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Abstract

Background: The processing of images acquired through microscopy is a challenging task due to
the large size of datasets (several gigabytes) and the fast turnaround time required. If the
throughput of the image processing stage is significantly increased, it can have a major impact in
microscopy applications.

Results: We present a high performance computing (HPC) solution to this problem. This involves
decomposing the spatial 3D image into segments that are assigned to unique processors, and
matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between
segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of
3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using
1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478% speedup.

Conclusion: Our parallel solution dramatically improves the performance of image processing,
feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to
conduct unprecedented large scale experiments with massive datasets.

Background

Progress in biology is dependent on the ability to observe,
measure and model the behavior of organisms at multiple
levels of abstraction, from the microscopic to the macro-
scopic. There has been a tremendous growth recently in
the techniques to probe the structure and workings of cel-
lular and organ-level mechanisms. Significant advances
have been made in areas such as serial block face micros-
copy [1], and knife-edge microscopy [2] that allow micro-
structure information to be gathered at unprecedented

levels of both detail and scope. At the same time, advances
have also been made in gathering temporal image data
streams from microscopic samples with the use of fluores-
cent and multi-photon imaging techniques [3]. The
increasing spatial and temporal resolution available, com-
bined with advanced sectioning techniques are providing
extremely content-rich data to biologists and puts unprec-
edented power in their hands.
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This is a game-changing development, since biologists are
no longer limited to carrying out experiments to test a sin-
gle hypothesis at a time. They are now able to vary multi-
ple parameters simultaneously, and observe several
phenomena of relevance using multi-spectral techniques.
This can be combined with recent advances in data min-
ing techniques to determine relationships and correla-
tions amongst the many variables of interest. This allows
a significantly larger parameter space to be explored.

However, there is a mounting problem being faced by
practitioners and researchers today, which is the computa-
tional bottleneck: the data storage and processing needs
are growing exponentially. It may take several hours or
even days to process the collected data, and the resulting
throughput time may be unacceptable to support desired
workflows in laboratories. Unless the computational
issues are addressed immediately, biologists will be over-
whelmed with the data collected, and will not have ade-
quate tools to process and extract meaning from the data.
Though computer vision techniques have been applied in
the past to partially automate some of the analysis (e.g.
[3]), the current challenge is to process much larger quan-
tities of data (several gigabytes typically) with sufficiently
high throughput. This would allow biologists to interpret
experimental results rapidly and ideally in an interactive
fashion.

A related problem is that of building models from the col-
lected data, which is a useful technique to test the under-
standing of the phenomena of interest. As the data expose
interactions at finer spatial and time scales, the variables
that are modeled also increase in number and complexity.
This increases the computational burden on the modeling
effort as well.

We present a solution to this challenge, which is based on
a high-performance computing (HPC) architecture. An
example of this is IBM's Blue Gene Supercomputer. There
has been a long history of using HPC to model problems
in physics, but its use in biology has been very recent and
rather limited. In general, HPC has not been used much in
bio-imaging applications due to the difficulty in porting
code to parallel machines. Algorithms for image process-
ing, such as segmentation and feature extraction are not
being sufficiently developed and investigated in a HPC
context. Though there was interest in this area in the mid-
1990s [4], this appears to have waned, and the use of HPC
for imaging applications is currently quite limited.

However, the landscape is rapidly changing due to the
increased availability of HPC platforms, improvements in
parallel programming environments (such as the emer-
gence of the Message Passing Interface as a standard), and
the availability of toolkits to perform parallel data min-
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ing. HPC has significant potential to be applied to prob-
lems in biology, and in microscopy imaging applications
in particular. The high computational demands of simu-
lation and modeling complex systems can also be
addressed through HPC. So a single HPC architecture can
support multiple computational requirements, ranging
from analyzing data to building and simulating models.

Requirements

We now examine the computational requirements for a
total system dedicated to handle biological imaging tasks.
The following tasks would need to be performed.

(1) Data collection: the system needs to gather and store
the images acquired (2) Deconvolution: the acquired
images may contain distortions such as blur that occur in
the front end optics (3) Segmentation and feature extrac-
tion: the raw images need to be segmented into regions of
interest and processed to extract domain-specific features
that aid in classification (4) Analysis and interpretation:
the segmented regions are interpreted as parts of a larger
biological structure such as a neuron or organ. (5) Mode-
ling and prediction: models for function (e.g. neural con-
nectivity models) can be built to predict the behavior of
entities of interest. This phase may require the use of sim-
ulation and optimization techniques. From the list of
tasks above, the following core computational require-
ments can be identified (1) The ability to handle large
data sets, including storage and retrieval. (2) High
throughput processing is required. (3) The visualization
of results is important.

