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Abstract

Background: Previously published reports indicated that some enzymes of the central carbon metabolism (CCM),
particularly those involved in glycolysis and the tricarboxylic acid cycle, may contribute to regulation of DNA replication.
However, vast majority of such works was performed with the use of cancer cells, in the light of carcinogenesis. On the
other hand, recent experiments conducted on bacterial models provided evidence for the direct genetic link between
CCM and DNA replication. Therefore, we asked if silencing of genes coding for glycolytic and/or Krebs cycle enzymes

synthesis efficiency.

especially important in this process.

may affect the control of DNA replication in normal human fibroblasts.

Results: Particular genes coding for these enzymes were partially silenced with specific siRNAs. Such cells remained
viable. We found that silencing of certain genes resulted in either less efficient or delayed enterance to the S phase.
This concerned following genes: HK2, PFKM, TP|, GAPDH, ENO1, LDHA, CS1, ACO2, SUCLG2, SDHA, FH and MDH?.
Decreased levels of expression of HK2, GADPH, CS1, ACO2, FH and MDH?2 caused also a substantial impairment in DNA

Conclusions: The presented results illustrate the complexity of the influence of genes coding for enzymes of glycolysis
and the tricarboxylic acid cycle on the control of DNA replication in human fibroblasts, and indicate which of them are
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Background

DNA replication is an essential processes in every cellu-
lar organism. Its precise regulation is crucial for ad-
equate inheritance of the genetic material by daughter
cells, and thus, proper functions of cells and organisms.
The general scheme of DNA replication is common in
prokaryotic and eukaryotic cells, however, these pro-
cesses differ significantly in details. Nevertheless, it was
indicated that principles of some regulatory mechanisms
may be common, or at least similar, in both types of cells
(for reviews see [1-3]).

* Correspondence: robert.lyzen@biol.ug.edu.pl

"Equal contributors

Department of Molecular Biology, University of Gdansk, Wita Stwosza 59,
80-308, Gdansk, Poland

( BioMVed Central

Apart from involvement of specific proteins dedicated
solely to control DNA replication, it appeared that en-
zymes which primary functions were ascribed to other
processes can also play important roles in the regulation
of genome duplication. Particularly, a new light on this
problem was shed by recent studies on bacterial models.
It was demonstrated that a direct link exists between
central carbon metabolism and DNA replication regula-
tion. Namely, effects of mutations in genes coding for
Bacillus subtilis primase, helicase or lagging strand DNA
polymerase could be specifically suppressed by muta-
tions in genes encoding enzymes catalyzing terminal re-
actions of glycolysis (pgk, pgm, eno, pykA) [4]. In
Escherichia coli, effects of mutations in genes coding for
the o subunit of DNA polymerase III, DNA polymerase
III B clamp, and the primase were suppressed by
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deletions of genes coding for enzymes involved in glyco-
lytic, acetate overflow and pentose-phosphate pathways
[5]. Moreover, temperature-sensitive phenotype of a mu-
tation in the dnaA gene, coding for the replication initi-
ator protein, was overcome by deletions of pta and ackA
genes, coding for enzymes comprising the acetate over-
flow mechanism [6].

Although the studies mentioned above were conducted
on bacterial models, recent analyse of previously pub-
lished reports suggested that somewhat similar
phenomenon might occur in eukaryotes. Additional roles
of enzymes catalyzing reactions of glycolysis and trica-
boxylic acid cycle were reported previously, and some of
them include regulation of transcription, DNA binding
and involvement in carcinogenesis (summarized and dis-
cussed in [7, 8]). Therefore, one might speculate that the
direct link between central carbon metabolism and DNA
replication is not restricted to bacterial cells, but could op-
erate also in eukaryotes, including humans. On the other
hand vast majority of such studies on human cells were
performed with the use of cancer cell lines. Beside many
advantages of the use of such lines, there are also draw-
backs when considering regulatory mechanisms of DNA
replication, as cancer cells have serious disturbances in
the control of this process. Moreover, most studies con-
centrated on single enzymes, thus, different kinds of ex-
periments were performed for particular genes and
proteins. Therefore, the aim of this work was to assess the
effects of silencing of genes coding for enzymes involved
in all steps of glycolysis and tricarboxylic acid cycle on
DNA replication in human non-cancer cells. As a model,
we have chosen a human dermal fibroblast cell line, as a
representative of cells that actively divide throughout the
human life, while being non-transformed.

