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Abstract
Background: The dynamic growing and shortening behaviors of microtubules are central to the
fundamental roles played by microtubules in essentially all eukaryotic cells. Traditionally,
microtubule behavior is quantified by manually tracking individual microtubules in time-lapse images
under various experimental conditions. Manual analysis is laborious, approximate, and often offers
limited analytical capability in extracting potentially valuable information from the data.

Results: In this work, we present computer vision and machine-learning based methods for
extracting novel dynamics information from time-lapse images. Using actual microtubule data, we
estimate statistical models of microtubule behavior that are highly effective in identifying common
and distinct characteristics of microtubule dynamic behavior.

Conclusion: Computational methods provide powerful analytical capabilities in addition to
traditional analysis methods for studying microtubule dynamic behavior. Novel capabilities, such as
building and querying microtubule image databases, are introduced to quantify and analyze
microtubule dynamic behavior.

Background
Microtubules (MTs) are filamentous cytoskeletal struc-
tures composed of tubulin protein subunits. These subu-
nits can associate with, or dissociate from, existing tubulin
polymers rapidly, making MTs highly dynamic. Through
these dynamic behaviors, MTs are critically involved in
many essential cellular functions. MT dynamics are finely
regulated in the cell, [1]. It has been hypothesized that

inadequate regulation of neuronal MT dynamics may
underlie neuronal cell death in Alzheimer's and related
dementias, [2]. Additionally, drug induced modulation of
MT dynamics underlies the effectiveness of various anti-
cancer drugs, such as Taxol, [3]. For these and a host of
basic biology issues, the regulation of MT dynamics is a
very active area of research in modern cell biology.
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A key tool of MT dynamics research is to track the growing
and shortening behaviors of individual MT tips from
time-lapse images (Fig. 1), and quantitatively describe MT
behavior under different experimental conditions. Tradi-
tional MT dynamics parameters consist of statistics
derived from the growth and shortening events between
consecutive frames. In general, tracking is a largely man-
ual and laborious task, [4]. Furthermore, it is approximate
(Fig. 2), variable between users and labs, and potentially
biased for more dynamic MTs, [5]. The resulting quantifi-
cation and analysis capabilities are limited with manual
feasibility. For example, while MT deformations may con-
tain valuable information in studying neuronal growth-
cone path finding, it is impractical to manually collect rel-
evant data, e.g. curvature or orientation, from many MTs.
Additionally, due to the laborious nature of manual data
collection, a limited sample for each experimental condi-
tion must represent all MTs collected in that condition.
While different subsets of MTs undertake distinct tasks in
the cell, and therefore can exhibit distinct dynamic char-
acteristics, generally there are limited means of observing
such dynamics in isolation through manual methods.
Analysis of dynamic behavior is further limited by pair-
wise comparisons of behavioral features between control
and treated conditions. Therefore, computational meth-
ods could make an immediate contribution to MT
dynamics research.

In this work, we propose a powerful approach for analyz-
ing MT dynamic behavior. Briefly, we use an automated
tracking method for measuring MT dynamics, which are
then modeled as MT behavior patterns by Hidden Markov
Models. The proposed methods go beyond the traditional
analysis capabilities and offer new insights in investigat-
ing MT dynamic behavior.

Microtubule structure and function
The cytoskeleton of a eukaryotic cell consists of a network
of fibers. MTs are one of the three principal types of
cytoskeletal fibers. They are hollow cylindrical structures,
25 nm in diameter and up to several μm in length, consist-
ing of non-covalently bound tubulin protein subunits.
MTs are constantly assembled and disassembled, making
the cytoskeleton a dynamic system. MTs are critically
involved in a number of essential cellular functions, such
as chromosome segregation at mitosis and intracellular
cargo transport. Additional background information on
MT structure and function can be found in [1].