As a case study, we consider the system developed by
Denk and Horstmann [1], that consists of a serial block-
face scanning electron microscope (SEM) to explore 3-d
connectivity in neural tissue. Light microscopy is incapa-
ble of resolving the fine structure such as dendrites, which
necessitates the use of a SEM. The system is able to obtain
slices that are 50 nm thickness, with a 50 x 40 um area,
and 27 nm pixel size. This results in single images of size
4 megabytes. Typically, 2000 slices are obtained, giving
rise to a stack of 8 GB of data. Several such stacks need to
be collected to gain information about neural connectiv-
ity in a functional area of the brain. The connectivity
within the neural tissue is inferred by identifying struc-
tures within the 2D slices, such as neurites, and tracking
them across successive slices. This permits the reconstruc-
tion of a 3D model of structures of interest, such as a neu-
ron with its soma, dendrites and axon. The ultimate use of
such reconstructed structures would be in developing
accurate computational models of cortical function.

The system developed by Denk and Horstmann [1] oper-
ates at the nanometer scale. A similar system developed by
McCormick et al [2] operates at the micrometer scale, and
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can section an entire mouse brain. The computational
requirements arising from both systems are very similar.
The need for time-varying image analysis arises from bio-
logical experiments such as the analysis of macrophage
images from the Biolmaging Institute at MIT [3]. The goal
here is to observe the cell motility of macrophages under
different ambient conditions. This requires 3D deconvo-
lution to be performed on a sequence of images. Again,
the computational needs of such experiments are enor-
mous.

High-throughput processing

In this paper, we restrict our scope to solving the problem
of high-throughput processing. Since the performance of
single CPU machines is not sufficient to handle the size of
the case-study data set described above, the use of parallel
processing is inevitable. We examine the characteristics of
our case-study data set.

1. Significant communication is required between proces-
sors. This is specifically true of image processing tasks.

2. The bulk of the communication is between nearest
neighbors.

3. Computation and communication needs are well bal-
anced. For instance, consider the operation of recursive
3D median filtering, which is useful for combating noise.
Every iteration of the filtering operation may require sig-
nificant amount of data communication. Suppose we use
1024 processors for the 8 GB stack, with each processor
storing 8 MB of data. Assuming up to half this data needs
to be communicated, we have a communication need of
4 MB per process to be sent/received to/from its 26 neigh-
bors. This is a large amount of data especially since it may
need to be communicated at every iteration of the compu-
tation.

There are many possible ways of using parallel processing
systems to meet these requirements, such as clusters of
workstations, shared memory systems and the use of
game processors. We chose to implement our system on
the IBM Blue Gene supercomputer due to its scalability
(to upwards of 100,000 processors) and its specialized
interconnect technology, offering superior communica-
tion speeds.

Results

In order to make advances in microscopy, progress needs
to be made on several fronts simultaneously, including
new methods for image acquisition, processing algo-
rithms for feature extraction and analysis, and the compu-
tational architecture and methodology for fast processing.
The focus of this paper is on the latter issue, and deals with
the use of parallel computation to address the throughput
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requirements. There are other research efforts to investi-
gate algorithms for feature extraction and reconstruction
[5]. Our goal in this paper has been to show how such
algorithms can be implemented on a parallel architecture.

Our system is written using MPI (message passing inter-
face). We present results of using our system to process
images from the serial block-face SEM apparatus [1] on an
IBM Blue Gene supercomputer. As an illustration, we
implemented recursive 3D median filtering on Blue Gene,
and found that a single pass of a 5 x 5 x 5 filtering opera-
tion takes 18.8 seconds for 64 slices of 2048 x 1872 gray-
scale images on 1024 processors arranged inan 8 x 8 x 16
Cartesian grid. The result is shown in Figure 1. The same
computation running in MATLAB on a single Intel 2 GHz
processor took 143 minutes, or about 456 times slower.
This illustrates that the use of HPC can have a dramatic
improvement in the throughput of image processing
tasks, and that HPC has tremendous potential to influ-
ence the fields of bio-imaging and microscopy. Figure 2
depicts the speedup achieved as the number of processors
is increased from 32 to 1024 for the 3D median filtering
task. Clearly, one can obtain real-time performance for
this task on a multiprocessor machine with sufficient
number of processors. This would be extremely beneficial
for interactive data analysis, algorithm development and
visualization of the entire data set.

