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Abstract

Background: Mesenchymal stem cells (MSCs) are multipotent stromal cells that have the ability to self-renew and
migrate to sites of pathology. In vivo tracking of MSCs provides insights into both, the underlying mechanisms of
MSC transformation and their potential as gene delivery vehicles. The aim of our study was to assess the ability of
superparamagnetic iron oxide nanoparticles (SPIONs)-labeled Wharton's Jelly of the human umbilical cord-derived
MSCs (WJ-MSCs) to carry the green fluorescent protein (GFP) gene to cutaneous injury sites in a murine model.

Methods: WJ-MSCs were isolated from a fresh umbilical cord and were genetically transformed to carry the GFP
gene using lentiviral vectors with magnetically labeled SPIONs. The SPIONs/GFP-positive WJ-MSCs expressed
multipotent cell markers and demonstrated the potential for osteogenic and adipogenic differentiation. Fifteen skin-
injured mice were divided into three groups. Group | was treated with WJ-MSCs, group Il with SPIONs/GFP-positive
WJ-MSCs, and group IIl with SPIONs/GFP-positive WJ-MSCs exposed to an external magnetic field (EMF). Magnetic
resonance imaging and optical molecular imaging were performed, and images were acquired 1, 2, and 7 days

after cell injection.

Results: The results showed that GFP could be intensively detected around the wound in vivo 24 h after the cells
were injected. Furthermore, we observed an accumulation of WJ-MSCs at the wound site, and EMF exposure
increased the speed of cell transport. In conclusion, our study demonstrated that SPIONs/GFP function as cellular
probes for monitoring in vivo migration and homing of WJ-MSCs. Moreover, exposure to an EMF can increase the

transportation efficiency of SPIONs-labeled WJ-MSCs in vivo.

Conclusions: Our findings could lead to the development of a gene carrier system for the treatment of diseases.
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Background

There is significant potential for the use of mesenchymal
stem cells (MSCs) in cell therapy [1]. However, their
clinical application still faces various challenges, such as
the fact that an efficient strategy for stem cell homing to
target sites has not yet been identified. Several other
factors limit the clinical application of stem cells, includ-
ing the time and method of drug administration, cell
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concentration, the transmission medium, and cell
homing [1, 2]. Homing of stem cells is achieved through
direct local injection, local perfusion, and systematic ad-
ministration. However, intravenous injection of stem
cells results in the accumulation of a significant number
of cells in the lungs and spleen, with a very low percent-
age of cells reaching the arterial system (about 5%), and
an even lower percentage reaching the target organ
(0.0005%) [2, 3]. Simple direct injections and local organ
perfusions are limited to superficial organs or to organs
directly connected to the main artery. In fact, although
an intra-arterial injection ensures highest cell numbers
for transplant, this method of stem cell transplantation
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increases the death rate by 41%, with animals succumb-
ing to arterial embolism [4]. Therefore, an important
prerequisite for treatments is to transplant MSCs with a
differentiation potential directly to the target area.

Compared with traditional preparations, magnetic tar-
geted drug delivery systems, which have been studied for
years [5-8], are characterized as methods for improving
drug targeting, enhancing the curative effect of drugs, and
decreasing toxic side effects. Superparamagnetic iron
oxide nanoparticles (SPIONs) are an excellent transmis-
sion medium based on the magnetic targeted drug deliv-
ery system [9-14]. Recent studies have revealed that
labeling stem cells with magnetic nanoparticles for mag-
netic resonance imaging (MRI)-mediated tracking of stem
cells has evolved. An improved curative effect on common
carotid artery injuries was observed using magnetized
endothelial progenitor cells, obtained from in situ intra-
arterial treatment of spinal cord injured animals, using a
magnetic field to direct the stem cells [15]. Recently, stud-
ies have used anionic magnetic nanoparticles to load
endothelial progenitor cells, and have successfully con-
trolled cell movement in the vessel network using a mag-
netic field [16]. Although the results are exciting, most of
these studies involved the use of a constant electromag-
netic field or an internal magnetic field.