The growing and shortening dynamics of MTs are finely
regulated, for example, by the action of MT-associated pro-
teins (MAP) and MT-targeted drugs (MTD). A large body of
evidence, reviewed by Feinstein and Wilson [2], suggest
that cell viability requires that MT dynamics be properly
regulated within a narrow range. Common conjecture is

that certain diseases such as Alzheimers and cancer are at
least correlated with the regulatory abnormalities in MT
dynamics, [6-8]. Consequently, gaining a detailed mecha-
nistic understanding of the regulatory activities of MAPs,
[5,6,9], and MTDs, [3,10], is a major focus of current
research. A major challenge is assessing the activities of
the large number of MAPs and their many isoforms, as
well as the large number of MTDs and their many deriva-
tives. For instance, the MAP tau consists of 441 amino
acids, more than 25 of which can be phosphorylated in
various combinatorial patterns. Whereas phosphorylation
normally serves to regulate tau activity, excessive and
abnormal phosphorylation correlates with cell death and
dementia. Thus, to fully understand normal and patho-
logical tau action, the regulatory effects of the many differ-
ent combinational phosphorylation patterns of tau must
be understood.

Current analysis method
MTs are polar structures, possessing biochemically dis-
tinct minus and plus ends. Conventionally, the minus end of
a MT is assumed to be fixed at the MT organizing center
near the nucleus, and the other end -the plus end or the tip-
is the dynamic end that is observed in most MT dynamics
studies. Typically, in live cell studies, minus ends of the
MTs are not visible because of the high density of MTs
converging on the organizing center. Thus, in calculating
the MT length, a point on the MT body is selected as a ref-
erence point, origin, after an initial observation of all
frames in the time-lapse images, (Fig. 2).

Traditionally, time-lapse images of MT populations are
collected following treatment with MTDs or MAPs.
Dynamics parameters are then manually calculated from
image sequences as follows. The positions of MT plus
ends are manually tracked individually across all frames,
(Fig. 1). MT lengths are approximated as the (Euclidean)
distance between tracked tip positions and the origin, pro-
ducing MT life histories or tracks, (Fig. 2). The change in MT
length is computed between consecutive frames, and
growth and shortening statistics are tabulated. Length
changes below a threshold are marked as attenuation or
pause, signifying undetectable change. Other biologically
significant events are the conversion of a MT from a grow-
ing state to rapid disassembly, designated as a catastrophe,
and a subsequent potential recovery from shortening to
attenuation or growth, called rescue. To estimate the
effects of a regulatory agent upon MT dynamics, these sta-
tistics are aggregated over a number of MTs from the same
experimental condition. Resulting statistics of each condi-
tion are compared with the control behavior to quantify
the effects of the examined agent on dynamics parameters.

In this fashion, regulatory effects of each individual agent
are studied through a laborious set of tasks. Quantifying
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sufficient image data to achieve statistical significance and
limited comparative capabilities in the presence of innu-
merous possible agents pose an enormous challenge to
researchers. Example studies are [3,5,9-12].

Statistics obtained from the growth and shortening events
treat these events independently, rather than as being part
of a behavior pattern. For instance, a certain growth meas-
urement is counted as the same event regardless of where
it occurs in relation to preceding or subsequent events.

Furthermore, studying event correlations between neigh-
boring MTs are generally infeasible, despite potential bio-
logical significance.

There are no established non-manual methods for exam-
ining the similarities and differences in particular
dynamic behaviors imposed by various agents. Further-
more, studying combined effects of multiple regulatory
agents is difficult, due to the limitations imposed by the
pairwise comparisons between experimental conditions.

Consecutive time-lapse images of MTs taken at 4 secFigure 1
Consecutive time-lapse images of MTs taken at 4 sec. intervals. Examples of growing (G) and shortening (S) MTs are marked. 
Tip locations of these MTs are manually tracked over time by marking on consecutive frames to calculate the growth and 
shortening statistics.

S

G

In each frame, length of a MT is estimated by the Euclidean distance between a fixed point on the MT, called the origin, and the MT tip, (a)Figure 2
In each frame, length of a MT is estimated by the Euclidean distance between a fixed point on the MT, called the origin, and the 
MT tip, (a). Shortening length between two consecutive frames is calculated as the difference of respective lengths. This esti-
mate may not reflect the actual shortening as shown in (b).
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For example, consider a hypothetical MTD AB, derived
from MTDs A and B. In order to understand the contribu-
tions of A and B, multiple individual experiments must be
conducted. Therefore, quantifying behavioral similarities
across experimental conditions may provide essential
guidance in constructing hypotheses.