We implemented the technique described by Xu and
Prince [6] for contour processing. An initial contour is
selected by the user, which encircles the object of interest,
say a neural structure, such as a portion of a dendrite as
shown in Figure 3. The snake, a deformable template,
then accommodates itself to fit the exact contour of the
dendritic structure. This reduces the burden on the user in
specifying the detailed contour.

This procedure is performed on the first image slice. The
next image slice uses the snake from the previous slice to
initialize the contour, and executes the same energy-min-
imizing algorithm as before. This procedure is repeated
across multiple image slices. The 2D contours extracted
can be assembled into a 3D model of neural connectivity.
A partial reconstructed model is shown in Figure 4. This
shows a part of a dendrite that has been detected and ren-
dered using the technique described above. There are pos-
sibly hundreds of such structures within a given slice of
neural tissue. We have chosen to illustrate the reconstruc-
tion of a small portion of the data, as our work is at an
early stage, and further results will be forthcoming.

In Figure 5 we compare the performance of our algorithm
running on Blue Gene/L versus an Intel Linux cluster. No
changes to the MPI program were required, and it was
merely recompiled on the Linux cluster. The cluster used
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B

The result of applying 3D median filtering using a kernel size of 5 x 5 x 5 pixels. (A) Shows the original data, of size 234 x 256
pixels, where each pixel is 27 nm. (B) Shows the median filtered data. The filtering eliminates the fine structure in the image,
which can be considered noise for the purpose of contour extraction. However the major contours are well preserved

upto 64 nodes of Intel Pentium III CPUs running at 1.3
GHz and connected via 100 Mb/s ethernet. The commu-
nication time in Blue Gene for the 3D median filtering
task is approximately 5% of the total time. Whereas, for
the Linux cluster, the communication time is more than
40% of the total time. The problem size remained fixed.

The 3D torus interconnection architecture on Blue Gene/
L is used in conjunction with other schemes such as tree-
based networks to optimize communication times. In
order to demonstrate the efficiency of the torus network
with dedicated nearest-neighbor connectivity, we per-
formed the following experiment. We ran the 3D median
filtering algorithm in two modes. The first mode used a
cartesian mapping to the torus, such that the ranks were
sequentially assigned in a 3D grid in correspondence with
the 3D torus on the machine. The second mode used a
randomized mapping, where this orderly correspondence
between ranks and the torus did not exist. Figure 6 shows
that the randomized mapping was 10% slower for a 512
node configuration, and 30% slower for a 1024 node con-
figuration.

Discussion

We expect that other image processing tasks, such as iter-
ative morphological operations (e.g. dilations followed
by erosions), or recursive filtering (e.g. recursive 3D
median filtering) will also benefit from implementation
on an HPC platform if they operate on large datasets. In
general, any local neighborhood operation can be com-
puted advantageously using our method as shown in Fig-
ure 2.

The procedure described to produce the result in Figure 4
is semi-automated. There are other approaches in the lit-
erature which are more sophisticated, such as the tech-
nique developed by Busse et al [5], which is also semi-
automatic. We have chosen to explore a parallel process-
ing solution to the reconstruction problem, and are ini-
tially implementing simpler approaches.

Figure 5 shows that the Blue Gene/L communication net-
work is superior to that of the Linux cluster used, and that
the communication overhead scales with the number of
processors. The Linux cluster did not exhibit appropriate
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Comparison of execution times. The blue line at the bottom
indicates the computation time for 3D median filtering as a
function of the number of processors used. As the number of
processors increased from 32 to 1024, the computation time
decreased from 606 to 18.8 seconds. A logarithmic scale is
used for both axes. The red line on the top shows the com-
putation time for the same task running on a 2 GHz Intel
processor inside an IBM Thinkpad machine. Clearly, several
orders of magnitude speedup can be achieved in a multiproc-
essor environment.

scaling behavior due to the configuration of the switches,
which were likely deployed in 32 node banks.

Other studies by Almasi et al. have demonstrated that a
wide variety of scientific applications can scale up to tens
of thousands of processors on Blue Gene/L [7]. We view
this as a significant advantage in using the Blue Gene/L
platform. The image processing application can be written
once using MPI, and the hardware platform provides the
desired scaling.

The significance of the result in Figure 6 depends on the
precise task being performed. If the task is computation
bound, then improvements in communication may not
have a significant effect on the throughput. However, for
communication-bound tasks, the demonstrated improve-
ment of the cartesian mapping may be significant.