Studies involving noninvasive external magnetic fields
(EMFs) with the use of permanent magnets are rare.
The superparamagnetism of SPIONs can be utilized to
bring about directional movement of magnetized stem
cells under the influence of an EMF. In the present
study, human umbilical cord MSCs were transfected
with SPIONs and green fluorescent protein (GFP), and
injected into the subcutaneous tissues of nude mice, spe-
cifically into partial cells at some cell intervals, following
a skin injury. In summary, although some studies have
shown that noninvasive EMFs can increase magnetized
cell homing following an intra-arterial injection, intra-
venous injection, or intrathecal injection, no evidence
has been provided showing the same effect following a
subcutaneous injection. The current study tested the hy-
pothesis that an EMF can promote homing and guide
the magnetized stem cells to make rapid directional
movements, following subcutaneous injection. MRI as
well as fluorescence imaging was used to track the stem
cells in vivo. Our findings demonstrated an improved
method of injury treatment, using MSCs as drug or gene
carriers, which can also be applied for directional drug
treatment or gene therapy, both of which have a signifi-
cant importance in the clinical setting.

Methods

Cell culture

The study was approved by the regional medical ethical
review board (Jinan University and Shenzhen people’s
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hospital). After obtaining a written informed consent,
the human umbilical cord Wharton’s Jelly-derived MSCs
(WJ-MSCs) were isolated as described previously [15],
from the umbilical cords of full-term newborns, deliv-
ered at the Shenzhen People’s Hospital, Guangdong,
China. Cells were cultured in low glucose-DMEM
(Hyclone, Logan, Utah, USA) containing 2 ng/mL of
basic fibroblast growth factor (bFGF) and 10% fetal bo-
vine serum (FBS) (Gibco, Gran Island, NY, USA), and
maintained at 37 °C in a humidified atmosphere of 5%
CO,. The medium was replaced every 3 days, and the
human umbilical cord-derived MSCs (HUCMSCs) were
collected by trypsin (0.25%, Invitrogen, USA) digestion.
All experiments were performed using MSCs at 3-5
passages [17].

Flow cytometry analysis

Passage 3 WJ-MSCs were trypsinized, dissociated into a
single cell suspension, and allowed to reach 60% con-
fluency. Cells were then rinsed with phosphate buffered
saline (PBS) and incubated with anti-human CD73-PE
(BioLegend, 344,004), anti-human CD105-PE (BioLe-
gend, 323,206), anti-human CD90-PE (BioLegend,
328,110), anti-human CD34-PE (BioLegend, 343,506),
and anti-human CD45-FITC (BioLegend, 304,006) for
15 min at room temperature. After incubation, the cells
were rinsed with PBS, read on a FACSCalibur (BD, USA)
flow cytometer, and analyzed using the WinMDI 2.8
software. Mouse IgG1-PE (BioLegend, 400,114) and
mouse IgG1-FITC (BioLegend, 400,107) were used as
the isotype controls.

Osteogenic differentiation

At approximately 80% confluency, WJ-MSCs were rinsed
with PBS and cultured in osteogenic differentiation
medium (Gibco, Gran Island, NY, USA). The medium
was changed twice a week, and after 3 weeks, the cells
were washed with PBS and fixed in 4% paraformalde-
hyde for 30 min. The cells were then stained with 0.1%
Alizarin Red S water solution for 30 min.

Adipogenic differentiation

At 80% confluency, WJ-MSCs were rinsed with PBS
and cultured in adipogenic differentiation medium
(Gibco, Gran Island, NY, USA). The medium was chan-
ged twice a week, and after 3 weeks, the cells were
washed with PBS and fixed in 4% paraformaldehyde for
30 min. The cells were then stained with 0.3% Oil Red
O solution for 30 min.

Lentiviral transfection of WJ-MSCs

A lentiviral vector (Fitgene, Guangzhou, China) express-
ing GFP with a cis-acting element, CMV-GFP-puro, was
packaged and used to infect the WJ-MSCs, according to
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the manufacturer’s protocol. The transduced cells were
grown in low glucose-DMEM containing 2 ng/mL bFGEF,
10% FBS, and 400 pg/mL puromycin. Puromycin-
resistant WJ-MSCs, overexpressing GFP, were obtained
after 3 days of puromycin selection. Stable clones were
identified by the expression of GFP protein [16]. The ef-
ficiency of the target cells was estimated by fluorescence
microscopy using an inverted fluorescence microscope—
the GFP positive cells in each field (10X) visible/all the
cells in each field (10X).