Results

Silencing of genes coding for enzymes involved in
glycolysis and tricarboxylic acid cycle

Human dermal fibroblasts, line HDFa, were used in all
experiments. To silence the expression of genes encod-
ing enzymes involved in glycolysis and tricarboxylic acid
cycle, specific siRNAs were employed. Following genes
were subjected to silencing: HK2 (coding for hexokinase
2), GPI (coding for phosphoglucose isomerase), PFKM
(coding for phosphofructokinase M), ALDOA (coding
for diphosphate aldolase A), TPII (coding for triosepho-
sphate isomerase), GAPDH (coding for glyceraldehyde
3-phosphate dehydrogenase), PGKI (coding for 3-
phosphoglycerate kinase 1), PGAMI1 (coding for phos-
phoglycerate mutase 1), ENOI (coding for a-enolase),
PKM (coding for pyruvate kinase M), LDHA (coding for
lactate dehydrogenase A), CSI (coding for citrate syn-
thase 1), ACO2 (coding for aconitase 2), IDH2 (coding for
isocitrate dehydrogenase 2), IDH3B (coding for isocitrate
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dehydrogenase 3B), OGDH (coding for a-ketoglutarate de-
hydrogenase), SUCLG2 (coding for GDP-forming
succinyl-CoA synthetase 2), SDHA (succinate dehrydro-
genase complex, subunit A), FH (coding for fumarase)
and MDH?2 (coding for malate dehydrogenase 2).
Particular siRNAs caused various inhibition of expres-
sion of specific genes. The levels of different transcripts
were from about 70 % to less than 10 %, relative to the
control (non-treated) cells (Fig. 1). Nevertheless, the cells
remained viable, with little or moderate effects of the
treatment on the number of alive cells in the culture. The
most pronounced effects were observed for silencing of
GAPDH and FH genes, where 60 % of cells survived
siRNA-mediated expression impairment (Fig. 2).

Enterance to the S phase following gene silencing

The time and efficiency of the enterance of the cells to the
S phase following silencing of expression of particular
genes were estimated. Two types of effects were observed
in cells treated with siRNAs impairing expression of some
genes, less efficient or delayed enterance to S phase. When
genes coding for enzymes catalyzing reactions of glycolysis
were silenced, the less efficient enterance in the S phase,
as measured by the percentage of cells in this phase, was
observed for fibroblasts with impaired expression of HK2,
PFKM, TPI, GAPDH and LDHA, with the most pro-
nounced effect in the case of GAPDH (Fig. 3). Delayed
enterance in the S phase, with a similar fraction of cells
entering this phase, was observed in fibroblasts with si-
lenced the ENOI gene (Fig. 3). Analysis of other phases of
the cell cycle under these conditions is presented as add-
itional data [Additional file 1 and 2].

When the tricarboxylic acid cycle genes were silenced,
less efficient enterance to the S phase was observed in
cells with impaired expression of CSI, ACO2, SDHA and
FH, with the most pronounced effects in the case of ACO2
and FH, and the delayed enterance occurred in fibroblasts
with silenced SUCLG2 and MDH?2 genes (Fig. 4). Analysis
of other phases of the cell cycle under these conditions is
presented as additional data [Additional file 3 and 4].

DNA synthesis in cells with silenced genes

The results described in the preceding subsection indi-
cated that silencing of several genes coding for enzymes
involved in glycolysis and tricarboxylic acids had signifi-
cant effects on the enterance of human fibroblasts in the
S phase. Less effective or delayed enterance of cells in
the S phase should imply impairment in DNA replica-
tion. To test if DNA synthesis is affected in fibroblasts
with assessed genes, we have measured rates of incorpor-
ation of bromodeoxyuridine (BrdU) in synchronized cell
cultures. In most cases, impairment of DNA synthesis was
negligible if any. However, silencing of HK2, GADPH,
CS1, ACO2, FH and MDH?2 resulted in significantly less
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Fig. 1 Levels of mRNAs of genes coding for glycolytic and tricarboxylic acid cycle enzymes in human dermal fibroblast cells treated with siRNAs.
Cells were seeded in 6-well plates, and transfected with siRNAs. After 72 h incubation, total RNA was purified and the level of mMRNA was estimated by
gPCR analysis. Presented results are mean values from at least three independent experiments, with error bars indicating SD. In each experiment, mRNA
level measured in untreated cells was used as a control value (100 %, dashed line). In all experiments, statistically significant differences (p < 0.05 in the
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efficient incorporation of BrdU into DNA of cultured cells
(Fig. 5). Since effects on enterance to S phase were ob-
served in cells with impairment expression of the same
genes, the results of measurement of DNA synthesis effi-
ciency corroborate the conclusion made on the basis of
those experiments.

