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Abstract

only proteolytic enzyme of the virus.

interaction.

Background: 3C proteases, the main proteases of picornaviruses, play the key role in viral life cycle by processing
polyproteins. In addition, 3C proteases digest certain host cell proteins to suppress antiviral defense, transcription,
and translation. The activity of 3C proteases per se induces host cell death, which makes them critical factors of viral
cytotoxicity. To date, cytotoxic effects have been studied for several 3C proteases, all of which induce apoptosis.
This study for the first time describes the cytotoxic effect of 3C protease of human hepatitis A virus (3Cpro), the

Results: Individual expression of 3Cpro induced catalytic activity-dependent cell death, which was not abrogated by
the pan-caspase inhibitor (z-VAD-fmk) and was not accompanied by phosphatidylserine externalization in contrast to
other picornaviral 3C proteases. The cell survival was also not affected by the inhibitors of cysteine proteases (z-FA-fmk)
and RIP1 kinase (necrostatin-1), critical enzymes involved in non-apoptotic cell death. A substantial fraction of dying
cells demonstrated numerous non-acidic cytoplasmic vacuoles with not previously described features and originating
from several types of endosomal/lysosomal organelles. The lysosomal protein Lamp1 and GTPases Rab5, Rab7, Rab9,
and Rab11 were associated with the vacuolar membranes. The vacuolization was completely blocked by the vacuolar
ATPase inhibitor (bafilomycin A1) and did not depend on the activity of the principal factors of endosomal transport,
GTPases Rab5 and Rab7, as well as on autophagy and macropinocytosis.

Conclusions: 3Cpro, apart from other picornaviral 3C proteases, induces caspase-independent cell death, accompanying by
cytoplasmic vacuolization. 3Cpro-induced vacuoles have unique properties and are formed from several organelle types of
the endosomal/lysosomal compartment. The data obtained demonstrate previously undocumented morphological
characters of the 3Cpro-induced cell death, which can reflect unknown aspects of the human hepatitis A virus-host cell
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Background

3C proteases are the main proteolytic enzymes of picorna-
viruses. These enzymes catalyze the processing of poly-
proteins yielding intermediate and mature viral proteins
(reviewed in [1]). In addition to this major function, 3C
proteases can digest host cell proteins. The cleavage of
transcription and translation factors [2-11], histones
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[12], cytoskeletal proteins [13,14], and cell antiviral
immunity factors [15-17] by 3C proteases suppresses
the host cell functions and induces its death. Individual
expression of 3C proteases of enterovirus 71 [18], poliovirus
[19], and Coxsackievirus [20] induces effects similar to those
observed in viral infections. This advances these enzymes as
critical cytotoxic factors of picornaviruses.

In all cases when the cytotoxic effect of 3C proteases
was described, these enzymes induced cell death via the
caspase-dependent apoptotic pathway [18-20]. No data
on the cytotoxic effect of 3C protease of human hepatitis
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A virus (3Cpro), which is the only proteolytic enzyme on
the virus, are currently available. At the same time,
3Cpro is known to digest host cell proteins of the same
functional classes as other targets of 3C proteases. These
proteins include poly(A)-binding protein (PABP) [21], poly
(rC)-binding protein 2 (PCBP2) [22], and mitochondrial
factors of cell innate immunity MAVS and TRIF [23,24].
Thus, the induction of apoptosis by 3Cpro similar to other
3C proteases could be expected.

However, this study presents the first demonstration that
the 3C protease of human hepatitis A virus, unlike other
picornaviral 3C proteases, induces caspase-independent cell
death. The 3Cpro-induced cell death is accompanied by the
accumulation of cytoplasmic vacuoles and depends on the
enzyme catalytic activity. These vacuoles have unique prop-
erties and are formed from several organelle types of the
endosomal/lysosomal compartment. The data obtained in-
dicate that 3Cpro induces caspase-independent cell death
with previously undocumented features.

Results

Expression of 3Cpro and its catalytically inactive variant
Monoclonal cell lines of human lung adenocarcinoma
A549 Tet-Off Advanced and human lung carcinoma
Calu-1 Tet-Off Advanced constitutively expressing trans-
activator protein tTA were established (referred to as
A549 and Calu-1 below).

Plasmid pBI-EGFP was used as the expression vector. It
drives the expression of target and reporter genes under
the control of a tTA-responsive bidirectional promoter.
Enhanced green fluorescent protein (eGFP) was used as a
reporter to identify cells carrying the vector after transient
transfection.

Protease 3C of human hepatitis A virus (3Cpro) was
expressed in intact (pBI-EGFP/3C) and catalytically in-
active (pBI-EGFP/3CMut) variants. The enzyme was
inactivated by a Cys172 — Ala substitution, which was
shown to suppress 3Cpro proteolytic activity [25]. The
accumulation of 3Cpro transcripts was confirmed after
the transfection of A549 and Calu-1 cell lines with
pBI-EGFP/3C and pBI-EGFP/3CMut (Figure 1A).

Individual expression of 3Cpro gene induces
morphological changes and cell death

To investigate the effect of 3Cpro, A549 and Calu-1 cells
were transiently transfected with pBI-EGFP/3C (A549/
3Cpro and Calu-1/3Cpro) and pBI-EGFP lacking the
3Cpro gene (A549/Mock and Calu-1/Mock). Control
cultures A549/Mock and Calu-1/Mock demonstrated
gradual accumulation of eGFP-positive cells (Figure 1B).
By the end of the observation period (144 h), their
proportion amounted to about 30% of total culture cells.
Most eGFP-positive cells retained the morphology typical
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for this cell line throughout the observation period
(Figure 1C).

The proportion of eGFP-positive cells in experimental
cultures A549/3Cpro and Calu-1/3Cpro reached the
maximum 48 h p.t. (8-10%) and decreased to 1-2% 72 h
post-transfection (p.t.). Only single eGFP-positive cells
were observed 96 h p.t. (Figure 1B). A substantial
fraction of eGFP-positive cells in experimental cultures
demonstrated an altered morphology. There were cells
that became round and shrunk, while their plasma
membrane could remain smooth or became blebbed
(Figure 1C). The morphology of these cells resembled
that of apoptotic cells. In addition, there were cells that
remained spread but contained a lot of cytoplasmic
vacuoles. The proportion of different morphological
types of eGFP-positive cells varied with time (Figure 1D).
Twenty-four hours p.t., most cells retained normal
morphology. Fourty-eight hours p.t., a significant fraction
of cells (about 20%) became vacuolated. The proportion of
vacuolated cells remained unaltered up to 72 h p.t. The
majority of eGFP-positive cells had round shape 96 h p.t,
while the cells with normal morphology could hardly be
observed.