Labeling of WJ-MSCs with SPIONs

Approximately 1 x 10° genetically modified WJ-MSCs
were seeded into each well of a 24-well plate. After 12 h
of incubation in MSC growth medium, the cells were
magically labeled with SPIONs (25 pg/mL; SPIONSs-
MSCs) (Molday ION Rhodamine B™, BioPhysics Assay
Laboratory, Inc., Worcester, MA, USA; CL-50Q02-6A-
50) and complexed to poly-L-Lysine (0.75-1 pg/mL)
(BioPhysics Assay Laboratory, Inc., CL-00-01). The cells
were then collected, washed twice in PBS, counted, and
resuspended at the appropriate cell density for in vivo
analyses.

Cell vitality test

For Trypan blue staining, 200 uL of cells was aseptically
transferred to a 1.5 mL clear Eppendorf tube, and incu-
bated for 3 min at room temperature with an equal vol-
ume of 0.4% (w/v) Trypan blue solution prepared in
0.81% NaCl and 0.06% (w/v) dibasic potassium phos-
phate. Cells were counted using a dual-chamber
hemocytometer and a light microscope. Viable and non-
viable cells were recorded separately, and the means of
the two cell counts were pooled for analysis.

Full-thickness skin defect model and cell transplantation

In total, 30 specific pathogen-free BALB/C nude mice
were randomly divided into 3 groups: 10 mice in the
control group, 10 mice in the group receiving SPIONs-
MSCs, and 10 mice in the group receiving SPIONs-
MSCs exposed to an EMF (SPIONs-MSCs + magnetic
field). The full-thickness skin defect model was imple-
mented in all experimental mice, and cell transplantation
was performed at a 1.5 cm distance from the wound
using a 1 mL syringe. The control group was injected
with 200 pL 0.9% normal saline, the SPIONs-MSCs
group was injected with 2 x 10° SPIONs and GFP
double-labeled MSCs, and the SPIONs-MSCs + mag-
netic field group was injected with 2 x 10° SPIONs and
GFP double-labeled MSCs exposed to an EMF generated
by a permanent magnet for 6 h/day. The effects of differ-
ent EMF exposure times on stem cells were analyzed by
the MTT assay and western blotting, by determining the
apoptosis markers (Additional file 1: Figure S1). The
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full-thickness skin defect model was generated as fol-
lows: mice were anesthetized by an intraperitoneal injec-
tion of 10% chloral hydrate (0.3 mL/100 g); next,
following disinfection, a 4-mm diameter circular skin de-
fect was created to the depth of the deep fascia on the
back of the mice, near the double hind limb. After com-
pletion of stem cell transplantation, a representative ani-
mal from each group was immediately subjected to MRI
and in vivo fluorescence examination for baseline ana-
lysis. Three mice per group were subjected to MRI and
fluorescence imaging at 24 h, 48 h, and 7 days post-cell
transplantation, and the healed skin lesions were re-
moved for pathological examination on day 7. Healed
wounds were identified by the presence of the following:
wound closure, epithelium, proper activity intensity, no
wound dehiscence, no ulceration, an appropriate time
lapse after wound generation, the ability to tolerate a
certain tension and pressure at the wound site, gradual
fading of skin color at the wound site, and similarity of
the wound skin color to that of the surrounding healthy
skin to maintain the skin barrier integrity. All experi-
mental procedures were approved by the Animal Experi-
mentation Ethics Committee of First Hospital Affiliated
to Jinan University, Guangzhou, China.

In vivo injection of magnetic WJ-MSCs

Mice were anesthetized with isoflurane (4% induction,
1.5% maintenance). The wounds were exposed to a mag-
netic field of 0.5 T using a small permanent neodymium
(FeNdB) magnet (8 x 2 mm) for 6 h/day (Additional file
2: Figure S2). Subsequently, 2 x 10° WJ-MSCs, which
were previously magnetized using 25 pg/mL of SPIONS,
were hypodermically injected (hypodermis) with 150 pL
of PBS. Control animals received an identical cell infu-
sion without the magnet implantation. Magnets were
placed for 6 h daily.

