
BioMed CentralBMC Cell Biology

ss
Open AcceMethodology article
Single cell cytometry of protein function in RNAi treated cells and 
in native populations
Peter LaPan1, Jing Zhang2, Jing Pan2, Andrew Hill3 and Steven A Haney*2,4

Address: 1Department of Biological Technologies, Section of Biologic Research, Wyeth Research, 87 Cambridge Park Drive, Cambridge, MA 02140, 
USA, 2Department of Biological Technologies, Oncology Research, Wyeth Research, 87 Cambridge Park Drive, Cambridge, MA 02140, USA, 
3Department of Biological Technologies, Bioinformatics, Wyeth Research, 87 Cambridge Park Drive, Cambridge, MA 02140, USA and 4Pfizer 
Research Technology Center, 620 Memorial Drive, Cambridge, MA 02139

Email: Peter LaPan - plapan@wyeth.cpm; Jing Zhang - jzhang2@wyeth.com; Jing Pan - jpan@wyeth.com; Andrew Hill - ahill@wyeth.com; 
Steven A Haney* - Steven.Haney@pfizer.com

* Corresponding author    

Abstract
Background: High Content Screening has been shown to improve results of RNAi and other
perturbations, however significant intra-sample heterogeneity is common and can complicate some
analyses. Single cell cytometry can extract important information from subpopulations within these
samples. Such approaches are important for immune cells analyzed by flow cytometry, but have not
been broadly available for adherent cells that are critical to the study of solid-tumor cancers and
other disease models.

Results: We have directly quantitated the effect of resolving RNAi treatments at the single cell
level in experimental systems for both exogenous and endogenous targets. Analyzing the effect of
an siRNA that targets GFP at the single cell level permits a stronger measure of the absolute
function of the siRNA by gating to eliminate background levels of GFP intensities. Extending these
methods to endogenous proteins, we have shown that well-level results of the knockdown of
PTEN results in an increase in phospho-S6 levels, but at the single cell level, the correlation reveals
the role of other inputs into the pathway. In a third example, reduction of STAT3 levels by siRNA
causes an accumulation of cells in the G1 phase of the cell cycle, but does not induce apoptosis or
necrosis when compared to control cells that express the same levels of STAT3. In a final example,
the effect of reduced p53 levels on increased adriamycin sensitivity for colon carcinoma cells was
demonstrated at the whole-well level using siRNA knockdown and in control and untreated cells
at the single cell level.

Conclusion: We find that single cell analysis methods are generally applicable to a wide range of
experiments in adherent cells using technology that is becoming increasingly available to most
laboratories. It is well-suited to emerging models of signaling dysfunction, such as oncogene
addition and oncogenic shock. Single cell cytometry can demonstrate effects on cell function for
protein levels that differ by as little as 20%. Biological differences that result from changes in protein
level or pathway activation state can be modulated directly by RNAi treatment or extracted from
the natural variability intrinsic to cells grown under normal culture conditions.
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Background
RNAi has become a widely used method for conducting
gene perturbation studies [1,2]. Studies using RNAi to
investigate gene function can be highly specific as well as
scalable, including whole-genome screens [3-10]. While
RNAi can be robust, there are challenges inherent to any
RNAi experiment [11,12]. These challenges arise from
problems in predicting the specificity of an individual
siRNA a priori, as well as directly linking the reduced target
protein levels with the observed effects [13,14]. Despite
these challenges, RNAi is the most versatile and robust
method for broadly testing gene function in most eukary-
otes [15].

High content screening (HCS), or automated quantitative
immunofluorescence, is being used to an increasing
extent in the target validation stage of drug development,
as well as in basic science [16,17]. Image analysis is used
to identify, quantitate and track multiple measures of
individual cells [18-20]. Usually, these data are averaged,
which is analogous to whole-well assays such as caspase
activity or reporter gene expression. The advantage of HCS
even in analyses at the whole-well level is that cells can be
individually screened for inclusion in the well average
according to parameters such as the health of the cell,
stage in the cell cycle or activation state of a signaling
pathway.

Single cell cytometry (or single cell analysis) has been
used historically to analyze complex populations of cells,
such as the study of differentiating immune cells by flow
cytometry [21,22]. Recently, the use of flow cytometry
and single cell analysis has been applied to signaling path-
ways within cancer cell lines [23-26]. These studies high-
light two advantages to flow cytometry-based single cell
analysis. First, the ability to integrate the study of more
than one cell-signaling pathway into an assay allows the
classification of cancer cells according to perturbation
responses, rather than static pathway activation levels.
This better recapitulates the complex stimuli cancer cells
encounter in vivo. Furthermore, advanced solid-tumor
cancers are comprised of multiple subpopulations of cells,
based on their genetic fluctuations and their interactions
with host cells and tissues. Single cell analysis is capable
of measuring changes within each of these subpopula-
tions [25,27-29]. The methods developed to analyze inter-
relationships between thousands of data points in each of
multiple samples are advancing biological and pharma-
ceutical research beyond the study of single pathways, and
towards the study of outcomes that arise from complex
interactions between multiple pathways [24,30,31]. Such
approaches are gaining favor because single-pathway
studies show only limited correlations across cell lines or
clinical samples, whereas the integration of multiple path-
ways and over complex sets of stimuli, enable more accu-

rate understandings of cell signaling by addressing direct
signaling as well as cross-pathway regulation [32].

We have used HCS to characterize the effects of genetic
and chemical perturbations on cells by single cell analysis.
We find that the wide range of protein expression levels in
unperturbed cells is a significant complication for RNAi
experiments, but that this complication can be addressed
directly by analyzing such experiments at the single cell
level. These methods allow the study of protein function
by measuring the response in distinct subpopulations of
cells in culture that result from stochastic variability of a
target protein in a culture of cells.