In this work, we propose an automated tracking and anal-
ysis method to address the limitations mentioned above.
The tracking component provides behavioral features for
subsequent analysis. We define the MT dynamic behavior as
a sequence of changes in MT length over equal time inter-
vals. Experimental conditions may exhibit a number of
behavioral patterns, which are estimated in parametric
form by a mixture of Hidden Markov Models. By using a
model-based clustering technique, we propose to analyze
the constituent parts of MT behavior in each experimental
condition. Thus, each experimental condition can be
described as a mixture of behaviors exhibited by different
MT populations. Through estimated average behavior pat-
terns, we introduce a probabilistic behavioral distance
measure between experimental conditions. Furthermore,
parameters of individual models may present significant
information about the properties of corresponding behav-
ioral patterns. We describe how model-based analysis can
be effective in addressing the above limitations (see Dis-
cussion).

Results
We present statistical models of MT behavior that are esti-
mated using automatically tracked MT dynamics data. As
a comparison, we provide models of manually collected
MT tracks. We describe the results of automated tracking
using visual samples and associated errors.

Quantifying microtubule dynamics by automated tracking
For quantifying MT growth and shortening, we used the
tracking method proposed in [13]. In the spatiotemporal
graph matching (see Methods), up to three missing frames
between tips of the same MT track were allowed. The com-
putation of the geodesics, the distances for the weights on
the graph, and the selection of a fixed point on the MT
body were carried out using the Fast Marching algorithm,
[14]. Visual tracking results are shown in (Fig. 3, 4, 5, 6,
7).

Quantitative results of MT tracking were given in [13].
Evaluations against manually tracked data shows that the
mean and the standard deviation of tracking error are 2.85
and 4.36 pixels, respectively. This error level is acceptable
for biological studies. Recall that the MT width is 25 nm
(see Background), which appears as curves that are 3 pix-
els in width. Thus, a growth or shortening event that is less
than 3 pixels would correspond to an event that is too

small to quantify reliably, and is considered as attenua-
tion.

We note that the tracking performance is sensitive to the
accuracy of initial tip detection step. Furthermore, the pro-
posed approach requires multiple tips to be detected for
reliable extraction of MT tracks by design. In other words,
the tracking performance may be adversely affected in
tracking MTs individually, which may limit the ability to
track a particular MT in a cell. Finally, intersecting MTs
may steal the body trace, as the geodesic distance will favor
higher intensity levels, (Fig. 3d – 3f). This issue could be
addressed with further constraints on the MT orientation
and curvature. However, in this work, we limit the behav-
ioral features to the observed change of length in the MT
plus end, which only requires consistent estimation of the
MT body.

While tracking performance may be improved as a conse-
quence of higher image quality and suitable algorithms
targeting frequent intersections, deformations, and inten-
sity variations. In its current state, automated tracking can
track and quantify 10 times more MT tracks per image
sequence than manual methods. With this increase in
analyzable data volume, we are able to estimate behavior
models for different experimental conditions. Estimated
statistical models of MT dynamic behaviors are presented
in the next section.

Statistical models of microtubule behavior
In this work, we used MT time-lapse live cell images from
[10]. The authors of [10] investigate the hypothesis that
resistance to Taxol may involve altered sensitivity to dif-
ferent tubulin isotypes. Chinese hamster ovary (CHO)
cells were microinjected with rhodamine-labeled tubulin.
A total of 111 sequences were acquired using fluorescence
microscopy with a 100× objective lens (1000× magnifica-
tion). 25 frames per sequence were captured at 4 second
intervals, from five different conditions.