Other studies, such as Agarwal et al. [8] have also demon-
strated an increase in communication times when the task
is not optimally mapped to the processors on Blue Gene/
L. This shows that the mapping of communicating objects
to nearby processors is desirable.
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To summarize this discussion, it is advantageous to use an
HPC architecture that optimizes nearest-neighbor com-
munication on a 3D grid. Depending on the task to be
performed, this communication efficiency may result in
significant throughput increases as compared with other
network topologies. The comparisons shown in this paper
are not meant to be comprehensive, and the benchmark-
ing of image processing applications on HPC platforms
needs further investigation. This may require a commu-
nity-wide effort to create and measure appropriate bench-
marks on multiple HPC platforms. As an example, NIST
has been conducting a series of TRECVID workshops on
measuring video image database retrieval performance for
several years [9].

Our system has been designed with MPI, a de-facto stand-
ard environment for parallel processing. This enables the
system to be used widely across different platforms. Given
the increasing popularity of grid computing, and the
increasing availability of supercomputers, we expect to see
wider usage of parallel processing techniques in areas
such as microscopy. In order to fully exploit the available
parallel platforms, we recommend that students at univer-
sities should be trained to use such technology. Further-
more, curricula in courses such as image processing and
computer vision should cover parallel processing tech-
niques.

Conclusion

Our results demonstrate that the use of HPC can have a
dramatic improvement in the throughput of image
processing tasks, and that HPC has tremendous potential
to influence the fields of bio-imaging and microscopy.

The main contribution of this paper is to develop a paral-
lel image processing system for handling multidimen-
sional image data that optimizes computation and
communication needs in a multiprocessor system. This is
achieved through an appropriate domain decomposition
that exploits support in MPI for computation in cartesian
grids.

Our results show that by using the Blue Gene/L machine,
significant throughput increases can be achieved com-
pared to conventional clusters. Furthermore, the domain
decomposition and algorithms presented in this paper
show favorable scaling behavior as the number of proces-
sors is increased.

This paper presents early implementation results, and fur-
ther work needs to be done to incorporate more sophisti-
cated image processing algorithms in this environment.
Additionally, time-domain processing capability needs to
be added.
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Figure 3

Finding contours of objects (neural structures). (A) The original image. The contour that needs to be extracted is encircled in
red, which forms the initial snake. The image size is 101 % 101 pixels, with each pixel of size 27 nm. (B) An expanded image

showing the normalized gradient vector field around the contour. Note that the vectors indicate the direction of deformation
of the snake as it accommodates itself to the shape of the desired contour. (C) The final result, showing the snake acquires the

contour shape of the neural structure.

Methods

We propose an image processing system architecture spe-
cially designed to leverage an HPC platform. A challenge
in parallelizing image processing tasks is to arrive at the
proper domain decomposition, which specifies how the
task is to distributed among the various processors availa-
ble. We perform an appropriate domain decomposition
by assigning processors to spatial 3D volume elements.
The original spatial 3D image is broken down into 3D vol-
ume elements, where each volume element is assigned to
a processor. Each processor communicates information
with its nearest neighbors, as shown in Figures 7 and 8.
This reduces communication overhead, while balancing
the load across the different processors.

Proposed Solution

Based on the requirements in the background section, we
propose the following solution. We use MPI (Message
Passing Interface), a widely used message passing library
standard. There are several open source implementations
available for different computing platforms.

Due to the 3D geometry of the problem, we use a Carte-
sian grid for domain decomposition, which is supported
by an MPI mechanism for defining local process topolo-
gies through the MPI_CART_CREATE command. The MPI
Cartesian grid communicator is optimum for nearest-
neighbor communications, is architecture independent
and works best with hardware-level support. This commu-

nicator is described by the MPI_CART_GRID command,
and serves as a hint to the MPI implementation that
sequential process numbers should correspond to loca-

20 50 55

Figure 4

Finding contours of objects. This plot shows the contour of a
neural structure obtained from successive slices. The con-
tour in the first slice was initialized by manually drawing a cir-
cle around the neural structure, and then refined with the
snake algorithm. The subsequent contours are initialized with
the final contour of the previous slice, and then deformed to
conform to the image data. The X and Y axis units are in pix-
els, and the Z axis represents the index number of each slice.
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Computation and communication times on linux cluster
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Comparison of algorithm performance on different platforms. (a) On the Blue Gene/L platform, the communication time is a
small fraction of the computation time. (b) On the Intel Linux cluster, the communication time is of the same order of the

computation time.

tions on a 3D grid. (MPI assigns numbers to each process,
and in general there is no restriction on which physical
processor runs a given process. This may be acceptable if
the processors are physically located on distributed com-
puters such as in a grid. However, if the hardware permits,
it is advantageous to cluster the processes tightly as in a
cartesian grid). This support is provided in the IBM Blue-

Communication times on Blue Gene

Randomized topology

Cartesian grid topology

0.05

0 | | | | | | | | | |
500 550 600 650 700 750 800 850 900 950 1000
Number of nodes

Figure 6

Comparison of communication times on Blue Gene/L. The
communication using the cartesian grid mapping is more effi-
cient than using a randomized mapping.