In vivo MRI

The animals used were BALB/C (nu/nu) nude mice
(n = 3). One day, two days, or seven days after trans-
plantation, the mice were anesthetized using chloral hy-
drate and underwent in vivo MRI (gradient echo scan),
using a 3 T MRI scanner (Discovery MR750, GE Health-
care, USA). For image acquisition, a quadrature birdcage
volume coil of 7 cm inner diameter was used. Axial im-
ages were taken with the following parameters: field of
view = 4 x 4 cm? matrix size = 256 x 256, slice thick-
ness = 1 mm, TE = 6 ms, and TR = 700 ms. Following
completion of the scan, the raw data and images were
processed using the built-in professional software Dis-
covery MR750, with each injected area defined as a unit,
and using each of the 4 selected regions of interest
(ROI) for measurements. MRI parameters included
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injection of cell volume, displacement, carrier-to-noise
ratio (CNR), and signal-to-noise ratio (SNR).

Fluorescence stereomicroscopy

To assess the distribution of SPIONS-MSCs in vivo, anes-
thetized rats were imaged for GFP fluorescence using a
whole-body imaging system (IVIS Lumina II, Caliper,
France). Filters of 480 nm (+10 nm) and 505 nm (+5 nm)
represented the excitation and emission signals, respect-
ively. High-resolution images were captured directly on a
computer and analyzed using Living Image software
(Xenogen Corporation, Almeda, California, USA). Results
were expressed as number of photons/s/ROL

Prussian blue staining and tissue specimens

Prussian blue staining was performed to identify the
SPIONs-MSCs. Cells were incubated for 30 min with 2%
potassium ferrocyanide in 6% hydrochloric acid, and
then counterstained with nuclear fast red for 30 s. A
blue color indicated the presence of iron within the cells,
thereby corresponding to the SPIONs-MSCs. Similarly,
in skin tissue sections, SPIONs appeared as blue precipi-
tates in the cytoplasm and pink in the nucleus. Tissue
specimens were frozen in optimal cutting temperature
(OCT) compound (Sakura Finetek Inc., Torrance, Cali-
fornia, USA) in liquid nitrogen, and 10-pm sections were
prepared using a cryostat microtome (CM1850; Leica
Microsystems GmbH).
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Statistical analysis

The statistical significance of intergroup differences was
assessed using the Student’s t-test or ANOVA followed by
Tukey’s post hoc test. A P value <0.05 was considered sta-
tistically significant at the 95% confidence level. All values
in the bar and line graphs are expressed as mean + standard
deviation (SD). The number of independent experiments
analyzed has been stated in each figure legend.

Results

Lentivirus infection and SPIONs labeling

In our study, GFP was used for the in vivo tracking of WJ-
MSCs. GFP was incorporated into a lentiviral vector con-
taining independent puromycin expression frames. WJ-
MSCs were isolated from fresh umbilical cords and cul-
tured in MSC medium for several passages. Lentivirus-
infected WJ-MSCs were selected in MSC medium with
puromycin for 3 days. Stable clones were GFP positive
(>99%), as detected by fluorescence microscopy (Fig. la
and b). GFP expression was observed under a fluorescence
microscope. Using an inverted fluorescence microscope,
we observed the HUCMSCs for a green fluorescence sig-
nal at 12 h post-transfection; however, the signal was weak
and expressed only by a few cells. The number of GFP-
positive cells increased constantly 24 h post-transfection,
with 4-10 GFP-positive cells in each visual field (10X) at
48 h, and more than 10 GFP-positive cells in each visual
field (10X) at 72 h. The GFP transfection efficiency with
lentivirus infection was over 99%. The GFP-positive WJ-

100pum 9
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Fig. 1 WJ-MSCs labeled with GFP/SPIONs. GFP-positive cells under fluorescence microscope (a) and (b). Cells labeled with SPIONs (c) and (d)




Meng et al. BMC Cell Biology (2017) 18:24

MSCs were then transfected with SPIONS, and the trans-
fection efficiency was evaluated by Prussian blue staining.
Results demonstrated that more than 80% of the cells
were labeled with SPIONs (Fig. 1c and d).