Time-lapse microscopy of the cell cultures at 5-min
intervals for 96 h demonstrated that vacuolated cells
remained spread even many hours after numerous vacuoles
emerged. Shortly before detachment of vacuolated cells
from the substrate, the vacuoles disappeared and cells
became indistinguishable from the round and shrunk
cells (see Additional file 1: Supplemental video).

The data obtained suggest that 3Cpro induces cell death.
Death of a substantial fraction of cells was accompanied
by the accumulation of cytoplasmic vacuoles. Finally, all
3Cpro-expressing cells before detachment acquired similar
apoptotic-like morphology (Additional file 2: Figures S2
and S3).

Catalytically inactive 3Cpro induces no cell vacuolization
and death

Following transformation with pBI-EGFP/3CMut, the
accumulation dynamics of eGFP-positive cells and their
morphology were the same in experimental A549/
3CMut and Calu-1/3CMut and control A549/Mock and
Calu-1/Mock cultures (Additional file 2: Figure S3).
Thus, cell vacuolization and death depend on the pro-
teolytic activity of 3Cpro.

3Cpro-Induced cell death does not include caspase
activation

The type of 3Cpro-induced cell death was evaluated by the
state of the nuclei and chromatin, functional state of
mitochondria, phosphatidylserine localization, and
activation of caspases in 3Cpro-expressing cells.
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Figure 1 Reverse PCR transcription analysis and dynamics of eGFP-positive cell accumulation in cultures. A. Transcripts were detected

48 h after A549 and Calu-1 transfection with pBI-EGFP (Mock), pBI-EGFP/3C, encoding intact 3C protease (3Cpro), and pBI-EGFP/3CMut, encoding
catalytically inactive 3C protease (3CMut). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a reference gene. B. The proportions
of eGFP-positive cells were counted in A549 and Calu-1 cultures 144 h post-transfection (p.t) with pBI-EGFP/3C (black points, solid line) and pBI-EGFP (light
points, dotted line). Presented values were averaged for at least two independent experiments including four measurements each. The confidence interval
was calculated at 95%. C. 3Cpro-expressing cells 48 h p.t. Normal (N), cells with normal morphology; Rounded/Blebbed (R/B), round and shrunk cells with
smooth or blebbed plasma membrane; Vacuolated (V), vacuolated cells. D. Proportions of eGFP-positive cells of different morphology in control (gray bars)

replicates for each time point. The confidence interval was calculated at 95%.

and experimental (empty bars) cultures. The values were averaged for at least two independent experiments. Two hundred cells were counted in three

Control A549/Mock and Calu-1/Mock cells had normal
nuclear morphology and chromatin state throughout the
observation period (72 h). Most round/shrunk A549/
3Cpro and Calu-1/3Cpro cells demonstrated chromatin
condensation and karyorrhexis 48 h p.t, while only
some vacuolated cells showed nuclear deformation and
partial chromatin condensation at the sites of contact
with the vacuoles (data not shown). After 72 h, most
vacuolated cells demonstrated pronounced chromatin con-
densation and their nuclei looked fragmented (Figure 2).
At the same time, vacuolated cells demonstrated no plasma
membrane blebbing and remained spread. Chromatin in
vacuolated and round/shrunk cells was not stained by

propidium iodide, which indicated their intact plasma
membrane and non-necrotic death.

Mitochondria were examined and their membrane
potential (MMP) was evaluated using rhodamine 123
(Rh123), a potential-dependent fluorescent dye [26].
Throughout the observation period (72 h), mitochondria
maintained their MMP and normal size and formed
reticulum in control A549/Mock and Calu-1/Mock cells
(Figure 3A). The majority of vacuolated cells in A549/
3Cpro and Calu-1/3Cpro cultures demonstrated disrupted
mitochondrial reticulum and swelling of MMP-maintaining
mitochondria 48 h p.t. (Figure 3C). At the same time,
certain vacuolated cells completely or partially retained
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overlapping signals.

Figure 2 Characteristics of 3Cpro-expressing cells. Calu-1/3Cpro culture is shown 72 h p.t. Chromatin was visualized by DNA-intercalating dye
Hoechst 33342 (Hoechst channel). Active caspases were detected by fluorescent agent FLICA (FLICA channel). eGFP-positive cells with normal
morphology are indicated by cyan arrows. eGFP-positive vacuolated and round cells with condensed chromatin and inactive caspases are indicated by
white and green arrows, respectively. eGFP-positive cells with active caspases are indicated by red arrows. Cells demonstrating chromatin condensation
and karyorrhexis but not accumulating eGFP are indicated by yellow arrows. eGFP is the channel for GFP fluorescence; Merged channel shows

their mitochondrial reticulum and normal mitochon-
drial size (Figure 3B). The presence of such cells sug-
gests that initial vacuoles are formed before the changes
in mitochondrial state become apparent. Vacuolated
cells demonstrated a substantial decrease in the number
of MMP-maintaining mitochondria 72 h p.t. At the
same time, the intensity of mitochondrial staining by
Rh123 in most vacuolated cells was lower than in un-
transformed cells (Figure 3D, E), which likely indicates
decreased MMP. A similar pattern was observed for
round cells with smooth plasma membrane (Figure 3F).
No Rh123-positive mitochondria were observed in cells
with blebbed plasma membrane (Figure 3G).

Chromatin condensation, karyorrhexis, decreased MMP,
and reduced cell volume are markers of apoptosis, which
is usually accompanied by phosphatidylserine exposure on
the outer layer of the plasma membrane and induction of
caspases [27]. However, phosphatidylserine was undetect-
able on the surface of A549/3Cpro and Calu-1/3Cpro cells
(data not shown). The pan-caspase fluorescent reagent
FLICA revealed only single cells with induced caspases
48 h and 72 h p.t. (Figure 2). Remarkably, all such cells
were round, whereas no caspase activation was detected

in vacuolated cells and cells with blebbing. Cell culturing
with the caspase inhibitor z-VAD-fmk did not prevent
vacuolization and had no notable effect on the survival of
3Cpro-expressing cells.

It should be noted that A549/3Cpro and Calu-1/
3Cpro as well as A549/Mock and Calu-1/Mock cultures
included a minor fraction of eGFP-negative round cells
demonstrating chromatin condensation, karyorrhexis,
and caspase activation, which indicate their death
through caspase-dependent apoptosis (Figure 2). The
capacity of both cell lines to follow the caspase-dependent
pathway has been additionally demonstrated using the
standard apoptosis-inducing drug doxorubicin (data not
shown).

The data obtained demonstrate that 3Cpro induces
caspase-independent cell death in both studied lines despite
their susceptibility to caspase-dependent apoptosis.

