-administration of
the GJC blocker mefloquine [89]. Similarly, blockade of
GJC by mefloquine significantly reduced ischemic neur-
onal death [89] and secondary neuronal death from
controlled cortical impact in mice (a model of TBI) [88].
Cx36 knockout provided the same reduction in neuronal
death in both models as pharmacological blockade.
Mefloquine did not provide additional survival benefit in
Cx36 knockouts, suggesting the drug is working primar-
ily through inhibition of Cx36 GJs [88, 89]. Additional
studies also reported a pro-death role for neuronal GJC
in NMDAR-mediated excitotoxicity and injury models
[90–93]. From this and other work, a model of
glutamate-mediated excitotoxicity centered on neuronal
GJs as the primary determinant of magnitude of the
secondary neuronal death following injury has been pro-
posed [94, 95]. Despite the difficulty of making broad
generalizations about the role of GJC in cell death,
particularly in non-neuronal tissues [96, 97], blockade of
GJC as a strategy to limit neuronal death following stroke,
TBI or other insult remains very attractive.

Mechanisms by which neuronal Cx36 and GJC contribute
to neuronal death and survival
Understanding how neuronal GJs contribute to cell
death and survival is critical, if manipulation of GJC is
used as an approach to reduce neuronal damage and
death in a variety of neurological diseases. Although,
some of the studies discussed below were conducted
with the use of non-neuronal cells, they provided an
important information, which potentially may be applic-
able to neurons too.
Based upon numerous observations of passage of chem-

ical substances via GJ channels, it has been proposed that
the contributions of GJs to cell death and survival are by
propagation between the coupled cells of, respectively,
“pro-death” and “pro-survival” GJ-permeable signals
[98–100]. Though the identity of these signals remains ob-
scure, signaling molecules such as IP3 and reactive oxygen
and nitrogen species have been proposed as “pro-death”
signals [100–102]. Conversely, molecules such as those in-
volved in energy homeostasis (glucose and ATP), and free
radical scavengers (ascorbic acid and reduced glutathione)
may be GJ-permeable “pro-survival” signals [96, 103]. Re-
cently, a study was conducted in cultured neurons ob-
tained from Cx36 knockout mice, in which the neurons
were transduced with lentiviral vectors expressing one of
three wild-type connexins, including neuronal Cx36 and
non-neuronal Cx43 and Cx31 [93]. Ischemia and NMDAR
excitotoxicity were used to induce neuronal death in those
cultures. The study showed that each of the three wild-
type connexins induced functional (channel-permeable)
GJs and supported neuronal death. The data suggested
that the role of neuronal GJs in cell death is connexin
type-independent and presumably relies on channel
activities of GJ complexes among neurons [93].
Another model for the role of GJC in cell death postu-

lates that connexins are not involved in cell death mech-
anisms via their channel activities, but through direct or
indirect regulation of transcriptional programs and
apoptotic pathways [96, 104]. This model is based upon
the following observations (however, mostly obtained for
non-neuronal connexins). In osteocytes, Cx43 protein
serves as part of a trans-membrane signal transduction
pathway that alters the activity of pro-apoptotic Bcl-2
protein, Bad [105]. In non-neuronal cancer cells, Cx26
and Cx43 are co-localized with Bcl-2 proteins (Bak, Bcl-
xL and Bax) and participate in cell death pathways via
direct interaction with these pro-apoptotic factors
[106, 107]. Overexpression of Cx43 in U251 glioblast-
oma cells does not increase GJC, but is pro-apoptotic
[108]. During ischemia in cardiomyocytes, Cx43 serves
as part of a multiprotein complex in mitochondrial
membranes and controls homeostasis of mitochondria
[109, 110]. Interference with expression of various
connexins changes the expression of subsets of apop-
totic factors (multiple studies reviewed in [96]) that
presumably occurs through direct transcriptional con-
trol via the “connexin response elements” in pro-
apoptotic genes [111] or via direct interaction of
connexins with transcriptional regulators (e.g., β-
catenin) [112]. In addition, a connexin-dependent induc-
tion of apoptosis can be connexin- and cell-specific as
apoptosis in umbilical vein endothelial cells is induced by
overexpression of Cx37 (but not Cx40 or Cx43), however,
overexpression of Cx37 in rat NRK kidney epithelial cells
is not pro-apoptotic [113]. A recent study in neuronal cul-
tures utilized a lentiviral transduction of four mutant con-
nexins (including various Cx36 and Cx43 mutants), each
of which induced dysfunctional (channel-impermeable)
GJs [93]. None of those mutant connexins supported
neuronal death caused by ischemia or NMDAR excito-
toxicity. This supported the notion that Cx36 unlikely
plays a role in neuronal death via channel-independent
mechanisms, but likley plays a role via channel-
dependent mechanisms. It remains to be explored
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whether or not other neuronal connexins (e.g., Cx45)
may contribute to neuronal death through the channel-
independent mode of action.
Finally, the role of connexin hemichannels in cell death