Discussion

A direct link between central carbon metabolism and
DNA replication has been demonstrated recently in pro-
karyotic cells (summarized in [1, 9]). Analysis of previ-
ously published data led to the hypothesis that enzymes of

central carbon metabolism may also be involved in the
regulation of DNA replication [7, 8]. However, particu-
lar previous reports were usually focused on single en-
zymes. Moreover, vast majority of works on human cells
were performed with cancer-derived cell lines, which
may have serious drawbacks when studying the DNA
replication control. Therefore, we have performed a
complex study, in which expression of genes coding for
enzymes involved in all steps of glycolysis and tricarb-
oxylic acid cycle were silenced with the use of specific
siRNAs. Interestingly, we found that silencing of certain
genes resulted in either less efficient or delayed
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Fig. 2 Viability of human dermal fibroblasts after silencing of genes coding for glycolytic and tricarboxylic acid cycle enzymes. Cells were seeded
in 6-well plates, transfected with siRNAs and synchronized. Following washing, the cells were collected and analyzed by flow cytometry. Presented
results are mean values from at least three independent experiments, with error bars indicating SD. In each experiment, mRNA level measured in
untreated cells was used as a control value (100 %, dashed line). Statistically significant differences relative to the control are indicated by asterisks
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Fig. 3 Effects of siRNA-mediated silencing of glycolityc genes on enterance of cells in S phase. Cells were seeded on Petri dishes, transfected with
SIRNA specific for indicated gene (o) and synchronized. Analogous experiments without siRNA were treated as controls (m). After cell cycle releasing,
the cells were collected every two hours, starting from 14 h, and analyzed by flow cytometry. Presented results are mean values from at least
three independent experiments, with error bars indicating SD. Statistically significant differences relative to the control are indicated by asterisks

enterance to the S phase. This concerned following and MDH2 caused also a substantial impairment in
genes: HK2, PFKM, TPI, GAPDH, ENOI, LDHA, CS1, DNA synthesis efficiency. These effects, with indicated
ACO2, SUCLG2, SDHA, FH and MDH?2. Decreased genes’ products in the metabolic pathways, are summa-
levels of expression of HK2, GADPH, CSI, ACO2, FH rized schematically in Fig. 6.
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Fig. 4 Effects of siRNA-mediated silencing of tricarboxylic acid cycle genes on enterance of cells in S phase. Cells were seeded on Petri dishes,
transfected with siRNA specific for indicated gene (o) and synchronized. Analogous experiments without siRNA were treated as controls (m). After
cell cycle releasing, the cells were collected every two hours, starting from 14 h, and analyzed by flow cytometry. Presented results are mean values from
at least three independent experiments, with error bars indicating SD. Statistically significant differences relative to the control are indicated by asterisks )
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These results may suggest that central carbon metab-
olism has a significant direct influence on the regulation
of DNA replication through particular enzymes. At this
stage of our knowledge it is impossible to deduce a spe-
cific mechanism by which these enzymes may link the
metabolism to DNA synthesis. However, there are some
insights from previous works, summarized below, which
might shed some light on this phenomenon.

Impaired expression of HK2, coding for hexokinase 2,
in cancer-associated fibroblasts (CAF) resulted in a G1
phase cell cycle arrest [10]. Moreover, decreasing of HK2
expression in laryngeal squamous cell carcinoma (LSCC)
reduced proliferation and cell viability by increasing GO-
G1 ratio and apoptosis [11]. Our results, indicating a de-
creased efficiency of the enterance to S phase after