Immunophenotype, differentiation potential, and vitality
of WJ-MSCs

The immunophenotype of passage 3 WJ-MSCs, which
represent typical fibroblastic cells, and GFP/SPIONs-
positive WJ-MSCs was evaluated by flow cytometry. The
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results showed that all cells expressed CD73, CD105,
and CD90 (>95%), but did not express CD34 or CD45
(<2%) (Fig. 2). Furthermore, both untransfected WJ-
MSCs and GFP/SPIONs-positive WJ-MSCs were evalu-
ated for their osteogenic and adipogenic differentiation
potential. After a 3-week induction under osteogenic
conditions, these cells were stained with 0.1% Alizarin
Red S water solution. Results showed that majority of
the WJ-MSCs were alkaline phosphatase-positive, indi-
cating their osteogenic differentiation potential (Fig. 3a
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Fig. 3 Differentiation of WIMSCs. Osteogenic differentiation analysis of untransfected WJMSCs (a) and GFP/SPION-positive WIMSCs (c).
Adipogenic differentiation analysis of untransfected WJMSCs (b) and GFP/SPION-positive WIMSCs (d)
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and c). To assess their adipogenic differentiation poten-
tial, another culture plate of passage 3 WJ-MSCs was in-
cubated with adipogenic differentiation medium for
3 weeks and then stained with 0.3% Oil Red O. We ob-
served that majority of the cells contained numerous Oil
Red O-positive lipid droplets, indicating that WJ-MSCs
underwent adipogenic differentiation. (Fig. 3b and d).
Growth of GFP/SPIONs-positive WJ-MSCs was seen in
the two multiplication cycles; the first multiplication
cycle started on day 3 and 4, and the second one in the first
4-7 days. Compared with the control group (HUCMSCs),
there was no significant difference at all time points
(¢ =2.05, p > 0.05) (Additional file 3: Figure S3).

In vivo cell tracking using MRI

GFP/SPIONs-positive WJ-MSCs were injected around
the cutaneous wound areas in injured mice. MRI was
performed at 0, 24, and 48 h and 7 days post-
transplantation. As expected, GFP/SPIONs-positive WJ-
MSCs were successfully directed to the subcutaneous
areas of the skin under the influence of the magnetic
gradient created by the implanted magnet (Fig. 4). The
effect of the EMF on stem cell targeting was significant
compared to WJ-MSCs without exposition to magnetic
field. The 24-h MR images confirmed that more than
80% of SPIONSs/GFP-labeled WJ-MSCs (low signal dis-
tribution) reached the trauma center within the first
24 h. However, only low signals were detected around

the wounds that were not exposed to the EMF. On day
7, post-cell transplantation, MRI results demonstrated a
hypointense signal distribution in the wound center of
mice regardless of the magnetic field interference. How-
ever, the MRI parameters were not significantly different
between the SPIONS-MSCs and SPIONs-MSCs + mag-
netic field groups. Parameters such as area, SNR, CNR,
and displacement can be used as indicators of the con-
centration and movement speed of cell clusters. In the
SPIONs-MSCs + magnetic field group, we observed a
significantly reduced area (Fig. 5a) and an increased
SNR, CNR, and displacement 24 h, 48 h, and 7 days
post-cell transplantation, particularly in the first 24 h
(Fig. 5b). The CNR was significantly different between
the two groups, especially at the 24 h time point (Fig.
5c¢). The highest value of SNR was observed at the 7 day
time point in the two groups (Fig. 5d).

Moreover, we observed that the wound recovery rate
was enhanced in the SPIONs/GFP-MSCs + magnetic
field group as compared with the SPIONs/GFP-MSCs
group and the control group. Qualitative skin analysis
via Prussian blue staining and fluorescence imaging was
performed to validate that the hypointense signals de-
tected by MRI indeed corresponded to the presence of
MSC:s at the target site. The presence of blue cells (Prus-
sian blue) was confirmed in matching skin injury areas,
indicating the presence of MSCs in the skin tissue (Fig.
6). Both groups of SPIONs-MSCs, with or without
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the wound

Fig. 4 T2-weighted MR images and in vivo cell tracking. Magnetized cells can be detected as hypointense signals (dots): e is FeNdB magnets