Inhibitors of intracellular cysteine proteases and RIP1
kinase do not suppress 3Cpro-induced cell death
Cytoplasmic vacuolization accompanies alternative non-
apoptotic cell death pathways. Some of them are driven by
cysteine proteases cathepsins and calpains [28-31], which
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Figure 3 Mitochondrial status in Calu-1 and A549 cells expressing 3Cpro. Cells maintaining mitochondrial transmembrane potential were
visualized using the potential-dependent fluorescent dye rhodamine 123. A549/Mock and Calu-1/Mock cells 48 h pit. (A). A549/3Cpro and Calu-1/3Cpro
cells: vacuolated, 48 h pit. (B, C) and 72 h pt. (D, E); round, 72 h pi. (F); with blebbed plasma membrane, 72 h pt. (G). EGFP and Rhod are channels for
GFP and rhodamine 123 fluorescence, respectively; eGFP + Rhod channel shows overlapping signals.
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can substitute caspases in their absence [32-37]. However,
the incubation of A549/3Cpro and Calu-1/3Cpro cells
with the inhibitor of lysosomal cysteine proteases Z-FA-
fmk neither prevented vacuolization nor had a notable
effect on the survival of transfected cells (Additional file 2:
Figures S2 and S3). A similar pattern was observed for the
caspase inhibitor Z-VAD-fmk, high concentrations of
which (over 10 uM) block cysteine cathepsins and cal-
pains apart from caspases [38,39]. Apparently, cathep-
sins and calpains as well as caspases are not solely
responsible for 3Cpro-induced cell death.

Necroptosis, the best studied subtype of programmed
necrosis, is predominantly mediated by RIP1 [40]. How-
ever, the specific RIP1 inhibitor necrostatin-1 [30,41]
had no effect on the vacuolization and survival of A549/

3C and Calu-1/3C cells either (Additional file 2: Figures
S2 and S3).

3Cpro-induced vacuoles are bounded by a single bilayer
and contain multimembrane structures

Ultrastructural analysis using electron microscopy
demonstrated that cytoplasmic vacuoles are bounded
by a single bilayer membrane in A549/3Cpro and
Calu-1/3Cpro cells (Figure 4A). A portion of vacuoles
had no clear boundary and were surrounded by structures
resembling endoplasmic reticulum (ER) or Golgi cisternae
(Figure 4B). Certain vacuoles contained multimembrane
structures and small vesicles; however, the majority of
vacuoles contained no significant quantities of membranous
material (Figure 4A, B). The vacuoles often neighbored
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Figure 4 Ultrastructural analysis of 3Cpro-induced vacuoles. Cytoplasmic vacuoles in A549/3Cpro and Calu-1/3Cpro cells were analyzed by
electron microscopy. A. Vacuoles bounded by a single membrane layer. B. Vacuoles with blurred boundaries. C. Vesicles neighboring vacuoles.
Vesicles inside vacuoles are indicated by triangles; multimembrane formations, m; small vesicles neighboring vacuoles, *. Scale, 0.5 um.

A549

smaller vesicles also bounded by a single membrane
layer and largely containing no membranous inclusions
(Figure 4C). Such vesicles were also numerous in the
vicinity of the plasma membrane, which points to endo-
cytosis as the mechanism of their formation. Morphological
analysis suggests that the vacuoles might be formed from
components of the endosomal/lysosomal, ER, or Golgi
compartments.

Mitochondria, endoplasmic reticulum, and Golgi are not
involved in vacuole formation

The origin and properties of cytoplasmic vacuoles were
further studied using a set of vectors encoding fluorescent
proteins targeted to different cellular compartments.
Mitochondria were studied using a cyan fluorescent
protein fused to the mitochondrial targeting signal from
human cytochrome c oxidase subunit VIII (CFP-mito),
which visualizes mitochondrial membrane irrespective of
the functional state of these organelles [42]. Mito-CFP

accumulated in mitochondria of 3Cpro-expressing cells,
but was not observed in vacuolar membranes or lumen
(Figure 5A, B).

ER was visualized using a red fluorescent protein fused
to the ER retention signal SEKDEL (er-RFP) [43]. In
control A549/Mock and Calu-1/Mock cells, er-RFP was
found in the granules characteristic for ER (Figure 5C). In
vacuolated A549/3Cpro and Calu-1/3Cpro cells er-RFP
demonstrated homogeneous cytoplasmic localization but
was not found in vacuolar lumen and membranes
(Figure 5D). A similar pattern was observed for staining
by the low-molecular-weight ER-Tracker Blue-White DPX
dye specific for ER membranes (data not shown). The data
obtained indicate abnormal ER function and its possible
degradation.

Components of the trans-Golgi network were visualized
using RFP with the Golgi retention signal of human -1,4-
galactosyltransferase. In both control culture cells and
vacuolated ones, this fluorescent protein accumulated in
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Figure 5 Statuses of mitochondria, endoplasmic reticulum, and Golgi in vacuolated cells. Localization of fluorescent proteins targeted to
mitochondria (CFP-mito), endoplasmic reticulum (er-RFP), and trans-Golgi network (GTS-RFP) in control A549/Mock, Calu-1/Mock (A, C, E) and vacuolated
A549/3Cpro, Calu-1/3Cpro (B, D, F) cells, respectively.
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distinct organelles but not in the vacuolar lumen and
membranes (Figure 5E, F).

Thus, the data obtained suggest that the vacuoles
originate from organelles other than mitochondria, ER,
and trans-Golgi network.

Vacuoles have endosomal/lysosomal origin

Lysosomes and late endosomes were visualized using
the lysosomal-associated membrane protein 1 (Lampl)
fused with the fluorescent protein mKate2 (L1-mKate2).
L1-mKate2 localized in vesicles dispersed or clustered
in the cytoplasm of control A549/Mock and Calu-1/Mock
cells 48 h p.t. Three cell types could be recognized in
A549/3Cpro and Calu-1/3Cpro cells. Type I cells had no
vacuoles and the localization of L1-mKate2 was similar to
that in control cultures. Type II cells had single small
L1-mKate2-positive vacuoles associated with clusters of
L1-mKate2-positive vesicles (Figure 6A). Type III cells
contained numerous vacuoles and L1-mKate2 localized
to the membranes of all vacuoles (Figure 6B). Notice
that the cytoplasm of vacuolated cells contained far less

L1-mKate2-positive vesicles compared to vacuole-free
cells. Overall, the data obtained indicate that the vacuoles
originate from organelles of the endosomal/lysosomal
compartment and that clusters of these organelles can be
the sites of vacuole formation.