silencing of HK2, are compatible with those observa-
tions. One of isoenzymes of phosphofructokinase, was
reported as a metabolic effector involved in the connec-
tion between glycolysis, cell proliferation and transform-
ation [12]. In fact, we also observed an impairment in
DNA synthesis when PFKM expression was down-
regulated. Moreover, depletion of GAPDH with RNA
interference in human lung carcinoma A549 and UO31
cells stopped cell proliferation, and induced cell cycle ar-
rest in G1 phase [13], which is in accordance to severe
inhibition of the enterance into S phase reported here.
Enolase could bind to specific DNA sequences and was
found in nuclei of various cell types [14],[15]. Silencing
of the ENOI gene by siRNA inhibited the proliferation
of the HCC cell line, which was accompanied by a
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Fig. 5 DNA synthesis in human dermal fibroblasts treated with siRNAs. Following siRNA trasfection and synchronization, cells were labeled with
BrdU for 24 h. Then, the cells were fixed, and incubated with anti-BrdU antibodies. BrdU incorporation was quantified by a colorimetric reaction
(absorbance at 460 nm). Presented results are mean values from at least three independent experiments, with error bars indicating SD. In each
experiment, DNA synthesis level measured in untreated cells was used as a control value (100 %, dashed line). Statistically significant differences
relative to the control are indicated by asterisks
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genes, resulted in less efficient (marked in red bold font) or delayed (marked in blue bold font) enterance of human dermal fibroblasts to the S phase.
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phosphate dehydrogenase; GPI - phosphoglucose isomerase; HK - hexokinase; IDH - isocitrate dehydrogenase; LDH - lactate dehydrogenase; MDH - malate
dehydrogenase; OGDH - a-ketoglutarate dehydrogenase; PC - pyruvate carboxylase; PDH - puryvate dehydrogenase; PFK - phosphofructokinase;
PGK - phosphoglycerate kinase; PGAM - phosphoglycerate mutase; PKM - pyruvate kinase; SCS - succinyl-CoA synthetase; SDH - succinate dehydrogenase;
TPI - triosephosphate isomerase. Abbreviations of metabolite names are as follows: 1,3BPG - 1,3-bisphosphoglycerate; 2PG - 2-phosphoglycerate;
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shortened S phase and elongated G2/M phase of the cell
cycle [16]. Downregulation of ENO1 by siRNA inhibited
cell migration and invasion in glioma cells. Reduction of
ENOL1 activity significantly decreased the phosphoryl-
ation of PI3K and Akt and reduced level of E-Cadherin,
Cyclin D1, and p-Rb [17]. Thus, it is intriguing that we
have observed a delay in the enterance to S phase in
cells with the partially silenced ENOI gene. Lactate de-
hydrogenase was found in nuclei of mammalian cells,
and its possible function in DNA replication was sug-
gested [18],[19]. Knocking down the expression of
LDHA in human hepatocellular carcinoma cells and
pancreatic cancer cells inhibited cell growth dramatically
by activation of the apoptosis pathway [20], [21],[22]. In
human fibroblasts with the silenced LDHA gene, we
have observed a decreased number of cells entering the
S phase. In cancer cell lines, HeLa and SiHa, a decrease
in expression of the CSI gene was proportional to the
malignancy, but this effect appeared to be linked to dis-
turbed p53 function [23]. On the other hand CS knock-
down in human ovarian adenocarcinoma cell line
SKOV3 and A2780 cells resulted in dysregulation of cell
metabolism and downregulation of proliferation by de-
creasing phosphorylation of the extracellular signal-
regulated kinase (ERK), a key component in the control
of cell growth, and increasing of CASP7 encoded Cas-
pase 7 involved in the caspase activation cascade respon-
sible for the execution of apoptosis [11]. In accordance
to those reports, some negative effects on DNA replica-
tion in human fibroblasts with impaired expression of
CS1 were found in this work. Silencing of expression of
the SDHA gene resulted in a decrease of growth rate of
cancer cells [24]. In our experiments, such silencing
caused less efficient enterance into S phase. Finally, fu-
marase has been proposed to act as a tumor suppressor
[25]. Knockdown of FH and SDHA/B genes in HeLA
cells led to accumulation of fumarate and succinate,
which act as competitive inhibitors of multiple «o-
ketoglutarate-dependent dioxygenases, including histone
and DNA demethylases [26]. Inactivation of histone
demethylases, promotes G1 cell-cycle arrest, and in-
duces genes for differentiation by selectively modulat-
ing the methylation states of histone H3 at lysines 4
(H3K4) and 9 (H3K9) [27]. In human fibroblasts, we
have observed a severe inhibition of the cell cycle at
the stage of the S phase enterance under conditions
of partial FH silencing.

The advantage of this study, in relation to previous
works, discussed above in comparison to our work, is
that the results presented here were obtained in the
same cell line of human dermal fibroblasts. Generally,
we have observed two types of the effects of silencing of
particular genes: less efficient or delayed enterance to
the S phase. Furthermore, reduction in efficiency in
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DNA synthesis was demonstrated in cells deficient in ex-
pression of the same genes as in the case of the less effi-
cient enterance to the S phase. Therefore, the studies
reported here provide a complex picture of the effects of a
decreased levels of expression of the central carbon me-
tabolism genes on DNA replication in human fibroblasts.

In the light of the general mechanisms of glycolysis, our
results indicating different effects caused by silencing of
GPI or GAPDH gene, an increase or severe decrease in ef-
ficiency of enterance into S phase, respectively, may be
considered as intriguing. Glycolysis is a multi-step process,
and each of the steps is performed either by one or mul-
tiple enzymes (isoforms). In contrast to the other steps,
the second and sixth steps are catalyzed by the only one
enzyme, GPI and GAPDH, respectively. GPI is the only
enzyme catalyzing the second step of glycolysis, perform-
ing the conversion of glucose-6-phosphate to fructose-6-
phosphate. Similarly, GAPDH is another bottleneck, the
only enzyme catalyzing the sixth glycolytic step (except
GAPDHS, a testis-specific isoform of GAPDH). Thus,
metabolic effects (glycolysis down-regulation) of silencing
GPI and GAPDH genes might be expected to be similar.
Contrary to such presumption, the observed effects on cell
proliferation have been completely different when either
GPI or GAPDH were silenced with siRNA, as indicated
above. The dramatic decrease in the fraction of cells enter-
ing to the S phase, as well as in viable cells count,
when expression of GAPDH is impaired, indicates that
GAPDH plays not only metabolic roles but also may be
directly involved in the regulation of cell proliferation.
In fact, despite the lack of direct proofs of GAPDH
involvement in DNA replication and cell proliferation,
this enzyme is considered as a potential cancer therapeutic
target [28].