(8 mm x 2 mm) with a magnetic field of 0.5 T. a—d the SPIONs-MSCs + magnetic field group, MR images were taken at 0 h (@), 24 h (b), 48 h (c),
and 7 d (d) after cell transplantation, the MRI image in (b) confirms that labeled stem cells (low signal distribution) entered into the trauma center
within the first 24 h. e~h SPIONs-MSCs group without magnetic field, MR images were taken at O h (e), 24 h (f), 48 h (g), and 7 d (h) after cell
transplantation, the 24-h and 48-h MRI images in this group do not demonstrate a low signal area, corresponding to the skin surrounding

Control group

Oi:;.p:\

exposure to a magnetic influence, were observed in the
skin injury areas of mice 7 days after cell transplantation;
however, far fewer positive cells were observed in the
SPIONs-MSCs group that did not receive a magnetic
implantation. Magnetic implantation, along with injec-
tion of SPIONs/GFP-MSCs was found to be safe, as all
animals survived and no major signs of tissue injury
were observed in vivo by MRI, or ex vivo in the skin
tissue.

In vivo optical molecular imaging

To evaluate the role of the magnetic gradient created by
the EMF on the activity of SPIONs/GFP-MSCs, we used
in vivo optical molecular imaging as a tracer technique
to observe the living cells, which express the fluorescent
protein. Fluorescence imaging at 0, 24, and 48 h demon-
strated a trend of targeted SPIONs-MSCs movement
under the EMF, which was consistent with MRI results
(Fig. 7). However, the optical molecular imaging tech-
nique was not as sensitive as MRL

Discussion

Our study demonstrated an EMF-targeted approach that
promotes the directional movement of SPION-labeled
stem cells, enhancing their ability to repair damaged skin
tissues. SPION-labeled human MSCs exhibit excellent
paramagnetism, and can accurately target lesion loca-
tions under the effect of an EMEF, thereby increasing
stem cell concentrations at the target site. We confirmed
that MSCs doubly labeled with SPIONs and GFP
reporter gene demonstrate better dry phenotypes in
in vivo experiments. We also demonstrated that SPIONs
and GFP labeling does not affect MSC proliferation or
vitality, as no significant difference in cell viability was
observed before and after labeling. The osteogenic and
adipogenic differentiation potential is not affected when
the amount of SPIONs-labeled MSCs is 90% [18—21]. In
the present study, SPIONs/GFP-labeled MSCs displayed
bona fide stem cell features in vitro, similar to that in
other studies [22-24]. Weakening of the magnetic flux
by exposure to an electromagnetic field, with strength
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less than 0.1 mT, can promote human umbilical vein
endothelial cell proliferation [25]. Exposure of bone
marrow-derived MSCs to a 1 mT magnetic field for 1 h
per day has been shown to promote cell proliferation
and differentiation at an early stage [26—28]. The charac-
teristics of a permanent magnet are far more complex
than that of an electromagnetic field, and the force is
distance-dependent; therefore, magnetic field properties
were not analyzed in this study. There are very few stem
cell studies involving the generation of outside target
fields by use of a permanent magnet; however, some
studies have successfully applied this method. We put an
8 mm x 2 mm permanent magnet with a surface residual
magnetism of 0.5 T and a coercive force of 900 KA/m
on the surface of the wound, 1.5 cm away from the
transplanted cells. The magnetic targeting effect was
evident from our results. Since the dead labeled-stem
cells also release iron-containing nanoparticles, which
can be taken up by the surrounding unlabeled stem cells,
we utilized MRI and in vivo fluorescence imaging for
synergistic monitoring to avoid any false positive results.
However, MRI was more sensitive than in vivo fluores-
cence imaging. MRI demonstrates high spatial reso-
lution; therefore, a small number of cells can be studied
and quantified in a very simple manner using this

technique. In the present study, in vivo fluorescence im-
aging was unable to track cells that had been trans-
planted for 48 h; however, MRI maintained an excellent
tracer capacity until the end of the experiment (up to
7 days). In the case of a 6-h magnetic field exposure
each day, both tracer techniques demonstrated that
labeled stem cells possess a quick and clear central ten-
dency for magnetic fields. MRI was also very sensitive in
demonstrating that a considerable number of stem cells
entered the epidermal trauma center within 24 h, and
revealed that the maximum displacement of cells ex-
tending to the center of the magnetic field was 1.5 cm.
Furthermore, using MRI, we also determined that the
change in maximum displacement after 48 h was smaller
than that in the first 24 h, with a maximum displace-
ment of 0.3 cm. The MRI technique also demonstrated
increased cell proliferation in the wound area on day 7
post-cell transplantation. A directed stem cell homing to
trauma centers was observed in mice exposed to an
EMF; however, other parameters such as displacement,
area, and SNR were significantly reduced as compared
to in mice that were not exposed to the EMF.