Normally Lampl goes through early endosomes on
the way to late endosomes and lysosomes [44]. Since
3Cpro induces abnormal function of the endosomal/
lysosomal compartment, mislocalization of L1-mKate2
cannot be excluded. Hence, the observed L1-mKate2
localization cannot unambiguously point to the organelle
type of the endosomal/lysosomal compartment that gave
rise to the vacuoles. In this context, cytoplasmic GTPases
of the Rab family specifically associated with membranes
of different endosome types [45] were used to visualize
individual organelle populations. Fusion proteins Rab5-
eYFP, Rab7-eCFP, DsRed-Rab9, and DsRed-Rab11 served
as markers of early endosomes, late endosomes/lyso-
somes, and endosomes recycling to the trans-Golgi
network and plasma membrane, respectively [46,47]. In
vacuolated A549/3Cpro and Calu-1/3Cpro cells, all
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Figure 6 Origin of 3Cpro-induced vacuoles. Vacuolated A549/3Cpro and Calu-1/3Cpro cells expressing fusion proteins L1-mKate2 48 h p.t. (A)
and 72 h pt. (B), Rab5-eCFP (C), Rab7-eYFP (D), DsRed-Rab9 (E), DsRed-Rab11 (F), DsRed-Rab7dn (G), DsRed-Rab5dn (H), and LC3-RFP (I) 72 h pit.
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these markers accumulated in the vacuolar membranes.
In addition, the vacuolar membrane-associated vesicles
with the fusion proteins have been revealed (Figure 6C-F).
At the same time, the overexpression of these proteins per
se in control A549/Mock and Calu-1/Mock cells induced
no vacuole formation or other morphology alterations
(data not shown).

It should be noted that the incubation of A549/3Cpro
and Calu-1/3Cpro cells with colchicine, an inhibitor of
polymerization of microtubules that mediate the trans-
port of organelles of the endosomal compartment, did
not suppress vacuole formation (data not shown). Thus,
3Cpro-induced vacuole formation does not depend on
the microtubular activity.
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The data obtained indicate that several organelle types
of the endosomal/lysosomal compartment are involved
in the vacuole formation.

Overexpression of dominant-negative Rab5 and Rab7
does not suppress vacuole formation

The relationship between 3Cpro-induced vacuolization
and Rab5 and Rab7 functions was evaluated using their
dominant-negative mutants Rab5/N133I (unable to bind
GTP [48]) and Rab7/T22N (constitutively GDP-bound
[49,50]) fused with the fluorescent protein DsRed. The
expression level of these GTPases evaluated from DsRed
fluorescence intensity varied significantly from cell to cell.
Accordingly, the cells demonstrating top fluorescence
levels were selected for analysis.

A549/3Cpro and Calu-1/3Cpro cells with high levels
of Rab5/N133I and Rab7/T22N proved to contain the
vacuoles, and both GTPases were associated with the
vacuolar membranes (Figure 6G, H). The size and morph-
ology of these vacuoles was indistinguishable from those
in cells expressing 3Cpro alone.

Autophagy is not essential for 3Cpro-induced vacuolization
and cell death

The role of autophagosomes in the 3Cpro-induced vacuo-
lization was evaluated using the LC3 protein (specific for
these organelles) fused to fluorescent protein mRFP. The
fusion protein was not accumulated in the membranes but
localized diffusely in the vacuolar lumen (Figure 6I). This
indicates the involvement of autophagosomes in vacuole
formation. Autophagosome-mediated formation of
vacuoles is observed after using some agents that impair
autophagy. In some cases, such impairments proved to
result from the constitutive activation of the ERK1/2
signaling pathway [51,52]. However, the incubation of
3Cpro-expressing cells with the inhibitors of this pathway
(PD98059 and Sc-353669) did not suppress the vacuolization
and had no noticeable effect on cell survival. Likewise, no
noticeable effect was observed after cell exposure to 3-
methyladenine, an inhibitor of class 3 phosphatidylinositol
3-kinase and autophagosome formation (Additional file 2:
Figures S2 and S3). Thus, the data obtained indicate that
the 3Cpro-induced vacuolization and cell death do not
depend on autophagy.

Vacuolization is not essential for 3Cpro-induced cell

death

Cell incubation with the inhibitor of vacuolar ATPase
bafilomycin Al (BafA1), which is often used to suppress
autophagy [53-55], completely blocked the vacuolization
but had no effect on cell death (Figures 7, Additional file
2: Figure S3). Since BafA1l blocks not only autolysosome
formation but also endosome fusion [56,57], this finding
in the context of no effect of 3-methyladenine indicates
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again that the vacuolization results from the fusion of
organelles of the endosomal/lysosomal compartment.
The effect of BafAl suggests another important conclusion:
the vacuolization event is not essential for 3Cpro-induced
cell death.

3Cpro-induced vacuoles do not have properties of
degradative organelles

The 3Cpro-induced vacuoles carry markers of degradative
organells that normally have acidic content and contain
active hydrolases [58]. We tested if the vacuoles have the
properties of degradative organelles using fluorescent
substrate of cathepsin B (Magic Red) and pH-dependent
dye (Neutral Red).

In all vacuolated cells, the fluorescent product of Magic
Red hydrolysis was detected in individual vesicles, most of
which are localized within the vacuoles (Figure 8A). It was
not detected in the vacuolar lumen and cytoplasm of
vacuolated cells. This suggests that active lysosomal
proteases are not released to the cytoplasm as observed
in certain types of caspase-independent cell death. Cell
staining with Neutral Red demonstrated that the vacuolar
lumen is not acidic. At the same time, acidic vesicles were
observed within the vacuoles (Figure 8B). Most likely,
these vesicles contained active cathepsin B. It is of interest
that the vesicles with the fluorescent product of Magic
Red hydrolysis and acidic content were largely observed in
smaller vacuoles and were nearly always absent in larger
ones. At the same time, such vesicles were missing or
sporadic in cells with numerous large vacuoles. Assuming
that larger vacuoles have longer lifetime one can
propose that the intravacuolar vesicles gradually lose
their degradative properties.

Vacuolization is not a consequence of macropinocytosis
hyperstimulation

Vacuoles lacking the properties of degradative organelles
and accumulating Lampl and Rab7 in their membranes
are observed during cell death resulting from hyperstim-
ulation of macropinocytosis. This cell death pathway
was called methuosis [59].