Gene machine/L [10] through the use of a 3D torus archi-
tecture, as described in Figure 9. This architecture
optimizes nearest-neighbor communication.

The compute nodes in Blue Gene/L are interconnected
through multiple complementary high-speed low-latency
networks, including a 3D torus network. We directly map
the total 3D image volume that needs to be processed
onto a 3D torus. This is done by partitioning the 3D image
volume into the number of processors available, and
ensuring that neighboring processors on the Blue Gene/L
machine are dedicated to handling neighboring 3D image
partitions. Each processor stores up to half the image data
from each of its nearest neighbors in order to minimize
communication overhead.

This domain decomposition allows efficient implementa-
tion of moving window operators such as median filter-
ing. Furthermore, by performing such operations on the
3D image data, as opposed to multiple 2D image slices,
we are able to use the full available 3D information to
combat noise and ambiguity.

Operations such as cell boundary extraction can also be
carried out efficiently. This is because the bulk of the inter-
processor communications is between nearest-neighbor
nodes on the 3D torus, for which dedicated hardware con-
nectivity exists.
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Figure 7

Domain decomposition for a 2D image. The image is divided
into 8 x 8 tiles. The tile R communicates data to its 8 neigh-
bors.

We assume that the image sequences are synchronously
captured at a constant number of frames per second. Each
processor can update its 3D volume data with the specific
3D image segment it is responsible for processing over the
next time slice. The proposed domain decomposition will
allow the imaging operations to be carried out effectively
over large time-series data sets.

The domain decomposition is illustrated for the 2D case
in Figure 7. Here, a 2D image is decomposed into 8 x 8
tiles. Consider the tile indicated by R. Suppose we are per-
forming an operation such as recursive median filtering.
At every iteration, the tile R may need to exchange data
with its 8 nearest neighbors as indicated. This is because
the computation of values within R may depend on the
values of pixels within neighboring tiles. Similarly, Figure
8 illustrates the 26 nearest neighbors in three dimensions.

MPI implementation

There are two phases involved at every step of an iterative
algorithm, the first being communication and the second
is computation.

To facilitate communication, we set up a 3D Cartesian
communicator grid based on the number of processors
available. Let us assume that each processor executes a sin-
gle process. Data partitioning is then based on the process
rank assigned by MPI. For communication, each node
sends information to its nearest neighbors. This is imple-
mented by using the MPI sendrecv command between
appropriate pairs of processes. For instance, a process can
send information to its neighbor to the north and receive
information from its neighbor to the south. This proce-
dure avoids deadlock during the computation. The data
resident at each process is initialized by reading the appro-
priate partition from the disk.

http://www.biomedcentral.com/1471-2121/8/S1/S9

Once each process has the required data, computation can
proceed. Appropriate algorithms for image feature extrac-
tion and processing are implemented. This procedure of
communication and computation is performed until all
the data have been processed.

Image processing algorithms

In order to process Denk and Horstmann's dataset, we
used techniques published in the literature. The first
processing step is to apply 3D median filtering [11]. This
removes noise in the images while preserving the edges.
We used a simple implementation for the 3D median fil-
ter, rather than more complex implementations as
described in [12].

The second processing step is to extract contours corre-
sponding to the neural structures, such as dendrites. There
are many possible solutions to this problem, and the one
we chose to implement is based on the concept of deform-
able templates, or snakes. We implemented the technique
described by Xu and Prince [6]. Briefly, the snake is an
energy-minimizing deformable shape, where the energy is
a function of its internal elastic energy and an external
force field. The force field is computed from the image
data, e.g. the gradient of the image, as shown in Figure 3.
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Figure 8

Domain decomposition for a 3D image using a 3D Cartesian
grid. Each unit communicates with 26 neighbors. Both send
and receive commands are required. This communication
cost may need to be incurred at every iteration of an algo-
rithm (e.g. recursive median filtering).
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