Although we are not able to propose specific mecha-
nism(s) by which enzymes of glycolysis and tricarboxylic
acid cycle can influence the regulation of DNA replica-
tion, it appears that the link between these metabolic
pathways and the control of cell cycle, particularly DNA
synthesis, is important. Plausibly, this link is direct
through certain enzymes. Alternatively, metabolites
which accumulate due to impairment of enzymatic activ-
ities might acts as signals in the regulatory processes as
it was shown for fumarate and succinate [26]. Irrespect-
ive of the detailed molecular mechanisms, it seems that
DNA replication in human cells can be specifically regu-
lated in response to the metabolic status of the cell, and
there are several steps in glycolysis and tricarboxylic acid
cycle which efficiency could be sensed by the DNA repli-
cation machinery. Finally, it is interesting that the direct
links between central carbon metabolism and DNA rep-
lication appear to exist in both eukaryotic and prokary-
otic systems (for discussions see [1, 7, 9]). Therefore,
one might speculate that sensing the metabolic status of
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the cell by the cellular replication factory is an evolu-
tionarily old phenomenon, which can be of particular
importance for cell physiology.

Conclusions

Partial silencing of genes coding for enzymes catalyzing
particular reactions of glycolysis and the tricarboxylic acid
cycle illustrated the complexity of the influence of central
carbon metabolism on the control of DNA replication in
human fibroblasts. Following genes appear to be especially
important in this process: HK2, PFKM, TPl, GAPDH,
ENOI, LDHA, CS1, ACO2, SUCLG2, SDHA, FH and
MDH?2. These results, together with previously published
reports describing the link between central carbon metab-
olism and DNA replication in bacteria, might suggest that
sensing the metabolic status of the cell by the cellular rep-
lication factory is an evolutionarily old phenomenon,
which can be of particular importance for cell physiology.

Methods

Cell cultures

The Human Dermal Fibroblasts, adult HDFa (Cascade
Biologics) were cultured in a 5 % CO, humidified atmos-
phere at 37 °C in Dulbecco’s Modified Eagle’s Medium
(DMEM; GIBCO) supplemented with 10 % fetal bovine
serum (FBS; GIBCO).

Cell cycle synchronization

HDFa were subjected to gradual serum deprivation: 5 %
FBS for 6 h, 1 % FBS for 6 h and DMEM without FBS
for 12 h. The DNA content was analyzed by MuseTM
Cell Analyzer. DNA histogram revealed that over 90 %
of HDFa were inhibited at GO/G1 phase after starvation.
Then, the cells were released into cell cycle by addition
of 10 % serum.

RNA interference

Silencer® Select siRNAs (Small interfering RNAs) were pur-
chased from Life Technology/Ambion. Transfections were
performed with HiPerFect Transfection Reagent (Qiagen)
as specified by the manufacturer. All targeted enzymes
showed maximal knockdown 72 h after transfection.

mRNA quantitation

1 x 10° cells were seeded in 6-well plates. 72 h after
transfection total RNA was extracted with High Pure
RNA Isolation Kit (Roche Diagnostics). The cDNA for
PCR template was generated by using Transcriptor First
Strand cDNA Synthesis Kit (Roche Diagnostics) accord-
ing to the manufacturer's protocol. Real-time PCR was
performed on a LightCyler system 0.2 (Roche Applied
Science) by using LightCycler® TagMan Master Kit. The
sequences of primers and housekeeping genes for
normalization are presented in Table 1. The choice of
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Table 1 Primers used for real-time gPCR to estimate mRNA
levels of particular genes