Results
Analysis of RNAi-mediated knockdown of GFP at the 
whole-well and single cell levels
The reduction of GFP levels in cells by the transfection of
siRNAs targeting the GFP mRNA sequence is a common
and robust system for the study of RNAi biology and
mechanism [33]. Its intrinsic robustness notwithstanding,
a high degree of variability is frequently observed in exper-
iments modulating GFP expression. We have used this
system to understand the extent of variability on experi-
mental results by analyzing the knockdown of GFP levels
at the whole well and single cell level. A prostate epithelial
cell line (RWPE-1) that constitutively expressed GFP was
treated with an siRNA that targets GFP. Despite carefully
optimizing transfection efficiency, an appreciable level of
heterogeneity was evident in the cells transfected with the
GFP-targeting siRNA, the samples treated with an non-tar-
geting control siRNA (NTC) and even in untreated sam-
ples. In all cases, a high range of GFP expression can be
observed, despite clear overall differences in the samples
treated with an siRNA that targets GFP. This heterogeneity
is evident in the case of cells transfected with a rhodam-
ine-labeled siRNA that targets GFP, shown in Figure 1A. As
can be observed in the figure, siRNAs effectively trans-
fected localize near the nucleus in P-bodies [34-36]. In
these studies, the siRNA is labeled with rhodamine on the
sense strand, which allows uptake to be monitored, but
the label itself does not interfere with silencing, at least in
part because the label is on the passenger, or non-target-
ing, strand. Instead, it allows uptake to be quantitated on
a per-cell basis. Perinuclear accumulation of the sense
strand is frequently observed in cationic liposome-medi-
ated siRNA transfections [37], and its accumulation ena-
bles limiting the evaluation of GFP levels to only those
cells that had been transfected effectively. Box plots were
generated using eight independent transfections for each
siRNA concentration, as shown in Figure 1B. More GFP
expression remains in this experiment than in GFP knock-
down experiments reported by others (which can report
greater than 90% reduction in GFP levels, [11,38]), how-
ever these studies evaluated the effectiveness of targeting
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Single cell analysis of siRNA knockdown of GFPFigure 1
Single cell analysis of siRNA knockdown of GFP. siRNAs transfected at increasing doses into RWPE-1 cells stably trans-
duced to constitutively express GFP, are correlated with the reduction of GFP expression, as determined by fluorescence 
intensity. A. GFP-siRNA accumulation and correlation with GFP levels observed by fluorescence microscopy. B. Average GFP 
fluorescence levels of wells treated with a GFP-specific siRNA or a non-targeting control siRNA, as indicated. Each box plot 
displays the median and intrerquartile range of 8 wells. C. For the transfection of siRNAs at a concentration of 3.13 nM, the 
cells of one well are plotted individually for both GFP and rhodamine fluorescence intensities.
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sequences in co-transfection experiments, which limits
GFP expression to only those cells transfected with the
RNAi reagents. Studies that examine RNAi knockdown in
cell lines stably expressing GFP show knockdown levels
consistent with the data in Figure 1B[39-41]. Some of the
difficulties of working with RNAi can be observed in Fig-
ure 1B, where average effects of siRNA treatment are sub-
ject to limitations in transfection reagent concentrations.
In particular, in the specific conditions as set up in the
experiment, the higher concentrations produce a small
reduction in functional knockdown. We have observed
this in specific combinations of cell type, transfection rea-
gent and conditions. Overall, transfection reagents have
limited ranges of optimal effectiveness, but the exact
ranges are highly dependent on the configuration of the
experiment, including source of the cell line used. As such,
each experiment needs to be individually optimized, as
factors that limit the effective range can be either toxicity
or siRNA:lipid and complex:cell number ratios that result
in suboptimal introduction of the siRNA (Lapan, P.
Zhang, J., Pan, J. and Haney, S.A., manuscript in prepara-
tion). In the results shown here, the higher siRNA levels
are changing the siRNA:lipid ratio, which is the most
likely source of diminished efficacy at the higher siRNA
levels.

To investigate the extent to which transfection and other
sources of variability play a role in the analysis of GFP
knockdown by an siRNA, we analyzed the same data at
the single cell level. The data for one well where the siRNA
was transfected at 3.13 nM are presented in Figure 1C.
These data are reported as single cell values that correlate
the expression of GFP with the amount of siRNA taken up
on a per-cell basis for the GFP siRNA, which was labeled
with Rhodamine. The siRNA shows a clear ability to
reduce GFP levels. It can also be readily observed that the
sample treated with the NTC siRNA includes a significant
numbers of cells that intrinsically express low levels of
GFP. The number of cells that express low levels of GFP in
the control sample affects the mean level of GFP for the
pool of untreated cells, and therefore, the extent of knock-
down of the treated sample. While the effectiveness of the
siRNA in reducing GFP levels is scored as roughly 60%
using a whole-well analysis, gating on data within GFP-
positive regions (analogous to the gating of cell popula-
tions in flow cytometry), the experimental effect is 10-
fold, or a 90% reduction in high GFP-expressing cells,
with 457 GFP expressing cells in the NTC siRNA treated
sample, and 48 in the GFP siRNA treated sample. Hetero-
geneity of GFP expression is observed by other investiga-
tors. In particular, it has been noted that a variety of
factors contribute to the perception of stochastic effects on
protein expression levels when individual cells are exam-
ined. These effects contribute to the observed variability in

lines developed from clonally expanded isolates [42], and
from constitutive promoters [43].