and survival has been proposed. Specifically, for the ner-
vous system, the contribution of glial hemichannels via
release of various channel-permeable “pro-death” agents
has been discussed [96, 103, 114, 115]. These agents pre-
sumably include glutamate, ATP, reactive oxygen and ni-
trogen species. The existence and role of neuronal
hemichannels in neuronal death also has been suggested
based on experiments with the use of various neuronal
injury models [11, 116]. However, other studies did not
support the role of neuronal hemichannels in neuronal
death following ischemia and NMDAR-mediated excito-
toxicity [91, 93]. Moreover, the role of Cx36 hemichannels
in neuroprotection via release of ATP has been suggested
[117], adding an additional layer of complexity on the
contribution of hemichannels in particular, and connexins
in general, to neuronal death and survival.

Expression and regulation of astroglial connexins
In the CNS, astrocytes are highly coupled to each other
by GJs and play a significant role in the metabolic and
trophic support of neurons [118]. These GJs are com-
posed primarily of the channel protein Cx43, and to a
lesser extent Cx30 [119] and Cx26 [120]. GJs form a
functional syncytium of coupled astrocytes, contributing
to spatial buffering, in dealing with elevated concentra-
tions of extracellular potassium ions (K+) during in-
creased neuronal activity; GJs assist in dispersal of K+

accumulated by astrocytes [121].
A major advance in understanding astrocytic GJs and

connexins was made through transgenic and knockout
mice (reviewed in [122]). The role of astrocytic GJs has
been demonstrated in mouse hippocampal slices, with
Cx43/Cx30 double knockout mice showing impaired
extracellular K+ buffering compared to wild-type mouse
slices [123]. It has also been shown that Cx43 plays a
role in transient intracellular K+ buffering by mitochon-
dria [124]. Pannasch et al. [10] reported key changes in
astrocytic and neuronal properties in the absence of
Cx43 and Cx30, revealing a major role for astrocytic
networks in glutamate clearance, K+ buffering, and
volume regulation of the extracellular space during syn-
aptic activity. Failure to efficiently clear K+ and glutam-
ate results in prolonged neuronal AMPA and NMDA
currents, as well as astroglial membrane depolarization.
Further clarification of the role of Cx30 was obtained by
examining the hippocampus of single Cx30 knockout
mice, demonstrating that Cx30 modulates astrocyte
glutamate transport, thereby controlling hippocampal
excitatory synaptic transmission [125]. In this case it was
shown that Cx30 controls astrocytic processes at the
synaptic cleft by modulating their morphology. Glutamate
clearance by astrocytes was altered due to these
morphological changes.
In addition to forming GJs, Cx43 also forms hemi-

channels, with single connexons communicating directly
with the extracellular space [126]. Hemichannels
predominantly exist in a closed state under normal
physiological conditions, due to ambient levels of Ca2+

[127]. However, various cell stresses, such as hypoxia/
reoxygenation and metabolic stress, have been reported
to cause opening of hemichannels in cultured astrocytes
[128]. Hemichannels enhance neuronal injury under
ischemic and proinflammatory conditions [129, 130].