Gene Primer sequence Reference

name: genes

HK2 F: 5'- CGAGGTCTGAGCAAGGAGAC GUSB, HPRT
R: 5- GTCCGGGGTAGCACACAC

GPI F: 5'- GCTTTGCTGCGTACTTCCA TBP, ACTB
R: 5'- GTCCACACGGGTTCCAGA

PFKM F: 5'- GCCATCAGCCTTTGACAGA GUSB, HPRT
R: 5- CTCCAAAAGTGCCATCACTG

ALDOA  F: 5- TCCTCTAGCCCGTGGAATCR: 5- TBP, ACTB
AAGACGATGGCAGGGATG

TPIT F: 5'- GCTCAGAGCACCCGTATCAT GUSB, HPRT
R: 5'- CACAAGGAAGCCATCCACAT

GAPDH  F: 5- ACGGGAAGCTTGTCATCAAT TBP, ACTB
R: 5- CATCGCCCCACTTGATTTT

PGK1 F: 5'- CTCATGGATGAGGTGGTGAA TBP, ACTB
R: 5- CACAGCAAGTGGCAGTGTCT

PGAMT  F: 5= AGGCGCTCCTATGATGTCC TBP, ACTB
R: 5- CGATCCTTACTGATGTTGCTGT

ENOT F: 5'- CAACCAGCTCCTCAGAATTGA GUSB, HPRT
R: 5- GCCAAGGGGTTTCTGAAGTT

PKM F: 5'- ACCCTCCACTCAGCTGTCC TBP, ACTB
R: 5- CCTGGAGGTGCTGCAGTAGT

LDHA F: 5'- GGTGGATGTTTACCGTGTGTT TBP, ACTB
R: 5- TGGATCCCAGGATGTGACTC

cs F: 5'- TCCGACCCTTACCTGTCCTT TBP, ACTB
R: 5- ACTTCCTGATTTGCCAGTCC

ACO2 F: 5- AGATTGTGTATGGACACCTGGA HPRT, GUSB
R: 5- TACGACTTGCCTCGCTCAAT

IDH2 F: 5'- CCATCATCTGCAAAAACATCC HPRT, GUSB
R: 5'- CCAATGGTGATGGGCTTG

IDH3B F: 5'- GCCCAATCTCTATGGGAACA TBP, ACTB
R: 5- CAGGGACCACACCAGCTC

OGDH F: 5- AGAGTCCCCTTCCCCTGAG TBP, ACTB
R: 5- GCTTCTACCAGGGACTGTCC

SUCLG2  F: 5'- AGCCAGCCAACTTCTTGGA TBP, ACTB
R: 5- GGATGGCTTCAACCTTAGGA

SDHA F: 5'- CAGCACAGGGAGGAATCAAT HPRT, GUSB
R: 5- CTGCTCCGTCATGTAGTGGA

FH F: 5- TGAATGTTTTCAAGCCAATGAT HPRT, GUSB
R: 5- CCACCACGCAGTTTTCTGTA

MDH?2 F: 5'- CAGGACCAGCTGACAGCAC TBP, ACTB

R: 5'- AGCCTGCTCCGGCTTTAG
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particular reference genes was depended on the residual
expression level of the tested gene.

Cell cycle analysis

Cell cycle analysis was performed utilizing Muse™ Cell
Analyzer (Merck Millipore) and following manufac-
turer’s instruction. Briefly, after the siRNAs transfection
and subsequent cell cycle synchronization, the cells were
washed with PBS and fixed in 70 % ice-cold ethanol.
Cells were collected every two hours starting from 14 h
after cell cycle releasing by addition of 10 % serum. After
staining with Muse™ Cell Cycle Reagent, the cells were
processed for cell cycle analysis.

Cell counting and viability

Cell counting and viability was determined by using the
Muse® Count & Viability Assay Kit (Merck Millipore),
according to the manufacturer’s instruction. Briefly, after
the transfection with siRNAs, and subsequent cell cycle
synchronization, the cells were collected and incubated
with Muse™ Count &Viability Reagent. The number of
viable cells were counted by using Muse™ Cell Analyzer
(Merck Millipore).

Proliferation assay

Cell proliferation was determined by using the Cell Pro-
liferation ELISA, BrdU (colorimetric) (Roche Diagnos-
tics) Kit according to the manufacturer's instructions.
Briefly, cells were seeded onto 96-well plate in an
amount of 1000 cells/well. After siRNAs transfection and
subsequent synchronization, cells were labeled with BrdU
for 24 h. Then, cells were fixed, incubated with anti-BrdU
antibodies and the BrdU incorporation was quantified by
colorimetric reaction. Absorbance at 450 nm was mea-
sured by using an automated microplate reader (Wallac
1420 Multilabel Counter, Perkin Elmer).

Additional files
Below is the link to the electronic supplementary material.

Additional file 1: Figure 1. Effects of siRNA-mediated silencing of glycolityc
genes on the fraction of cells in GO/G1 phase. Cells were seeded on Petri
dishes, transfected with siRNA specific for indicated gene () and synchronized.
Analogous experiments without siRNA were treated as controls (m). After cell
cycle releasing, the cells were collected every two hours, starting from 14 h,
and analyzed by flow cytometry. Presented results are mean values from at
least three independent experiments, with error bars indicating SD. Statistically
significant differences relative to the control are indicated by asterisks.