Intrinsic target protein levels are highly variable on a per 
cell basis
Prior to extending the results we observed using siRNA-
mediated knockdown of GFP to endogenous proteins, we
characterized protein abundance in cell culture popula-
tions at the single cell level. This analysis provides a con-
text for understanding how changes in protein levels are
measured at the single cell level, and how changes in pro-
tein levels affect cellular functions. Eight examples of fre-
quently studied proteins are shown for two breast cell
lines in Figure 2. A broad distribution is observed for the
proteins indicated in the figure, as well as in other cell
lines, including cell lines derived from human tumors
(including MCF-7, MDA-MB-235, LnCaP, DU-145, and
DLD-1), and epithelial cells that have been immortalized
(including the prostate line RWPE-1, the chondrocyte line
T/C-28a2 and the breast line 184B5). Proteins we have
characterized include transcription factors (STAT1, STAT3,
p53, Rb), protein kinases (CDC2, AKT1, ribosomal pro-
tein S6 kinase), and other signaling proteins (p16INK4A,
PTEN). The inherent variability of these proteins is greater
than what can be linked to changes resulting from
changes in proliferation rates or the cell cycle (as deter-
mined by DNA content per cell). Average protein intensi-
ties for the indicated proteins are shown in Figure 2A.
These data are reported in a manner similar to common
methods for describing protein levels in cell lines (e.g.
Western blotting and ELISA assays). The data shows that
for many of the proteins, levels are higher in the cancer
line T47D than they are for the immortalized breast line
184A1, particularly CDC2, STAT3 and p53. Such differ-
ences are frequently used to distinguish immortalized
breast lines as being "normal," although numerous stud-
ies have shown that such immortalized lines bear signifi-
cant similarities to breast cancer cell lines at the
phenotypic and transcriptional levels [44,45]. As such,
increased similar levels of BIRC5, BRCA1 and c-Myc
between the two lines are consistent with previous studies
from this [46] and other laboratories [47,48] that these
proteins are significantly affected by immortalization in
breast cell lines. Of relevance to the current discussion,
different protein levels in the immortalized and cancer
cell lines do not exist as discrete examples of cells with
high and low levels of a particular protein, but as broad
and overlapping ranges of protein levels on a per cell basis
(Figure 2B). The increased average levels of such proteins
are reflected in these distributions, creating a significant
"weighting" of the cells with higher abundances, as shown
in Figure 2C (e.g. HDAC3 and p53), while at the same
time including a portion of the sample with lower levels.
Such broad distributions bear an impact on drug develop-
ment, as these "side populations" for proteins involved in
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Figure 2

Binned Tota l

0 20... 40... 60... 80... 10... 12... 14... 16... 18... 20... 22... 24... 260000

0

200000...

400000...

600000...

800000...

100000...

0

200000...

400000...

600000...

800000...

100000...

0

200000...

400000...

600000...

800000...

100000...

0

200000...

400000...

600000...

800000...

100000...

0

200000...

400000...

600000...

800000...

100000...

0

200000...

400000...

600000...

800000...

100000...

0

200000...

400000...

600000...

800000...

100000...

0

200000...

400000...

600000...

800000...

100000...

Binned Tota l

0 20... 40... 60... 80... 10... 12... 14... 16... 18... 20... 22... 24... 260000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

Ce ll

1 T

0

20000

40000
60000

80000

100000

0

20000

40000
60000

80000

100000

0

20000

40000
60000

80000

100000

0

20000

40000
60000

80000

100000

0

20000

40000
60000

80000

100000

0

20000

40000
60000

80000

100000

0

20000

40000
60000

80000

100000

0

20000

40000
60000

80000

100000
18

4A
1

T4
7D

T47D
184A1

4000

# 
o

f c
el

ls
 p

er
 b

in

an
ti

g
en

 in
te

n
si

ty
 le

ve
ls

 p
er

 b
in

 (x
10

3 )

an
ti

g
en

 in
te

n
si

ty
 le

ve
ls

 (p
er

 w
el

l, 
x1

03
)

20 160140120100806040 240220200180 260 20 160140120100806040 240220200180 260

1000
2000
3000

0

100

0
20
40
60
80

100

0
20
40
60
80

BIRC5

BRCA1

STAT3

Rb

c-Myc

HDAC3

CDC2

p53

100

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

4000

1000
2000
3000

0

4000

1000
2000
3000

0

4000

1000
2000
3000

0

4000

1000
2000
3000

0

4000

1000
2000
3000

0

4000

1000
2000
3000

0

4000

1000
2000
3000

0

100

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80 T47D

184A1

total antigen intensity per cell, binned (x103) total antigen intensity per cell, binned (x103)

A CB

cell line

AvgIntenCBRCA1

0 50 100 150 200 250 300 350

0

20

40

60

80

100

120

AvgIntenCBRCA1

0 50 100 150 200 250 300 350 400

0

250

500

750

1000

1250

1500

1750

2000

AvgIntenCHDAC3

0 100 200 300 400 500 600

0

100

200

300

400

500

600

700

800

HDAC3 levelBRCA1 level

p
53

 le
ve

l

250

0

2000

1750

1500

1250

1000

750

500

2500 10050 150 400350300200
0

0

Rb
 le

ve
l

100

100

800

700

600

500

400

300

200

100

600500400300200

FED

0

0 50

BRCA1 level

c-
M

YC
 le

ve
l

100 200150 250 350300

60

40

20

120

100

80
Page 5 of 17
(page number not for citation purposes)



BMC Cell Biology 2008, 9:43 http://www.biomedcentral.com/1471-2121/9/43
the cell cycle or DNA damage response may represent cells
that are particularly important to disease progression.
Subpopulations of cells may be more resistant to chemo-
therapeutics at the low end of antigen intensity, and may
have little contribution to disease progression due to
excessive stress and an increased proportion of dying cells
at the high end. In such cases, focusing on the disease-rel-
evant populations will have an important benefit to drug
development.

We have examined the variability in intrinsic protein lev-
els in cells, including a potential role for bias during the
fixation and staining process, by dual-color staining (Fig-
ure 2D–2F). We observe that for many pairs, the extent of
covariation is low, as observed for p53 and BRCA1 (r =
0.379) and Rb and HDAC3 levels (r = 0.353) in T47D
cells. These data indicate that fixation and permeabiliza-
tion do not play dominant roles in the distribution of
antigen intensity. We do observe a higher correlation
between c-MYC and BRCA1 levels (r = 0.814), in this par-
ticular case, the co-variation may reflect a biological corre-
lation. In addition to the analytical comparison of co-
staining patterns, we have examined several pairs of anti-
gen staining to determine whether the staining patterns
themselves are independent in cases where abundances
are independent, by high-resolution confocal microscopy
(results not shown). We find that in cases where two anti-
gens are characterized in the same cells, the patterns are
consistent for each antigen, regardless the level of staining
for the second antigen. For example, the extent of nuclear
staining and the degree of punctate staining observed
were independent for the pairs examined (pairwise com-
binations of HDAC3, Rb and p53), further indicating that
artifactual factors, such as uneven permeabilization or fix-
ation, are not the cause of the wide range in antigen levels
observed for these cells.