Macropinocytic activity was evaluated in A549/3Cpro and
Calu-1/3Cpro cells using fluorescent dye Lucifer Yellow
(LY), which cannot penetrate the cell membrane. LY could
be detected in individual vacuoles of single vacuolated cells
incubated with the dye for one or several hours 48 or
72 h p.t. Cell incubation for 12 h led to LY accumulation
in vacuoles of all vacuolated cells (Figure 9A). These data
indicate that the vacuoles can accumulate extracellular
fluid. At the same time, the low rate of extracellular fluid
accumulation contradicts possible hyperstimulation of
macropinocytosis when detectable LY quantities are
accumulated in vacuoles in 10—15 minutes [59].
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3C+BafA1

3C+BafA1

-
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Figure 7 Effect of Bafilomycin A1 on vacuolization. A549 and Calu-1 cells transfected with pBI-EGFP (Mock), pBI-EGFP/3C (3C) or pBI-EGFP/3Cmut
(3Cmut) and treated by Bafilomycin A1 (BafA1) or equal quantity of vehicle (DMSO) 48 h p.t.

PBI-EGFP+vehicle

;}BI-EGFP+vehicIe
9

pBI-EGFP+BafA1

The constitutive induction of GTPase Racl is a pre-
requisite for the hyperstimulation of macropinocytosis in
methuosis [60]. Racl inhibition or overexpression of
dominant-negative Rac1(N17) prevents macropinocytosis
hyperstimulation and methuosis [60]. In our case, the
expression of the fusion protein YFP-Rac1(N17) did not
prevent the vacuolization even in cells with high YFP-Racl
(N17) levels (Figure 9B). Similarly, incubation of A549/
3Cpro and Calu-1/3Cpro cells with filipin, which prevents
the formation of macropinosomes [61], had no effect on
the size and number of vacuoles, as well as on cell viability
(Additional file 2: Figures S2 and S3).

Overall, the data obtained suggest that 3Cpro-induced
vacuolization is not a consequence of macropinocytosis
hyperstimulation and that the cell death does not follow
the methuosis pathway.

Discussion
This study presents the first demonstration that 3C protease
of human hepatitis A virus can induce cell death dependent
on the enzyme proteolytic activity and accompanied by the
formation of cytoplasmic vacuoles through the fusion of
organelles of the endosomal/lysosomal compartment.

Individual expression of many picornaviral proteins [62]
including 3C proteases of enterovirus 71 [18], poliovirus
[19], and Coxsackievirus [20] was shown to induce cell
death. In all described cases, 3C protease-induced cell
death depended on the enzyme activity and was recog-
nized as caspase-dependent apoptosis according to both
morphological and biochemical indications.

Cell death induced by 3C protease of human hepatitis
A virus (3Cpro) also showed some properties typical for
apoptosis: disruption of the mitochondrial reticulum,
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Figure 8 Cathepsin B activity and localization of acidic organelles in vacuolated cells. A549/3Cpro and Calu-1/3Cpro cells 72 h p.t. after
incubation with the fluorescent substrate of cathepsin B Magic Red (M-Red) (A) and pH-dependent fluorescent dye Neutral Red (NR) (B).

swelling of mitochondria, loss of mitochondrial membrane
potential, chromatin condensation, and karyorrhexis at
the background of plasma membrane integrity. (It is of
note that the dying cells with vacuoles demonstrated
chromatin condensation and karyorrhexis long before
lost of spreading, which is not typical for apoptosis
when the changes in nuclear morphology are usually
observed after lost of spreading and shrinking [63,64]).
Considering that the nuclear fragments were sandwiched
between the vacuoles, one can propose that the mechanical
impact of vacuoles could induce the changes in nuclear
morphology. 3Cpro-induced cell death was not accompanied
by phosphatidylserine externalization and caspase activation;
likewise, it was not blocked by the pan-caspase inhibitor
z-VAD-fmk. A similar set of characters has been previously
reported for alternative non-apoptotic cell death types
[65-68]. Thus, 3Cpro induces caspase-independent cell
death unlike other picornaviral 3C proteases.

A significant fraction of cells undergoing 3Cpro-induced
death demonstrated cytoplasmic vacuolization before
mitochondrial depolarization and other cell death signs.

Vacuolization of different intracellular compartments is a
marker of certain pathological states [69-75] and accom-
panies caspase-independent cell death [30,27,52,76-78].
Vacuoles are formed from different organelles in different
types of caspase-independent cell death, which allows us
to use the properties and origin of vacuoles to identify cell
death type.

We have shown that the 3Cpro-induced vacuolization
did not affect endoplasmic reticulum, mitochondria, and
Golgi and was not blocked by necrostatin-1, an inhibitor
of RIP1 kinase. This allowed us to exclude the paraptotic
and necroptotic pathways [30,79,80].

The factors of cell death and cytoplasmic vacuole
formation include autophagy abnormalities [81-84].
The lumen of 3Cpro-induced vacuoles proved to contain
LC3 protein, which testifies to the involvement of autop-
hagosomes in the formation of vacuoles. Cell death and
vacuolization associated with abnormal autophagy can
result from the constitutive activation of the Raf-MEK-
ERK1/2 cascade [51,52]. Nevertheless, the used inhibitors
of MEK kinases had no effect on cell vacuolization and

B

A
eGFP+LY
Calu-1
eGFP+LY
A549 (S

Figure 9 Accumulation of Lucifer Yellow and Rac1(N17) in vacuolated cells. A549/3Cpro and Calu-1/3Cpro cells 72 h p.t. after incubation
with fluorescent dye Lucifer Yellow (LY) (A) or co-expressing dominant-negative mutant of GTPase Rac1(N17) (B).

eGFP YFP-Rac1N17 leGFP+YFP-Rac1N1

~N

YFP-Rac1N17
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death. The suppression of autophagy by 3-methyladenine
(which blocks autophagosome formation) also had no effect
on the action of 3Cpro. At the same time, the inhibitor of
vacuolar ATPase bafilomycin Al (BafAl) completely
blocked the vacuolization but not the cell death. Although
BafAl is commonly used autophagy suppressor, it also
inhibits fusion of endocytic organelles [55,85]. In the
context of the 3-methyladenine effect, the action of
BafA1 is likely mediated by the inhibition of endocytosis
pathway rather than autophagy suppression. Thus, the
data obtained demonstrate that autophagy is not essential
for 3Cpro-induced cell vacuolization and death, and
vacuolization is a morphological indication but not the
cause of 3Cpro-induced cell death.

The vacuolar membranes simultaneously accumulated
markers of different types of endocytic organelles, fluorescent
proteins fused with the Lampl sorting signal or with
GTPases Rab5, Rab7, Rab9, and Rabll. Under normal
homeostatic conditions, the cells have organelles simultan-
eously containing Rab7 and Rab9 (late endosomes), Rab7
and Lampl (late endosomes and lysosomes), as well as
Rab5 and Rab7 (early endosomes); Rabll-containing
endosomes usually represent a separate population
[86-91]. Thus, 3Cpro-induced vacuoles are formed
from several organelle types of the endosomal/lysosomal
compartment.