Regulation of Cx43 in neural development
Due to the high level of GJC observed during neurodeve-
lopment, particularly in the cortex [131, 132], it is not sur-
prising that connexins have been shown to be involved.
While neurons predominantly express Cx36 postnatally in
the rat and mouse (see above), at prenatal stages neural
progenitor cells (NPCs), including radial glia, are highly
coupled and express Cx43 and Cx26 [47, 133–136]. Differ-
ent approaches to determine the role of these connexins
have been reported, including knockout of Cx43
[133, 137, 138] and knockdown of Cx43 and Cx26
[134]. While there are some variations in the pheno-
types obtained, attributed in part to strain differences
[138], the role of Cx43 appears to be due to adhesive
functions [134], and the C-terminal region is critical
for NPC migration [133, 136]. Cx26 knockdown was
also shown to impede NPC migration in the developing
rat cortex [134]. Cx26 has been demonstrated to be a
substrate for focal adhesion kinase (FAK), or to function
in stabilizing cell contacts, possibly through interactions
with ZO-1 [139]. The authors suggest that FAK could act
as scaffold protein, a function also suggested for Cx43.
Since Cx30 is not expressed until 15 days after birth in the
mouse [119] it is not considered in this context.

The activity and regulation of Cx43 and GJC in neuronal
injury and cell death
The level of GJC between astrocytes, as well as hemichan-
nel activity [140], have been shown to be regulated by a
number of factors, including neurotransmitters and neu-
romodulators [141–145], extracellular ion concentrations
[146] and various pharmacological agents [147–150].
Astrocytic GJC and Cx43 expression are altered in various
brain pathologies, including ischemia [151], stroke [152,
153], brain tumours [154], multiple sclerosis [155], brain
abscess [156], Alzheimer’s disease [14, 157], and epilepsy
[158, 159].
In addition, microglial response to brain injury and dis-

ease leads to the release of proinflammatory cytokines, in-
cluding IL-1β and TNF-α, which impair astrocytic GJC,
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but enhance hemichannel activity [160]; this leads to
increased neuronal injury. Short application of NMDA in-
duces delayed neuronal injury due to excessive release of
glutamate after removal of NMDA [161]. However, neurons
in contact with astrocytes are protected against such glu-
tamate toxicity [162, 163]. This neuronal protection was at-
tributed to glutamate uptake by astrocytes [164], and as GJs
are permeable to glutamate [165], GJC in astrocytes could
improve glutamate uptake contributing to its dissipation,
and thus to neuronal protection. In addition, GJC enables
the intercellular trafficking of glucose and its metabolites
through the astroglial network from blood vessels to distal
neurons in an activity-dependent manner [166]. This path-
way could sustain neuronal survival in pathological situa-
tions that alter energy production, such as hypoglycemia or
anoxia/ischemia.

Consideration of pannexins
A three-member family of cell membrane channels, the
pannexin(s) (Panx 1, 2 and 3), should also be considered
in the context of GJ channels and hemichannels in the
CNS. Panxs were discovered due to their homology to
the invertebrate GJ proteins, innexins [167, 168]. Panx1
and Panx2 are present in the CNS [169] and have been
linked to different CNS injury models [170–172]. Be-
cause of the ubiquitous expression of Panx1 [168], it has
been the most widely investigated member of the Panx
family [172, 173], however, a recent study reported that
Panx2 expression is not only limited to the CNS [174].
Like the connexins, the Panxs traverse the cell mem-

brane, but these large pore\channels allow the passage of
large signaling molecules (e.g., ATP; glucose and
glutamate) only between intra- and extracellular com-
partments of neurons and possibly astrocytes [175–177],
but not between adjoining cells. The evidence for Panx
channels not forming intercellular GJ channels, but
rather the equivalent of a connexin hemichannel, has
been recently addressed [178] and is attributed to the
steric hindrance provided by the extracellularly glycosyl-
ated arginine residue, which interferes with the coupling
of two opposing Panx channels [179, 180]. Similarly to
connexins, the Panx C-terminal domain, particularly
from Panx1, has been shown to interact with a host of
intracellular factors under specific physiological and
pathophysiological conditions [181–183].
Because Panx1 forms channels in the plasma membrane,