RNAi-mediated knockdown of PTEN affects phosho-S6 
levels
The regulation of the AKT/mTor pathway represents sev-
eral important and clinically relevant targets, particularly
the inhibition of mTor through rapamycin-related com-
pounds such as temsirolimus [49,50]. The relationship
between sensitivity to temsirolimus, PTEN status and
phospho-S6 levels have been studied closely for both
pharmacogenomic indicators that can be used in patient
selection, and in the case of phospho-S6 levels, as a
phamacodynamic marker that can be used in drug dosing
[51,52]. However, PTEN is only one contributor to activa-
tion of the AKT/mTor pathway. This is true in cell culture
systems as well as in human tumor samples. We were
interested in whether the analysis of RNAi knockdown of
PTEN at the single cell level could elaborate on the rela-
tionship between its levels and activation of the AKT/
mTor pathway. Phosphorylation of S6 is highly sensitive
to the activation state of the pathway, both in cellular sys-
tems and clinically, where it is a validated biomarker of
increased PI3K activity and is correlated with PTEN status.
Knockdown results for PTEN are shown at the single cell
level in Figure 3A. Testing a range of transfection condi-
tions for PTEN knockdown (similar to Figure 1A) shows
that this system is more robust to higher lipid concentra-
tions that is observed for the immortalized chondrocyte
line used in the GFP expression studies. The effect of PTEN
depletion on pS6 phosphorylation is shown in Figure 3B,
where the population of cells treated with the PTEN
siRNA shows higher levels of pS6 phosphorylation. In Fig-
ure 3C, the levels of PTEN and phospho-S6 are compared
for the same samples. The reduction of PTEN level and
increase in phospho-S6 levels observed above can be seen
as a shift in the PTEN siRNA treated sample.

Figure 3C also shows the complexity of the AKT/mTor
pathway when each sample is examined at the single cell
level. That is to say, the effect observed in the whole well

Wide distributions are observed in endogenous protein levels for cultured cell linesFigure 2
Wide distributions are observed in endogenous protein levels for cultured cell lines. Antigen intensity was deter-
mined by high content screening following fixation and staining with antibodies that were specific for the indicated protein. 
Quantitation was achieved by a whole cell mask, which was dilated out from the nuclear region identified by DAPI staining. A. 
Endogenous expression levels of proteins are shown for two breast cell lines, the immortalized line 184B5 and the estrogen-
sensitive breast cancer cell line T47D, shown as well or sample mean values of all of the cells. Proteins examined in this study, 
as indicated in the figure, were quantitated by indirect immunofluorescence and image analysis, and values for each cell are 
plotted as individual points. All graphs are to the same scale, indicated in the lower left. Approximately 7000 cells were quanti-
tated per sample (antigen/cell line). B. Display of sample distributions for the proteins indicated in (A). Data is presented as his-
tograms of cells with increasing levels (total fluorescence intensity, or the sum of all pixel intensities, per cell) of the indicated 
proteins. C. Contribution of cells stratified by antigen intensities on overall abundance measurements. Data is as in panel B, but 
calculated as the product of the number of cells per bin times the average antigen intensity for that bin. As such, the contribu-
tion of each bin to the total well mean response is represented. D-F. Correlations between two proteins in cell populations. 
Protein levels per cell are shown for T47D cells, as indicated in the graphs. Protein levels are mean average fluorescence inten-
sities per cell, as indicated in the axes labels.
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siRNA-mediated knockdown of PTEN and its effect on phosphorylation of ribosomal protein S6Figure 3
siRNA-mediated knockdown of PTEN and its effect on phosphorylation of ribosomal protein S6. The breast car-
cinoma cell line MDA-MB-231 was treated with siRNAs to characterize the correlation between PTEN levels and ribosomal 
protein S6 phosphorylation levels. ~15,000 cells are presented. A. PTEN levels displayed as a histogram for samples treated 
with an siRNA targeting PTEN or a non-targeting control, as indicated. B. Ribosomal protein S6 phosphorylation for the same 
cells as in A, shown as a histogram of phosphorylation levels as reported by immunofluorescence intensities. C. Pairwise corre-
lation for PTEN and phospho-S6 levels at the single cell level for data presented in A and B.
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analyses, a decrease in PTEN results in an increase in phos-
pho-S6 levels, would be expected to cause a negative cor-
relation between these two proteins at the single cell level.
Instead, a moderate positive correlation is observed, sim-
ilar to the correlation observed in the unperturbed endog-
enous protein levels studied in Figure 2. Although often
depicted as a linear pathway that leads to the activation of
transcription, translation and metabolic activity, this
pathway is under multiple levels of positive and negative
feedback regulation of PI-3 kinase, AKT, mTor and ribos-
omal protein S6 kinase [53-55], which complicates strict
correlations between any two points that are separated by
one or more of these additional regulatory channels (dis-
cussed below). The extensive number of interactions
between the AKT/mTor pathway and other regulatory
pathways means that cells in culture are in a large number
of discrete states. This has been observed elsewhere by our
laboratory [56], and has been noted as a complicating fac-
tor in therapies that target this pathway, including those
that target Her-2NEU, PI3K and ERK [57,58]. The use of sin-
gle cell analysis to track multiple signaling states presents
a valuable advance in the study of current and novel
theapeutics.

Defining the role of STAT3 in colon carcinoma growth and 
survival by single cell analysis of RNAi-mediated reduction 
in STAT3 levels
To further investigate the contribution of single cell anal-
ysis to cellular signaling studies, we turned to a less com-
plex signaling pathway, the role of STAT3 in cancer cell
proliferation and apoptosis suppression. Two examples
are shown in Figure 4. In Figure 4A, knockdown of STAT3
in SW480 colon carcinoma cells are shown at the single
cell level. Knockdown of STAT3 at the protein level is
about 30%, based on average values for replicate wells (3
for each condition, data not shown). Although weakly
separated when analyzed at the whole well level, the sin-
gle cell distributions show a clear effect of treating with
the STAT3 siRNA; a K-S test (the Kolmogorov-Smirnov
statistic, [29,59]) shows a difference of 0.349 (p < 2.2e-
16). Such reductions are typically too small to produce
robust phenotypic differences in most whole-well assay
formats. There are likely to be many cases where this is
correct, but Figure 4A provides a different perspective that
more accurately states the situation. It is clear that distri-
bution of STAT3 levels in SW480 cells is too wide for an
average reduction of 30% to effectively demonstrate a
phenotype associated with STAT3 levels at the whole well
level. The overall reduction can be observed in the shift of
the distributions, but residual overlap is greater than 50%.
If a 30% reduction in STAT3 level does in fact have an
effect on these cells, an average change of 30% of STAT3
levels in these samples may not show such an effect
because of the wide range in each sample.