Growth and shortening rates were computed as the differ-
ences of a MT lengths between consecutive frames, meas-
ured in pixels. Thus, each track consists of an observation
sequence composed of 25 points in time. Resulting obser-
vation sequences were in the range [-13.03, 11.22] pixels,
where (-) and (+) denoting shortening and growth rates,
respectively.

The study in [10] analyzes the potential for Taxol (a cancer
therapeutic) resistance in cells expressing different tubulin
isoforms. Five experimental conditions were recorded,
Table 1. Results in [10] show that two groups of EC exhibit
different dynamics: {EC1, EC2, EC4} vs. {EC3, EC5}, where
the MTs in the first group are more dynamic than the ones
in the second group. It is also reported that EC4 is more
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Example tracking resultsFigure 3
Example tracking results. Original frames are shown in (a – c). Computed MT bodies in corresponding frames are superim-
posed in (d – f). While the MT body trace was swayed by an intersecting MT, consistent estimation of the body trace is suffi-
cient for quantifying the growth or shortening at the MT tip.

Example tracking resultsFigure 4
Example tracking results. Original frames are shown in (a – c). Computed MT bodies in corresponding frames are superim-
posed in (d – f).
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dynamic than EC5. In this work, we evaluated our mode-
ling approach using both automatically (3068 tracks) and
manually (210 tracks) tracked MTs, Table 1.

The first experiment was designed to confirm biological
results. A classification score between EC4 and EC5,
denoted by EX:A, and between condition groups {EC3,
EC5} and {EC1, EC2, EC4}, denoted by EX:B, were com-
puted with a 3-way cross-validation, Table 2. Well defined
separations between the two groups and between Taxol-
treated and control tracks agree with established biologi-
cal findings. A third test, denoted by EX:C, was aimed to
separate EC3 from EC5. Biological results indicate that
these experimental conditions exhibit highly similar
dynamics. A maximum separation of much less than EX:A
and EX:B verify this finding.

The same set of experiments were repeated with manually
tracked MT data. Separation results are shown in Table 2.
Similar classification rates with the automatically tracked
experiments confirm the automated tracking as well as the
applicability of model based analysis.

Our HMM implementation was derived from [15]. Exper-
imentation with both left-right and fully connected
HMMs revealed that fully connected models were better
suited for the modeling task, in line with biological input.
Growth and shortening rates were assumed to be drawn
from Gaussian emissions. It should be noted that the
number of larger growth and shortening events decrease

exponentially as the length of the event increases. There-
fore, using exponential emission distributions may be
appropriate. However, detection of events measuring less
than 3 pixels may be unreliable for both manual and
automated tracking (see Current analysis method). Since
good initialization values are essential with continuous
emission distributions, we derived statistics from observa-
tion vectors for initializing emissions. Transition and state
priors were initialized randomly, and the number of clus-
ters was determined experimentally, Table 3.

Ultimately, statistics collected by the model parameters
are more significant in biological studies than the classifi-
cation scores. To that end, we examine the models of each
EC. Table 4 shows emission distributions of selected com-
ponent models used in EX:A. The models were estimated
by using automatically tracked MTs. Table 5 shows the
corresponding models estimated with manual tracks. The
first rows in each model correspond to the mean length
change captured by that model state (qi), where negatives
indicate shortening. Nearly all states of λ4 show stable dis-
tributions, while states in λ5 show significantly more
dynamic behavior. Both models have states exhibiting sta-
ble growth and shortening, indicating that the main dis-
criminating factor between the two behavior patterns are
the large growth and shortening events occurring occa-
sionally. Naturally, the average growth and shortening
rates captured in model states are direct results of the
observations, and they confirm that Taxol-treated MTs

Example tracking resultsFigure 5
Example tracking results. Original frames are shown in (a – c). Computed MT bodies in corresponding frames are superim-
posed in (d – f). This example displays the small variations on the estimated origin. As a consequence of the minus end estima-
tion procedure, this variation is the main component of the errors in length computation.
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show suppressed dynamics with βI-tubulin than non-
treated MTs.