it likely participates in non-synaptic forms of communica-
tion to regulate synaptic function under normal conditions,
in addition to astrocytic Ca2+ wave propagation and regula-
tion of vascular tone [184–186]. Unlike the protective ef-
fects of Cx43, however, Panx1 activation under pathological
conditions is detrimental, contributing to ischemia-induced
excitotoxicity and ATP-dependent cell death [176, 187–
191]. Under ischemic conditions, as seen with oxygen-
glucose deprivation in cortical and hippocampal slices,
Panx1 channels are irreversibly activated (opened) to pro-
mote a progressive and uncontrollable depolarization of
neurons, sustained increments in extracellular concentra-
tions of glutamate and aspartate, and subsequent activation
of downstream apoptotic and necrotic pathways [192].
Others have shown similar association between Panx1 ac-
tivity and neuronal death, in different types of neurons
[190, 193]. This suggests that Panx1-dependent cell death
may be a common mechanism in injured neurons.
In addition to the anoxic depolarization mechanism

associated with Panx1, it has also been implicated in
contributing to inflammation [188, 194]. For example,
cells undergoing apoptosis release chemotactic inflam-
matory factors to promote phagocytic removal of dead
cells. ATP and UTP represent important signaling mole-
cules throughout the inflammatory cascade, also thought
of as danger signals that are released from damaged and
necrotic cells, at least during the initial stages of ische-
mia [195], but also more importantly through the Panx
and connexin hemichannels. Several studies have re-
ported that Panx1-mediated ATP and UTP release is in-
duced by caspase activity (caspase 3 and 7) in apoptotic
cells [176, 187, 189]. Two potential caspase cleavage
sites were identified in the C-terminal of Panx1 [189].
The C-terminal cleavage-site-B of Panx1 is evolutionarily
conserved among Panx1 homologues, indicating that
caspase-dependent cleavage of Panx1 and ATP release
may be a conserved mechanism in apoptosis [189].
Caspase-mediated C-terminal cleavage of Panx1 results in
irreversible channel opening, inducing higher if not un-
controllable extracellular release of ATP. Findings from
several different organ systems collectively suggest that
this irreversible activation of Panx1 leads to a cascade of
maladaptive immunity, to include sustained cytokine re-
lease, improper resolution of inflammation, impaired im-
mune cell chemotaxis, and ultimately cell death [196].
Panx1 activity has also been associated in triggering acti-
vation of the inflammasome complex [188], however, this
association is not fully elucidated and maybe cell-type spe-
cific [176, 188]. Of relevance here, in an in vivo experi-
mental model of retinal ischemic injury in male mice,
genetic ablation of Panx1 suppresses interleukin produc-
tion and protects retinal neurons from injury, highlighting
the link between Panx1 and inflammation [193].
Interestingly, the reported predominance of caspase

activation after ischemic injury in female mice [197]
raises the intriguing possibility that the endogenous
requirements for Panx1 to regulate neuronal responses
to ischemic injury are different between the two sexes.
With respect to connexins, whether Panx membrane
channels affect connexin activity, under physiological or
pathological conditions, is unknown and potentially a
fruitful avenue for investigation.
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Therapeutic avenues
As discussed above, multiple studies have indicated that
blockade of GJs and hemichannels provides neuroprotec-
tion in various models of neuronal injury. This suggests a
possibility for using the GJ/hemichannel blockade as a
novel therapeutic approach. Conceptually, blocking the
propagation between the neurons of GJ-permeable toxic
signals or blocking the release of toxic agents via hemichan-
nels would create a “firebreak”, reducing the extent of cell
death. This would prevent excessive neuronal death follow-
ing ischemic stroke, TBI and epilepsy, significantly reducing
morbidity and mortality. Because clinical trials for NMDAR
antagonists as neuroprotective agents largely failed [198],
development of new neuroprotective agents based on ma-
nipulation of neuronal and astroglial GJs and hemichannels
should prove to be a valuable alternative approach.
Conclusion
However, as also discussed in the present review, a number
of reports suggest that blockade of GJs and hemichannels
increases cell death. Clearly, the data on whether GJs are
pro-death or pro-survival are conflicting and a convincing,
evidence-supported explanation of this phenomenon is
absent. This provides the significant barrier for translating
the above-described findings to clinical practice. Without
resolution of conflicting studies, manipulation of GJC in
the clinic, as a novel approach to reduce neuronal death,
cannot be advocated. This represents loss of a potentially
extraordinary benefit to people suffering a range of brain
insults. Identifying the underlying mechanisms and deter-
mining conditions for the clinical use of GJ blockers that
will not compromise their strong neuroprotective effects
should be the major focus of future studies.
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