While strong changes in average protein levels are
required for experiments at the whole well level, analysis
at the single cell level shows that STAT3 levels vary over a
broad range under both control and STAT3 siRNA treat-
ments. As such, comparisons between low and high
STAT3 levels can be made by single cell analysis in cases
where whole well differences are less dramatic. As an
example, the effect of reducing STAT3 levels by RNAi can
be analyzed in the experiment shown in Figure 4. Specifi-
cally, STAT3 is constitutively activated in many cancer cell
lines, and reduction in STAT3 levels or activity (through
RNAi or inhibitors of the JAK/STAT pathways) have been
shown to result in growth arrest and apoptosis [60-62].

Proliferation inhibition is the result of the essential role of
the protein in growth, but the induction of apoptosis or
other forms of cell death has been ascribed to more com-
plex interactions, such as oncogene dependency [63] or
oncogenic shock [64]. In these models, cancer cell death
results from a release in apoptosis suppression mediated
by the signal transduction pathway. The data in Figure 4A
can be used to determine whether reducing STAT3 levels
through RNAi results in a change in cell health that is dis-
tinct from cells with equivalent levels of STAT3 as a result
of expression adjustments made during growth in stand-
ard culture conditions. This was done through comparing
the distribution of cells through the cell cycle in the entire
dataset versus a subset of cells where STAT3 levels were
low in the STAT3 siRNA-treated sample. For the cells
treated with the STAT3 siRNA, 22034 cells were analyzed
in the complete dataset and 5471 cells were analyzed in
the low-STAT3 population, as indicated in the annotation
of Figure 4A. Samples were initially compared for DNA
content, as a measure of cell cycle distributions. The data
for the entire STAT3 siRNA-treated sample is shown in Fig-
ure 4B, and that for the low-STAT3 subset are shown in
Figure 4C.

The data in Figure 4B shows that the cells are proliferating,
with a significant number of cells in the G2/M phases of
the cell cycle. For the low STAT3-containing cells (Figure
4C), the distribution shows a reduction in cells in these
phases of the cell cycle, and a majority of the cells in G1.
The cell cycle distribution is similar for the low-STAT3
cells of the NTC treated samples, but there are fewer cells
and the histogram is not as smooth (not shown). Looking
at subgroups with higher levels of STAT3, the proportion
of cells in G2 increases somewhat.

In addition to measuring the effect on the cell cycle, the
effect of lowering STAT3 levels through RNAi on cell stress
and cell death can be determined as well. In this case, such
effects would indicate a dependence on high STAT3 levels
for survival, either through oncogene addiction or onco-
genic shock, two models derived from observations that
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siRNA mediated knockdown of STAT3Figure 4
siRNA mediated knockdown of STAT3. A. Histogram of STAT3 levels in SW480 colon carcinoma cells treated with 
STAT3 and NTC (non-targeting) siRNAs. Red bars denote STAT3 siRNA treated cells and blue bars represent NTC treated 
cells. Data presents ~22,000 cells for samples treated with STAT3 and NTC siRNAs each. A region of low-STAT3 expressing 
cells examined in panels (C) and (E) is indicated in the panel (top left corner). B. DNA histogram of cells treated with the 
STAT3 siRNA. C. DNA histogram of low-STAT3 expressing cells (cells are highlighted in panel A). D. Nuclear size as a func-
tion of DNA content for the entire dataset. E. Nuclear size as a function of DNA content for the low-STAT3 cells highlighted 
in part A, for both STAT3 and NTC treated cells. The measure of DNA content for panels B-E are identical, and therefore the 
comparison of nuclear size as a function of DNA content may be made directly to the fraction of cells in each phase of the cell 
cycle (panels C and D, respectively). Color schemes for panels D and E are as in A.
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reduction in oncogene activity can induce cell death.
Severe cell stress and cell death are manifest in several
ways, including changes to the chromatin and nuclei
[28,65-67], which can be quantitated in image-based
assays. In the present example, an effect of lowering
STAT3 levels on viability would manifest itself as a change
in nuclear size in the STAT3 siRNA-treated cells as com-
pared to the NTC siRNA-treated cells. This has been noted
in cytometry-based profiling studies [28,68,69], and is
shown for SW480 colon carcinoma cells as a function of
etoposide treatment in Additional File 1 (details are pro-
vided in the Methods section). Nuclear size as a function
of DNA content is shown in Figure 4D and Figure 4E for
the entire dataset and for the low STAT3-expressing frac-
tion of cells, respectively. Nuclear size increases as a func-
tion of DNA content through the cell cycle, as shown for
both panels, with increasing nuclear size as cells progress
into S phase and again in late G2, immediately prior to
anaphase. For the data shown in Figure 4, the relationship
between DNA content and nuclear size is essentially iden-
tical for the NTC siRNA-treated sample (in blue) and the
STAT3 siRNA-treated sample (in red) in both analyses,
indicating that cells that have had STAT3 levels reduced
through RNAi treatment are not undergoing cell death to
a greater extent than control cells. If STAT3 levels were crit-
ical to the suppression of apoptosis or necrosis, the
nuclear diameter of the cells with low STAT3 abundance
would change, relative to the control cells. They would
increase in size as a general function of cell stress [27-29],
but would typically shrink and become more variegated
in classical apoptosis [65,70]. None of these changes are
observed in any of the subsets. Taken together, these
results suggest that STAT3 is playing an important role in
the proliferation of SW480 cells, but is not acting as an
essential oncogene through the suppression of apoptosis
or necrosis, as would be evident if the nuclei were signifi-
cantly different.