The vacuolization of endocytic organelles has been
shown previously in the following cases. The inhibition
of kinases hVPS34 and PIKfyve, which regulate vesicular
transport and sorting, leads to the vacuolization of late
endosomes but does not involve other organelles [92-94].
The vacuoles induced by certain bacterial toxins, e.g.,
VacA from Helicobacter pylori, epsilon toxin from
Clostridium perfringens, and CARDS toxin from Myco-
plasma pneumoniae, also have an endosomal/lysosomal
origin [50,95,96]. However, the vacuolization involves a
single (at most two) endosomal type in all known cases.
Thus, 3Cpro induces the formation of vacuoles with not
previously described properties, and all major types of
endocytic organelles are involved.

GTPases of the Rab family revealed in the vacuolar
membranes have many functions in the homeostasis regu-
lation in the endosomal/lysosomal compartment including
hetero- and homotypic fusion of endosomes [46,47]. High
levels of constitutively active forms of Rab5 and Rab7 are
known to induce fusion and vacuolization of early and late
endosomes, while the prevalence of their nonfunctional
forms conversely blocks endosomal fusion [97,98]. Activity
of Rab GTPases is required for the vacuolization process
of endosomal/lysosomal organelles induced by certain
bacterial toxins [50,95,96]. At the same time, 3Cpro-
induced vacuolization is not suppressed by the overex-
pression of nonfunctional Rab5 or Rab7 variants, and thus
does not depend on the function of these GTPases.
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Some properties of 3Cpro-induced vacuoles (accumulation
of extracellular fluid, non-acidic content, and markers of late
endosomes and lysosomes in their membrane) draw them
together with the vacuoles resulting from hyperstimulation
of macropinocytosis in methuosis [59]. The formation of
giant macropinosomes in methuosis requires the consti-
tutive activation of GTPase Racl and is prevented by
the overexpression of its nonfunctional variant or in the
presence of filipin, an inhibitor of clathrin-independent
endocytosis [99]. However, the overexpression of non-
functional Racl or cell incubation with filipin did not
prevent 3Cpro-induced cell vacuolization and death.
Hence, 3Cpro-induced vacuolization does not depend on
macropinocytic activity and cell death does not follow the
methuosis pathway.

Overall, 3Cpro-induced vacuoles have previously
undescribed features, and thus 3Cpro-induced cell
death cannot be assigned to any currently known type
of caspase-independent cell death accompanied by
vacuolization.

In our opinion, it is of primary interest if the effects of
3Cpro described in this work are observed in cells infected
by human hepatitis A virus. Apoptotic cell death was
observed in studied cases of infection by cytopathogenic
forms of the virus [100-102]. Apparently, 3Cpro is not the
main cytotoxic factors in these cases. At the same time, a
number of viruses can induce either apoptotic or caspase-
independent cell death depending on infection conditions.
For instance, caspase-independent cell death is triggered in
abortive poliovirus infection [103,104] or at high infectious
dose of West Nile virus [105]. Accordingly, 3Cpro can
become the main cytotoxic factor under certain infection
conditions.

The cytopathic effect of many viruses is manifested as
specific changes in cellular compartments preceding cell
death [106,107]. Morphological changes of cells infected
with cytopathogenic forms of hepatitis A virus and other
picornaviruses include swelling of ER cisternae and
formation of multilayer membrane structures, vesicular
structures, and cytoplasmic vacuoles [108-112]. Certain
cytopathic effects of hepatitis A virus are due to viral
proteins 2B, 2C, and 2BC [62,111,113]. At the same
time, no data on the factors underlying the emergence
of cytoplasmic vacuoles are currently available. The
results obtained in this work allow us to propose that
3Cpro mediates the development of cytopathic cell
morphology and the formation of vacuoles in hepatitis
A virus infection. The involvement of picornaviral 3C
proteases in cytopathic vacuolization has not been
reported previously.

At the same time, a variety of proteins of other viruses
can induce vacuolization. Most of them have no enzyme
activity, e.g, large surface protein of hepatitis B virus
[114,115], Env protein of murine leukemia virus [116-118],
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capsid protein VP1 of Simian vacuolating virus 40 [119],
oncoproteins E5 and E6 of human papillomavirus
[120-122], and A38L protein of vaccinia virus [123]. On
the other hand, the vacuolization effect was described
for NS3 proteases of certain flaviviruses. (Flaviviruses
and picornaviruses belong to single-stranded positive-sense
RNA viruses, and NS3 and 3Cpro proteases are assigned to
the chymotrypsin structural family [124,125]). Cytoplasmic
vacuolization is typical for flaviviral infections by hepatitis
C virus [126], West Nile virus [105], and Dengue virus
[127] and is also observed after individual expression of
their NS3 proteases [128-130]. The case of bovine viral
diarrhea virus (BVDV) is of particular interest since the
infection-induced vacuoles have been characterized. The
properties of vacuoles induced by BVDV and 3Cpro are
similar: both originate from endosomal/liposomal organelles,
have nonacidic content, and their formation is autophagy-
independent [131]. Note that cytoplasmic vacuolization
was observed only after infection with a cytopathogenic
biotype, which differs from non-cytopathogenic one by
elevated expression of protease NS3 [132,133].

Thus, analysis of published and obtained data indi-
cates that the observed effect of 3Cpro can reflect the
participation of this enzyme in the development of cyto-
pathic morphology of infected cells. In this context, the
mechanism of 3Cpro impact on the endosomal/lysosomal
compartment and the role of this protease in the cytopathic
effect of the human hepatitis A virus require further
investigation.

Conclusions

Analysis of the cytotoxic effect of 3C protease of human
hepatitis A virus allowed us to demonstrate 3Cpro-
induced cell death independent of caspases and accom-
panied by accumulation of cytoplasmic vacuoles. The
cytotoxic and vacuolization effects of 3Cpro depend on its
catalytic activity. 3Cpro-induced vacuoles have unique
properties and originate from several organelle types of
the endosomal/lysosomal compartment. The data ob-
tained indicate that 3Cpro induces caspase-independent
cell death with previously unreported morphological
characters.

Methods

Materials

DMEM/EF-12 and OptiMEM media, fetal bovine serum
(FBS), phosphate-buffered saline (PBS), Lipofectamine
2000, ER-Tracker Blue-White DPX, and Image-iT LIVE
Red Poly Caspases Detection Kit were purchased from
Invitrogen (USA). Annexin V-Cy3 Apoptosis Detection
Kit, G418 (Geneticin), bafilomycin Al, 3-methyladenine,
filipin, PD98059, z-VAD-fmk, z-FA-fmk, necrostatin-1,
propidium iodide (PI), rhodamin 123 (Rh123), Hoechst
33258, Lucifer Yellow, colchicine, and glutamine were
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bought from Sigma (Germany). Sc-353669 was from
Santa Cruz Biotechnology (USA). Magic Red Cathepsin
B Assay Kit was from Immunochemistry Technologies
(USA). High Capacity cDNA Reverse Transcription Kit was
purchased from Applied Biosystems (USA). RNAqueous
Kit was from Ambion. RQ1 DNAse was purchased from
Promega (USA). Plasmids and primers used in this study
are described in Tables 1 and 2.