Additional file 2: Figure 2. Effects of siRNA-mediated silencing of glycolityc
genes on the fraction of cells in G2/M phase. Cells were seeded on Petri dishes,
transfected with siRNA specific for indicated gene (o) and synchronized.
Analogous experiments without siRNA were treated as controls (m). After cell
cycle releasing, the cells were collected every two hours, starting from 14 h,
and analyzed by flow cytometry. Presented results are mean values from at
least three independent experiments, with error bars indicating SD. Statistically
significant differences relative to the control are indicated by asterisks.
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Additional file 3: Figure 3. Effects of siRNA-mediated silencing of
tricarboxylic acid cycle genes on the fraction of cells in GO/G1 phase.
Cells were seeded on Petri dishes, transfected with siRNA specific for indicated
gene (o) and synchronized. Analogous experiments without siRNA were
treated as controls (m). After cell cycle releasing, the cells were collected every
two hours, starting from 14 h, and analyzed by flow cytometry. Presented
results are mean values from at least three independent experiments, with
error bars indicating SD. Statistically significant differences relative to the
control are indicated by asterisks.

Additional file 4: Figure 4. Effects of siRNA-mediated silencing of
tricarboxylic acid cycle genes on the fraction of cells in G2/M phase.
Cells were seeded on Petri dishes, transfected with siRNA specific for
indicated gene (o) and synchronized. Analogous experiments without
SIRNA were treated as controls (m). After cell cycle releasing, the cells were
collected every two hours, starting from 14 h, and analyzed by flow cytometry.
Presented results are mean values from at least three independent experiments,
with error bars indicating SD. Statistically significant differences relative to
the control are indicated by asterisks.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

AK and AS contributed equally to this study. AK carried out the cell culture
experiments for glycolysis, cell viability, and proliferation assessment. AS carried
out the RT-PCR analysis, and the cell culture experiments for tricarboxylic acid
cycle. AK and AS participated also in the design of experiments. RL designed
and coordinated the studies. KS participated in carrying out the RT-PCR analysis
and cell cycle analysis. GW was a principal investigator of the grant, and supervised
the study. GW and RL drafted the manuscript. All authors read and approved
the final manuscript.

Acknowledgments
This work was supported by National Science Center (Poland) (project grant
no. 2011/02/A/NZ1/00009 to G.W.).

Source of support
National Science Center (Poland) (project grant no. 2011/02/A/NZ1/00009

Received: 29 January 2015 Accepted: 15 May 2015
Published online: 28 May 2015

References

1. Baranska S, Glinkowska M, Herman-Antosiewicz A, Maciag-Dorszyriska M,
Nowicki D, Szalewska-Patasz A, et al. Replicating DNA by cell factories: roles
of central carbon metabolism and transcription in the control of DNA replication
in microbes, and implications for understanding this process in human cells.
Microb Cell Fact. 2013;12:55.

2. Scholefield G, Veening JW, Murray H. DnaA and ORC: more than DNA
replication initiators. Trends Cell Biol. 2011;21(3):188-94.

Wegrzyn A, Wegrzyn G. Inheritance of the replication complex: a unique or
common phenomenon in the control of DNA replication? Arch Microbiol.
2001;175(2):86-93.

4. Janniere L, Canceill D, Suski C, Kanga S, Dalmais B, Lestini R, et al. Genetic
evidence for a link between glycolysis and DNA replication. PLoS One.
2007;2(5), e447.

5. Maciag M, Nowicki D, Janniere L, Szalewska-Patasz A, Wegrzyn G. Genetic response
to metabolic fluctuations: correlation between central carbon metabolism and
DNA replication in Escherichia coli. Microb Cell Fact. 2011;10:19.

6. Maciag-Dorszynska M, Ignatowska M, Janniere L, Wegrzyn G, Szalewska-Patasz
A. Mutations in central carbon metabolism genes suppress defects in nucleoid
position and cell division of replication mutants in Escherichia coli. Gene.
2012;503(1):31-5.

7. Konieczna A, Szczepaniska A, Sawiuk K, tyzen R, Wegrzyn G. Enzymes of the
central carbon metabolism: are they linkers between transcription, DNA
replication, and carcinogenesis? Med Hypotheses. 2015;84(1):58-67.

8. Lincet H, Icard P. How do glycolytic enzymes favour cancer cell proliferation
by nonmetabolic functions? Oncogene. 2014. doi:10.1038/0nc.2014.320.

9. Glinkowska M, Boss L, Wegrzyn G. DNA replication control in microbial cell
factories. Heidelberg: Springer; 2015.


http://www.biomedcentral.com/content/supplementary/s12860-015-0062-8-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12860-015-0062-8-s2.pdf
http://www.biomedcentral.com/content/supplementary/s12860-015-0062-8-s3.pdf
http://www.biomedcentral.com/content/supplementary/s12860-015-0062-8-s4.pdf
http://dx.doi.org/10.1038/onc.2014.320

Konieczna et al. BVIC Cell Biology (2015) 16:16

20.

21.

22.

23.

24.

25.

26.

27.

28.

Hu JW, Sun P, Zhang DX, Xiong WJ, Mi J. Hexokinase 2 regulates G1/S
checkpoint through CDK2 in cancer-associated fibroblasts. Cell Signal.
2014;26(10):2210-6.