p53 dependence on adriamycin sensitivity can be observed 
following p53 knockdown at the whole well level, and in 
naturally-occurring low p53-expressing cells at the single 
cell level
As a final example of the value of single cell analysis, we
characterized the effect of p53 levels on apoptosis and
activation of the DNA damage response. The DNA damag-
ing agent adriamycin is toxic to all cells, but the toxicity is
more pronounced when p53 is either not expressed or
non-functional [71]. We have looked at the dependence
of p53 levels in DLD-1 colon carcinoma cells on adriamy-
cin sensitivity at the single cell level. The sensitivity of
p53-depleted cells to adriamycin is shown in Figure 5A,
where the number of cells per well is reported as a func-
tion of adriamycin concentration and treatment with
either an siRNA that targets p53 or a non-targeting control
(NTC). Control cells shown as not treated with adriamy-

cin were treated with DMSO at the same concentration as
the cells treated with the highest concentration of adri-
amycin. Confidence limits for the data were 0.021 (stand-
ard error of 0.0044) for the NTC treated cells and 0.0053
(standard error of 0.0007) for the p53 siRNA treated cells.
The levels of p53 for each sample are shown in Figure 5B.
This data shows that transfection of an siRNA targeting
p53 reduces p53 levels in DLD-1 cells prior to adriamycin
treatment, as well as limiting the ability of these cells to
fully recover p53 levels as a function of increasing adri-
amycin concentrations, despite the fact that the increase
in p53 levels following DNA damage occurs through post-
translational stabilization of p53 protein.

For the sample treated with the NTC siRNA, the amount
of p53 per cell was used to divide the cells into groups,
and the fraction of cells for each group as a function of
adriamycin concentration is shown in Figure 5C. Cells
with high levels of p53 are compared to cells with low lev-
els of p53 for each dose of adriamycin. The data shows
that cells expressing low levels of p53 are sharply reduced
as adriamycin concentrations increase, and to an extent
comparable to the reduction of the total cell numbers.
This suggests that cells with low levels of p53 are particu-
larly sensitive to adriamycin treatment. Since p53 levels
can rise as a direct result of DNA damage, it is also possi-
ble that cells with low levels of p53 initially are actually
stabilizing p53 and levels are increasing. Therefore, we
sought to resolve these two factors in p53-mediated cell
survival mechanisms.

We have addressed the question of whether adriamycin
sensitivity is affected by p53 levels at the time of DNA
damage by looking at how cells respond to treatment
prior to when cell death and increased p53 levels are
observed. In Figure 5D, the level of p53 in cells treated
with siRNAs targeting p53 and the NTC control are shown
for cells treated with increasing concentrations of adri-
amycin for 6 hours. At this time, we do not observe cell
death (as reported by the number of cells per well), or a
significant increase in average p53 levels (as shown in the
figure). However, DNA damage can be observed in these
cells in a dose-dependent manner, as determined by
changes in DNA and nuclear morphology (data not
shown). We have binned these cells by p53 level for each
concentration of adriamycin treatment, and measured the
levels of γ-H2A-x phosphorylation for each group, as
shown in Figure 5E. Phosphorylation of this variant his-
tone occurs in cells following DNA damage [72] inde-
pendently of changes in p53 level or modification
[72,73]. The data shows that cells with higher levels of
p53 show stronger DNA damage responses, as evidenced
by increased γ-phosphorylated histone-H2A-x levels.
Since these are independent responses to DNA damage, it
suggests that cells with higher p53 levels may result from
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Dependence of p53 on the response to adriamycin is observed in both p53 siRNA treated cells and in untreated cells with low levels of p53Figure 5
Dependence of p53 on the response to adriamycin is observed in both p53 siRNA treated cells and in 
untreated cells with low levels of p53. A. DLD-1 colon carcinoma cells treated with increasing doses of adriamycin as indi-
cated in the figure. Cells were treated with an siRNA targeting GFP (blue) or an NTC (red). Cells not treated with adriamycin 
were treated with DMSO. B. p53 levels following siRNA treatment. An siRNA that targets p53 (blue) or a non-targeting con-
trol (red), are shown. siRNA treatments as described in A. C. The fraction of cells within each concentration of adriamycin for 
the NTC treated sample is shown. The fractions of cells with the highest and lowest 20% of the range of p53 levels (burgundy 
and teal, respectively) in the untreated sample are shown at each concentration of adriamycin. The range of p53 levels in each 
bin is 0–200 FU for the lowest bin and 800–1000 FU for the highest bin. D. p53 levels following p53 or NTC siRNA treatment 
for 48 hours, and adriamycin treatment for 6 hours. siRNA treatments as described in A E. Levels of γ-phosphorylated histone 
H2A-x levels as a function of p53 levels per cell and adriamycin treatment for 6 hours. Adriamycin doses are as shown in other 
panels, in a color range from yellow (no adriamycin) to orange (1.222 μM adriamycin). Each data point represents 200–400 
cells. F. Same as (E), except cells were not treated with an NTC siRNA. Adriamycin concentrations are indicated in the panel.
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a stronger (or more activated) DNA damage response
pathway prior to the onset of DNA damage itself, up until
a point where the damage is beyond the ability of the cells
to respond effectively (1.2 μM and higher concentra-
tions). At high concentrations, significant cell death is
observed for all cells (>85% cell killing), and no differen-
tial is observed between untreated cells and those treated
with an siRNA targeting p53. At concentrations where the
dependence of p53 status on adriamycin sensitivity can be
observed, single cell analysis has been able to correlate the
extent of the DNA damage response induction with p53
levels in cells where p53 levels have not been altered prior
to DNA damage. The same general response can be
observed in separate experiments using DLD-1 cells that
have not been treated with any siRNA prior to that with
adriamycin (i.e. no mock or control siRNA transfection at
all), shown in Figure 5F. The cells are somewhat more
resistant to adriamycin in general, possibly a result of no
treatment with liposomes in a transfection, but the pat-
tern of higher p53 levels correlating with higher DNA
damage response is still evident.

Discussion and conclusion
We have applied the general concept of multiparametric
single cell analysis to the use of RNAi, and to the relation-
ship between protein levels and chemotherapeutic
response. High Content Screening is becoming an impor-
tant and general approach to biological and therapeutic
studies. In addition to increasing the options available for
cell-based assays in general, it is opening up new
approaches to biological processes and drug develop-
ment, such as cytological profiling [28,29,66]. Inherent in
the latter approaches is the use of single cell cytometry to
analyze complex patterns in cellular responses [27]. We
have generalized the use of single cell cytometry in several
experimental systems and have found that it generally
improves experimental analysis, and in some cases, ena-
bles challenging questions to be addressed directly. We
have used single cell cytometry to address four biological
problems: identifying the relevant cells in a knockdown of
GFP, correlating the knockdown of PTEN with the
increase in activity of pS6 kinase, the effect of knockdown
of STAT3 on proliferation and death of colon carcinoma
cells and the relationship between p53 levels and respon-
siveness to DNA damage (both as manipulated by RNAi
and as occur intrinsically through standard cell culture
conditions).