Cell culture and transfection

Human lung carcinoma A549 (ATCC No. CCL-185) and
human lung epidermoid carcinoma Calu-1 (ATCC No.
HTB-54) cell lines were cultured in conventional media
(DMEM/E-12, 10% FBS, 0.3 mg/ml glutamine) at 37°C
in humidified atmosphere of 5% CO,.

A549 and Calu-1 Tet-Off Advanced monoclonal cell
lines were established according to protocol of the supplier
using the Tet-Off Advanced Inducible Gene Expression
System (Clontech, USA) and were further maintained in
0.2 mg/ml G418.

Transfections were performed using Lipofectamine 2000.
Briefly, cells were cultured as described above in POC-R
chambers (PeCon GmbH, Germany), 24- or 96-well plates
for 18-24 h until 80-90% confluence. Three hours
before transfection, the media was replaced with fresh.
Plasmid-Lipofectamin 2000 complexes were prepared
following the protocol of the manufacturer in serum-free
OptiMEM and added to cell cultures. When cotransfecting,
pBI-EGFP and pBI-EGFP/3C were added to pER-RFP in a
mass ratio of 1:1; to other plasmids, 10:1.

Construction of 3Cpro-expressing vectors

The DNA fragment encoding 3Cpro was amplified by
polymerase chain reaction (PCR) from pHAV-3" plasmid
using primers Bi3Cf and Bi3Cr; the amplified product was
digested with EcoRV and Nhel and cloned into pBI-EGFP
digested with Nhel and Pvull. The structure of the
plasmid obtained (named pBI-EGFP/3C) was confirmed
by sequencing.

The construction of a gene encoding catalytically
inactive 3Cpro with Cys172 — Ala mutation was im-
plemented in two steps by overlap extention PCR. At
the first step, two overlapping fragments of 3Cpro gene
with mutation were amplified by PCR from pBI-EGFP/3C
using Bi3Cm-f/Bi3Cr and Bi3Cf/Bi3Cm-r pairs of primers.
At the second step, the fragments obtained were used as
primers and template in overlap extension PCR followed by
the amplification of the full-length sequence with primers
Bi3Ct/Bi3Cr. The resulting DNA product was digested with
EcoRV and Nhel and cloned into pBI-EGFP digested with
Nhel and Pvull. The structure of the plasmid obtained was
confirmed by sequencing.
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Table 1 Plasmids used
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Plasmid

Description

Reference/Source

Vectors encoding organelle-targeted fluorescent proteins

pmKate2-lyso
pTagCFP-mito

pTagRFP-Golgi

pRab7-EYFP?
pRab5-ECFP?
pDsRed-Rab5/DNP
pDsRed-Rab7/DN®
pDsRed-Rabo®
pDsRed-Rab11°
pMRFP-LC3¢
PYFP-Rac1(N17)
PER-RFP®

encodes mKate2 N-terminally fused to rat Lamp-1

encodes TagCFP N-terminally fused to mitochondrial targeting sequence
derived from the subunit VIII of human cytochrome C oxidase

encodes TagRFP N-terminally fused to Golgi targeting sequence of human
B-1,4-galactosyltransferase

encodes Rab7 C-terminally fused to eYFP

encodes Rab5 C-terminally fused to eCFP

encodes dominant-negative Rab5/N133| N-terminally fused to DsRed
encodes Rab7/T22N N-terminally fused to DsRed

encodes Rab9 N-terminally fused to DsRed

encodes Rab11 N-terminally fused to DsRed

encodes autophagosome-specific LC3 protein N-terminally fused to mRFP
encodes Rac1/T17N N-terminally fused to fluorescent protein YFP

encodes RFP N-terminally fused to CD5 leader sequence and C-terminally
fused to SEKDEL amino acid sequence

Evrogen (Russia)

Evrogen (Russia)

Evrogen (Russia)

(88]

[88]

[134,135]/Add #13051¢
[134,135)/Add #12662°
[134,135]/Add #12677°
[134,135]/Add #12679°
[136]/Add #21075°
[137)/Add #11395°
[43]

Vectors for tet-off advanced expression system

pTet-Off Advanced
pBI-EGFP

encodes the tetracycline-controlled transactivator protein tTA-Advanced

allows expression of a gene of interest and marker gene of eGFP under

Clontech (USA)
Clontech (USA)

control of the bi-directional tTA-responsive promotor

3Cpro gene source

pHAV3" bears a cDNA encoding a segment of human hepatitis A virus genome (strain HAS-15)

[138]/GenBank: X15463.1

3Cpro-expressing plasmids
PBI-EGFP/3C

pBI-EGFP/3CMut
tTA-responsive promotor.

encodes 3Cpro and eGFP under control of bi-directed tTA-responsive promotor. This study

encodes 3Cpro with Cys172—Ala mutation and eGFP under control of bi-directed This study

2Gift from Prof. Ari Helenius (Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland).

PGift from Dr. Richard Pagano (Mayo Clinic, Rochester, MN, USA).

“Gift from Dr. Tamotsu Yoshimori (National Institute for Basic Biology, Okazaki, Japan).

4Gift from Dr. Joel Swanson (University of Michigan Medical School, M, USA).

€Gift from Dr. Felipe X. Pimentel-Muifios (Centro de Investigation del Cancer, Universidad de Salamanca-CSIC, Salamanca, Spain).
fGift from Dr. Eugene Snezhkov (M.M. Shemyakin and Yu.A Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia).

9Plasmid was distributed through Addgene. Add #, Addgene plasmid number.

Confocal microscopy

Confocal Microscopy was performed using a Carl Zeiss
Axiovert 100 LSM510 META system with an Incubator
XL-3 (PeCon GmbH, Germany) at 37°C. General cell
morphology was evaluated in flat-bottom 24-well plates
using an EC Plan-Neofluar 10x/0.30 M27 objective (Carl
Zeiss, Germany). Subcellular structures were analyzed in
POC-R Chambers and imaged using EC Plan-Neofluar
40x/1.30 Oil DIC M27 or EC Plan-ApoChromat 63x/0.75
Oil Korr objectives (Carl Zeiss, Germany).