Mice in the EMF group displayed a distinct advantage
in the overall wound healing time. The fact that GFP is
expressed only in surviving stem cells was used to
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Fig. 6 In vivo optical molecular imaging. d 0-h, (e) 24-h, and (f) 48-h images showing the distribution of target cells in the group of SPIONs-MSCs
+ MF. At 24 h (e) and 48 h (f), target cell distribution is clear; however, this is not observed in the SPIONs-MSCs group without the MF at the
same time points for (b) and (c) respectively. The (a) showes the SPIONs-MSCs group without the MF at 0-h

f

distinguish the false positive cells, and reflect the true
state of surviving stem cells. Its advantage was pro-
nounced in pathological tissue sections, and was con-
firmed by Prussian blue staining. Fluorescence imaging
of pathological tissue sections also demonstrated that
the aggregation ability of the targeted stem cells under
the effect of an EMF was superior to that of control and
non-magnetic field stem cell groups.

MRI tracking of SPION-labeled stem cells has so far
proven to be an effective technique, resulting in limited

concentration-dependent cellular toxicity. A previous
study reported a labeling efficiency of 99%, at concentra-
tions of 25-50 mg Fe/L, without any adverse effects on
cell viability, growth, differentiation, and other biological
activities [29]. In another study, culture mediums with a
SPION concentration of 11.2, 22.4, and 44.8 mg Fe/L led
to no changes in stem cell viability and proliferation
[30]. Proliferation of liver stem cells has been shown to
be inhibited by SPIONs at concentrations higher than
100 mg Fe/L [31]. It has therefore been recommended
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Fig. 7 SPIONs and EGFP-labeled human MSCs under magnetic influence identified in skin tissue. ¢ and (f) show only a few positive cells in the group
that was not exposed to the magnetic field. b and (e) show SPIONs and EGFP-labeled human MSCs after 7 d when the wound healed. a and (d) show
SPIONs and EGFP-labeled human MSCs transplanted subcutaneously in the skin of nude mice at 0 h

that a SPION-labeling concentration of 25 mg Fe/L be
used [32], which minimally affects the physiological
activity of stem cells. In the present study, we used the
same SPION-labeling concentration, and observed no
changes in cellular morphology or activity.

Limitations

Our study is limited by the use of relatively few animals,
a short duration of the disease, and lack of another con-
trol group with only a magnet implant without MSCs in-
jection, to test the effect of magnetic field exposure on
skin wound healing. Nevertheless, no histology but the
wound area determines whether the skin defect is healed
[33]. Moreover, the differentiation potential of SPIONs
and GFP-labeled MSCs could have been affected by the
iron particles. Further studies are required to explore
whether exposure to a magnetic field has the same effect
on MSCs from a larger distance and in diseases that are
more complex.

Conclusions

In summary, SPION-labeled stem cells are excellent and
safe magnetization and tracer agents, and together with
exposure to an EMF generated by permanent magnets,
they can be used as a new method of magnetic guidance

of targeted stem cells. This method was shown to be safe
and effective by MRI and fluorescence analysis of tissue
sections. The findings of this study provide a platform
for the development of stem cell targeted therapies, and
can be further applied for drug and gene targeted
therapies.

Additional files

Additional file 1: Figure S1. The Effect of different external magnetic
field exposure time on stem cells was tested by MTT (A), western-blot
testing apoptosis marker (B, C). (a) MTT testing showed when the SPION/
GFP positive MSCs exposure 6 h/d under magnetic field the cell viability
increased, and (b, ¢) apoptosis marker were low. (TIFF 134 kb)

Additional file 2: Figure S2. Mice were anesthetized with isoflurane
(4% induction, 1.5% maintenance), and a small permanent neodymium
(FeNdB) magnet (8 x 2 mm) with a magnetic field of 0.5 T was put on
the wound of mice for 6 h/day. (TIFF 1394 kb)

Additional file 3: Figure S3. The distributions of cell growth. (TIFF 589 kb)
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