For RNAi screening in general, there are two applications
of single cell cytometry that are potentially valuable. First
is a general analysis of knockdown phenotypes by
number of cells showing an altered phenotype, rather
than average phenotypic change for the two samples. This
approach is more in line with other distribution-based
methods such as sectoring samples in flow cytometry, and

can present data in more biologically-relevant way than
reporting as percent-of-control (discussed below). Rigor-
ous analysis of RNAi screening data is currently challeng-
ing [15,74], and would benefit from clearer definitions of
what constitutes a hit [9,75]. The second benefit of single
cell cytometry is the capacity to score cells as a function of
the amount of siRNA effectively introduced in cells, as evi-
denced by the accumulation of the (non-functional) sense
strand in P-bodies following efficient transfection. Trans-
fection of siRNAs are frequently associated with off-target
effects [76-78], particularly at concentrations typically
used for library-based screening (>20 nM) [79,80]. Off-
target effects result in many false positive hits in RNAi
screens, and impose a significant burden on the post-
screening confirmation phase of a project [81]. Transfec-
tion at low concentrations (< 10 nM) has been shown to
reduce such artifacts, however library screening is per-
formed with many siRNAs that have not been well-vali-
dated, particularly for off-target effects. Library screening
typically involves higher concentrations because a pro-
ductive screen requires that cells be reliably transfected,
and some balance between the efficiency of transfection
and a lack of specificity can be tolerated in the initial
screen [15], as long as an effective strategy exists for dem-
onstrating authentic gene-phenotype connections
[81,82]. Therefore, off-target effects resulting from high
concentrations of siRNA transfections are a common and
perhaps unavoidable complication of running siRNA
screens. Reduced off-target effects have been associated
with pooling or multiplexing siRNAs, particularly in
highly complex pools such as are generated by enzymatic
preparation of gene-specific siRNA pools (esiRNAs, [83]),
at least in part because the concentration of any single
siRNA is low.

Reverse-transfection, including the live cell array
[7,84,85], is frequently used in functional screens. This
format spots the siRNA (or dsRNA for screens in Dro-
sophila cells) onto a surface prior to use with cultured cells,
and therefore cells are not transfected at a specific concen-
tration, strictly speaking. Single cell analysis can be readily
performed on assays following reverse transfection, since
these explicitly require image-based readouts. Selecting a
subpopulation with consistent siRNA uptake for each
siRNA is computationally intensive, and therefore would
be difficult to use directly in the primary screen endpoint,
but could be used to analyze data from a primary screen
that uses a high content (image-based) assay. The siRNAs
need to be labeled directly or co-transfected with a labeled
siRNA, in order for siRNA levels to be quantitated. How-
ever, the benefit of this is that knockdown phenotypes can
be scored for cells within specific thresholds of siRNA
accumulation, and these thresholds can be adjusted as the
data is reviewed, rather than during image analysis. 
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Scoring perturbations by fraction of responding cells (in
the case of GFP knockdown at the single cell level) and by
response magnitude as a function of target level (such as
in the example of DNA damage response as a function of
p53 levels) highlight important characteristics of biologi-
cal samples, particularly in the development of human
diseases such as cancer. Clinically important roles are
played by minor populations within cell types, such as the
growth of solid tumors through tumor-initiating cells
(cancer stem cells) and the importance of regions within
tumors that control angiogenesis and chemoresistance
(the hypoxic core of cells within solid tumors). These
properties can be observed in cell culture models, but this
differentiation is lost in whole-well methods. Tracking
effects of candidate therapeutics among rare cells or cells
that have reduced proliferation rates can focus decisions
on how well promising a strategy may be by limiting anal-
ysis to the cells that play the biggest role in disease pro-
gression.

A similar situation occurs with pathway analyses. An assay
that measures a change in a complex pathway, such as the
PI3K/AKT/mTor pathway, cannot help but exclude impor-
tant factors that contribute to a diverse set of outputs. This
heterogeneity may be as much a part of the discordance
between target inhibition and clinical response as widely
cited factors, such as tumor heterogeneity as a result of
genetic instability. In both cases, variability in the cells
that constitute a tumor enable a significant number of
cells to escape death. The difference between these two
scenarios is that genetic instability suggests a somatic evo-
lutionary process, whereas signaling heterogeneity sug-
gests that insufficient control of the pathway results in
escape from a therapeutic. In such cases, single cell analy-
sis could improve the search for combination therapeutic
strategies. mTor activity is subject to multiple levels of
feedback regulation [86,87] and to cross-talk with other
pathways, particularly the influence of amino acid and
cellular energy levels on mTor activity [55]. As such these
influences would need to be measured in a multiparamet-
ric assay system, to track changes between two points in
such a complex pathway. Taken together, the results pre-
sented here suggest that pathways that are quiescent (such
p53 during periods of low DNA damage) or truly linear
(such as activation of STAT signaling by JAK kinases)
should show correlations between two points at the single
cell level. This correlation could be used to validate results
from RNAi experiments by providing a separate method
of linking protein levels to pathway function.

Studies that integrate complex signaling interactions, as
opposed to linear events within single pathways, are at the
root of systems biology [31,32], and are better able to
characterize pathway states in their biological contexts.
Such approaches are being shown to be of direct relevance

to signaling in disease biology [25,88]. HCS is a strong
complement to flow cytometry as a method of single cell
analysis because signaling pathway responses can be inte-
grated with cytological dynamics, and as such will extend
systems biology into areas such as cancer cell motility and
invasion [27,29,89]. These approaches will lead to more
innovative approaches to treating disease [90], including
complex molecular studies which can be integrated with
genetic and epidemiological studies that show subtle but
important interactions between common disease loci.