Chen J, Zhang S, Li Y, Tang Z, Kong W. Hexokinase 2 overexpression promotes
the proliferation and survival of laryngeal squamous cell carcinoma. Tumour
Biol. 2014;35(4):3743-53.

Calvo MN, Bartronsa R, Castanoc E, Peralesb JC, Navarro-Sabatea A, Manzanoa
A. PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and
inhibits anchorage-independent growth in Hela cells. FEBS Lett.
2006;580(13):3308-14.

Phadke MS, Krynetskaia NF, Mishra AK;, Krynetskiy E. glyceraldehyde 3-phosphate
dehydrogenase depletion induces cell cycle arrest and resistance to anti-
metabolites in human carcinoma cell lines. J Pharmacol Exp Ther.
2009;331(1):77-86.

Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A. ENO1 gene product binds
to the c-myc promoter and acts as a transcriptional repressor: relationship with
Myc romoter binding protein 1 (MBP-1). FEBS Lett. 2000;473(1):47-52.

Wang W, Wang L, Endoh A, Hummelke G, Hawks CL, Hornsby PJ. Identification
of a-enolase as a nuclear DNA-binding protein in the zona fasciculata but not
the zona reticularis of the human adrenal cortex. J Endocrinol. 2005;184(1):85-94.
Hamaguchi T, lizuka N, Tsunedomi R, Hamamoto Y, Miyamoto T, lida M,

et al. Glycolysis module activated by hypoxia-inducible factor 1a is related
to the aggressive phenotype of hepatocellular carcinoma. Int J Oncol.
2008;33(4):725-31.

Song Y, Luo Q, Long H, Hu Z, Que T, Zhang X, et al. Alpha-enolase as a potential
cancer prognostic marker promotes cell growth, migration, and invasion in
glioma. Mol Cancer. 2014;13:65.

Popanda O, Fox G, Thielmann HW. Modulation of DNA polymerases a, &
and ¢ by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim
Biophys Acta. 1998;1397(1):102-17.

He H, Lee MC, Zheng LL, Zheng L, Luo Y. Integration of the metabolic/redox
state, histone gene switching, DNA replication and S-phase progression by
moonlighting metabolic enzymes. Biosci Rep. 2013;33(2), €00018.

Augoff K, Hryniewicz-Jankowska A, Tabola R. Lactate dehydrogenase 5: an
old friend and a new hope in the war on cancer. Cancer Lett. 2015;358(1):1-7.
Sheng SL, Liu JJ, Dai YH, Sun XG, Xiong XP, Huang G, et al. Knockdown of
lactate dehydrogenase A suppresses tumor growth and metastasis of human
hepatocellular carcinoma. FEBS J. 2012;279(20):3898-910.

Rong Y, Wu W, Ni X, Kuang T, Jin D, Wang D, et al. Lactate dehydrogenase
A is overexpressed in pancreatic cancer and promotes the growth of pancreatic
cancer cells. Tumour Biol. 2013;34(3):1523-30.

Lin CC, Cheng TL, Tsai WH, Tsai HJ, Hu KH, Chang HC, et al. Loss of the
respiratory enzyme citrate synthase directly links the Warburg effect to
tumor malignancy. Sci Rep. 2012;2:785.

Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT. Loss of the SdhB, but
not the SdhA, subunit of complex Il triggers reactive oxygen species-dependent
hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol.
2008;28(2):718-31.

Yogev O, Yogev O, Singer E, Shaulian E, Goldberg M, Fox TD, et al. Fumarase: A
mitochondrial metabolic enzyme and a cytosolic/nuclear component of the
DNA damage response. PLoS Biol. 2010;8(3), e1000328.

Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of a-KG-dependent
histone and DNA demethylases by fumarate and succinate that are accumulated
in mutations of FH and SDH tumor suppressors. Genes Dev. 2012,26(12):1326-38.
Zhang X, Lu F, Wang J, Yin F, Xu Z, Qi D, et al. Pluripotent stem cell protein
Sox2 confers sensitivity to LSD1 inhibition in cancer cells. Cell Rep.
2013;5(2):445-57.

Krasnov GS, Dmitriev AA, Snezhkina AV, Kudryavtseva AV. Deregulation of
glycolysis in cancer. glyceraldehyde-3-phosphate dehydrogenase as a therapeutic
target. Expert Opin Ther Targets. 2013;17(6)681-93.

Page 10 of 10

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Silencing of genes coding for enzymes involved in glycolysis and tricarboxylic acid cycle
	Enterance to the S phase following gene silencing
	DNA synthesis in cells with silenced genes

	Discussion
	Conclusions
	Methods
	Cell cultures
	Cell cycle synchronization
	RNA interference
	mRNA quantitation
	Cell cycle analysis
	Cell counting and viability
	Proliferation assay

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	Source of support
	References