The following excitation wavelength/emission filter settings
were used for fluorescent proteins and dyes: 488 nm/510-
530 nm for EGFP; 543 nm/615 nm long pass for RFP, mRFP,
mKate2, propidium iodide, and MR-(RR) reagent (Magic
Red Cathepsin B Detection Kit); 514 nm/515-570 nm for
YFP and eYFP; 458 nm/470-500 nm for CFP; 405 nm/
420-480 nm for Hoechst 33258; 405 nm/420-480 nm for
ER-Tracker Blue-White DPX; 543 nm/580-680 nm for

FLICA reagent (Caspase Detection Kit) and Cy3 (Annexin
V-Cy3 Assay Kit); and 405 nm/510 nm long pass for Lucifer
Yellow.

During time-lapse confocal microscopy experiments,
cells were cultured in POC-R Chambers placed in a
Heating Insert P (PeCon GmbH) at 37°C in humidified
atmosphere of 5% CO,. The interval between scans was
5 minutes.

Electron microscopy

48 h post-transfection (p.t.) with pBI-EGFP or pBI-EGFP/
3C, cells were trypsinized, pelleted, washed with PBS, and
resuspended in a fixative solution (0.2 M cacodylic acid-
NaOH buffer, pH 7.5, and 2% glutaraldehyde). Sections
were cut on an LKB III ultratome (Sweden) and examined
under a JEM-100CX electron microscope (JEOL, Japan) at
accelerating voltage of 80 kV.
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Table 2 Primers used

Primer Sequence*

Bi3Cf GCAGAAGATATCGCCACCATGTCAACTCTAGAAATAGCAGGA
Bi3Cr CACTTTGCTAGCTTACTGACTTTCAATTTTCTTATC

Bi3Cm-f GGTCTTCCCGGGATGGCTGGTGGGGCCCTAGTG

Bi3Cm-r CACTAGGGCCCCACCAGCCATCCCGGGAAGACC

rt-3Cf GGTTCAGTTTGGAGTTGGTGA

rt-3Cr TTCCTCTCCATGCCTGATCT

rt-GAPDHf  GGTCGTATTGGGCGCCTGGTCACC

rt-GAPDHr  CACACCCATGACGAACATGGGGGC

*Restriction sites are boldfaced, Kozak sequence is italic, sequence corresponding
to Cys172 — Ala mutation is boldfaced and italized. All primers were from
Evrogen (Russia).

Analysis of 3Cpro cytotoxic effect

Cells were cultured in flat-bottom 96-well plates (Corning,
USA) and transfected with pBI-EGFP and pBI-EGFP/3C
plasmids. Every 24 h p.t,, cells from 4 wells for each
transfection variant were trypsinized and a percentage
of eGFP-expressing cells was calculated using hemacytometer
and microscope Olympus CKX-40 with excitation/emission
filter set for green fluorescence. Growth media was
replaced every 48 h.

Characterization of dead cells

Chromatin condensation, integrity of plasma membrane,
and maintenance of mitochondria potential were evalu-
ated as follows: cells were stained with Hoechst 33258
(20 pg/ml, 20 min at 37°C), PI (10 pg/ml, 5 min at 37°C),
and Rh123 (10 pg/ml, 15 min at 37°C), washed by cold
PBS, placed in fresh media, and examined under a con-
focal microscope. Phosphatidylserine externalization
was detected with an AnnexinV-Cy3 Apoptosis Detection
Kit, and activation of caspases was assayed using an
Image-iT LIVE Red Poly Caspases Detection Kit following
the suppliers’ protocol.

Counting cells with different morphology

Cells with different morphology (designated as normal,
vacuolated, and rounded/blebbed) were counted every
24 h p.t. Cells with three or more cytoplasmic vacuoles oc-
cupying more than 20% of visible cell area were considered
vacuolated. Cells demostrating rounded shape, shrinkage
and smooth or blebbed plasma membrane were considered
rounded/blebbed. Images of each culture with at least
200 cells were examined. Data from two independent
experiments were averaged.

Treatment with inhibitors of enzymes and cell processes

All substances were added with fresh conventional growth
media (18-20 h p.t. immediately after Lipofectamin-DNA
complexes were removed from cells) and incubated for 24
or 48 h. Concentrations of substances in the media were
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10-100 pM for Z-VAD-fmk, 10-100 pM for z-FA-fmk,
50 pM for necrostatin-1, 1 nM for bafilomycin Al,
10 mM for 3-methyladenine, 30 uM for PD98059, 36 nM
for Sc-353669, 60 uM for colchicine, 1.8 pM for doxorubicin
and 1.5 pM for filipin. In the case of substances dissolved in
DMSO, the same amounts of the solvent were added
to media of control cell cultures to exclude solvent-
induced effects. Functionality of Z-VAD-fmk, z-FA-fmk,
3-methyladenine and necrostatin-1 was confirmed in
model experiments described in Additional file 2: Figure
S1. Molecular masses of the inhibitors were verified by
mass spectrometry analysis (data not shown).

Treatment with Lucifer Yellow and Neutral Red

Lucifer Yellow (LY) and Neutral Red (NR) were added to
cell cultures with fresh conventional growth media 48 or
72 h p.t. The concentrations of substances in the media
were 1 mM for LY and 2 mM for NR. Cells were incubated
in LY solution for 2, 4, or 12 h and in NR solution for
10 min. After the incubations, the cells were rinsed with
cold PBS three times, placed in fresh media, and examined
microscopically.

Reverse transcription PCR analysis

Cells were grown in 25 cm? plates, transfected with pBI-
EGEFP, pBI-EGFP/3C, or pBI-EGFP/3CMut and collected
48 h p.t. RNA from the cells was isolated using the
RNAqueous kit (Life Technologies, USA) according to the
suppliers’ protocol. The RNA samples obtained were treated
with 1-5 units of RQ1 DNAse (37°C, 1 h; inactivation, 65°C,
30 min). Reverse transcription was carried out with the High
Capacity ¢cDNA Reverse Transcription Kit (Applied
Biosystems, USA). The obtained cDNA samples were
subjected to PCR with rt-GAPDHY/rt-GAPDHTr and rt-3Cf/
rt-3Cr pairs of primers to amplify DNA fragments encoding
GAPDH and 3Cpro, respectively, according to the following
program: 94°C 4 min; 26 cycles: 94°C 30 s, 60°C 30 s, 72°C
1 min; and 72°C 15 min.

Additional files

Additional file 1: Supplemental video. Time-lapse confocal microscopy
of a vacuolated A549/3Cpro cell in the period of 50-60 h pit.

Additional file 2: Figure S1. Functional tests of inhibitors. Figure S2.
Effect of inhibitors on 3Cpro-induced vacuolization. Figure S3. Effect of
inhibitors on cell viability.
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