Methods
Cell lines, cell culture and reagents
Immortalized breast cell lines 184A1, and 184B5 were
generously provided by Martha Stampfer (LBNL, Berkeley,
CA). The C19 derivative of T/C-28a2 was developed and
generously provided by Manas Majumdar (Wyeth
Research, Cambridge, MA). MCF-7, T47D, MDA-MB-235,
DLD-1, RWPE-1 were obtained from ATCC (Mannasas,
VA). RWPE-1-GFP was developed by transduction of a
lentivirus that encodes the GFP gene under the control of
the CMV promoter. Media used for each cell line were
according to instructions from the source.

Antibodies against γ-phosphorylated histone H2A-x, were
obtained from Upstate Biotechnologies (Lake Placid, NY);
antibodies against caspase-cleaved PARP and p53 were
obtained from Cell Signaling Technologies (Beverly, MA).
Fluorescent probes, including DAPI, and antibodies con-
jugated to Alexa dyes, were obtained from Molecular
Probes/Invitrogen (Carlesbad, CA). Adriamycin, 16%
paraformaldehyde, and Tween-20 were obtained from
Sigma, Inc. (St. Louis, MO). siRNAs targeting p53 were
obtained from Ambion, Inc (Austin, TX). Custom synthe-
sized and unmodified siRNAs targeting GFP were
obtained from Qiagen (Valencia, CA).

siRNA transfections
siRNAs were transfected as complexes with cationic lipo-
somes from one of several manufacturers. For each exper-
iment 3–5 commercially-available lipids were tested in a
series of concentrations and siRNA:lipid ratios, according
to manufacturers instructions. Transfections were four
hours long and terminated by a change in media. For each
cell line used in each experiment, the optimal lipid and
siRNA:lipid ratios were determined using a test siRNA that
targets GAPDH and GAPDH enzyme activity was meas-
ured for each condition, using the KD Alert kit from
Ambion (Austin, TX). Optimal conditions were chosen as
those that gave the greatest reduction in GAPDH activity
when treated with the GAPDH-targeting siRNA, but min-
imal toxicity as identified by the NTC siRNA. Optimal
conditions for each experiment are listed in Additional
File 2.
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Quantitative immunofluorescence
Cells labeled as described in the figures were fixed with
4% paraformaldehyde, washed, permeabilized with 0.2%
Triton X-100 and stained with 300 nM DAPI, primary and
secondary antibodies and washed again. Antibodies were
titrated for optimal imaging, and the lowest concentration
that gave a highly-specific labeling of the antigen was
used. Sources, dilution levels and fluorescence conditions
are listed in Additional File 2.

Antigen intensities and localizations within cells follow-
ing fixation and staining were imaged using an ArrayScan
VTI (Cellomics, Pittsburgh, PA), using a 20 × 0.63 NA
objective. Images were analyzed using the Target Activa-
tion and Compartmental Analysis image analysis applica-
tions from Cellomics. Cellular imaging was accomplished
by first locating cell nuclei using DAPI-chromatin fluores-
cence and expanding the diameter of the nuclei to encom-
pass the cytoplasmic region. Specific adjustments are
required for each cell line. Cytoplasmic regions of neigh-
boring cells were optimized in an iterative cycle of algo-
rithm modifications and testing. Fluorescence intensity
was captured and interpreted by one of several methods,
typically mean fluorescence intensity per cell. Fluores-
cence measurements were well within the linear range of
the image capture system (illumination, light filtering and
detection using a cooled-CCD camera), so relative
changes in protein levels could be made using relative
changes in fluorescence between cells and samples. Non-
specific detection is low, as shown in Additional File 3,
and this enabled relative changes in protein levels to be
determined from the fluorescence intensities.

Nuclear morphology was used as an indicator of cell
health. Specifically, changes in nuclear area are indicative
of severe cell stresses that result in necrosis or apoptosis.
The identification of cells lethally treated with etoposide
using nuclear area as an indicator of imminent cell death
has been used by several laboratories in both classical
apoptosis studies without the use of automation and in
cytological profiling approaches. The change in nuclear
area following treatment with an inducer of apoptosis is
shown in Additional File 1. SW480 cells were treated with
5 μM etoposide for 24 hr, fixed and stained as described
above. Cells treated with 10 μM and 20 μM etoposide
showed similar distributions of nuclear area.

Quantitation and statistical analyses
We have used HCS to examine protein levels within cells,
and how these levels are manipulated by RNAi, at the sin-
gle cell level. Data extraction and processing were per-
formed using the statistical programming language R
http://cran.r-project.org. Data from individual cells were
extracted directly from the Cellomics' STORE database
using a custom R function getCellData(), which uses a

SQL query provided by Cellomics. The getCellData()
function allows single cell data to be queried by well, row,
column, or plate, one feature at a time, and is described in
Additional File 4.

R scripts utilizing the getCellData() function are executed
on a LINUX cluster. An auxiliary text file lists the plates
and wells to be extracted, as well as the annotation associ-
ated with each well. The R script reads the auxiliary file
1nd replicates and merges the annotation with the single
cell data as it is extracted from the database. Averaging,
normalizations, and transformations are performed in R
prior to export as a flat text file. Data is visualized either
directly in R or imported into Spotfire for interactive anal-
ysis.
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Additional file 1
Supplementary Figure 1 Effect of etoposide treatment on nuclear area of 
SW 480 colon carcinoma cells. SW480 cells were plated in a 96-well 
microtiter plate and cultured for 24 hr, at which time they were treated 
with 5 mM etoposide (shown in red) or a vehicle control (shown in blue). 
Nuclear size for each cell is shown as a histogram of the entire dataset 
after binning as shown in the figure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-43-S1.eps]

Additional file 2
Immunofluorescence and siRNA transfection conditions. Specific catalog 
and treatment conditions for siRNAs, transfection reagents and immun-
ofluorescence microscopy.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-43-S2.xls]

Additional file 3
Supplementary Figure 2 Representative specific and non-specific staining 
intensities for the primary and secondary antibodies. Box plots of antigen 
levels as detected by high content screening. Specific antigens were 
detected using antibodies as indicated in the panel and non-specific back-
ground staining was detected using specific isotypes, is indicated as well. 
IgG is from rabbit, IgG1 and IgG2a are from mouse.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-43-S3.eps]
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