Discussion
Estimated models can provide more descriptive informa-
tion about the behavior patterns than what is available
through manual methods: (i) typical growth and shorten-
ing states of the modified behavior, and (ii) the transition
probabilities between these states. For example, as a direct
comparison with manual methods, besides the traditional

catastrophe and rescue frequencies, transitions from small
to larger events of the same type can be quantified. In
essence, characteristics of behavior patterns are parametri-
cally encoded in models, which can then be used in gen-
erating these behaviors. We describe further model-based
analysis capabilities in the next section.

Novel analytical capabilities
The proposed approach provides a number of novel ana-
lytical capabilities (see Background). The most important

Example tracking resultsFigure 6
Example tracking results. Original frames are shown in (a – c). Computed MT bodies in corresponding frames are superim-
posed in (d – f).
Page 7 of 16
(page number not for citation purposes)



BMC Cell Biology 2007, 8(Suppl 1):S4 http://www.biomedcentral.com/1471-2121/8/S1/S4
aspect of this approach is using entire MT life histories as
opposed to parsing the events into predefined categories.
Therefore, events are evaluated for their contribution in
different behavior patterns. With the introduction of this
method, it becomes possible to compare effects of regula-
tory agents at different levels: (i) the constituent parts of
behavioral characteristics through examining representa-
tive model parameters, and (ii) by quantifying the overall
behavioral dissimilarity. Distance measures between
behavior patterns w, and between experimental condi-

Table 1: Experimental conditions and number of tracks 
collected, automatically (AT) and manually (MT).

Experimental condition AT MT

EC1 βIII-tubulin expressed, no Taxol 897 58
EC2 βIII-tubulin expressed, plus Taxol 614 33
EC3 βIII-tubulin not expressed, plus Taxol 414 17
EC4 βI-tubulin expressed, no Taxol 370 30
EC5 βI-tubulin expressed, plus Taxol 773 72

Example tracking resultsFigure 7
Example tracking results. Original frames are shown in (a – c). Computed MT bodies in corresponding frames are superim-
posed in (d – f).
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tions EC, can be defined as model distances. One possible
measure between models λw1 and λw2, for a set of observa-
tions Ow1 and Ow2 can be defined as

where L(w1, w2) is given by

By quantifying behavioral comparisons between regula-
tory agents, studying combined effects of multiple regula-
tory agents may be guided with enhanced predictions. We
envision a repository of MT dynamics data that can be
probabilistically queried for behavioral similarities for a
new regulatory agent, an isotype, or a combination. This
can be done by evaluating p(O|EC) for an experimental
condition EC, or evaluating p(O|w) for behavioral pattern
w. Assuming that the tracking and modeling tasks were
undertaken, a MT image database would contain a collec-
tion of individual MT tracks and model parameters repre-
senting w, in addition to original image sequences. Model
based content retrieval provides additional advantages in
query design. Hypothesized behaviors can be created and
queried by manually selecting model parameters. Alterna-
tively, query models can be estimated from a subset of MT
tracks in the database.

To study spatial relationships between MTs behaviorally,
tracks can be grouped and visualized based on their
behavior characteristics. For example, (Fig. 8) shows
frames from EC5, with overlaid tracks. All tracks were eval-
uated for their similarity to conditions EC4 and EC5. In
(Fig. 8), values of p(track|EC5) were quantized into four
categories, indicated by four different shades of red chan-
nel, and were superimposed on MTs for illustration pur-
poses. Darker shades indicate lower probability, e.g.

behavioral association between the condition and the
track.

This analysis provides the researcher with visual cues
about regional dynamics within a cell. This may be espe-
cially important in studies of polarized cell types, such as
neurons, where specific regional regulation of dynamics is
critical to processes such as outgrowth and transport.
Behavioral comparisons in adjacent populations may pro-
vide insight to the inner workings of flux between the sol-
uble and polymeric tubulin fractions within the
cytoplasm. The ratio between these two functionally dis-
tinct, but co-dependent phases may indicate cell-autono-
mous or drug-influenced regulation.

Conclusion
MT dynamics research seeks to understand the complex
mechanisms that underlie cytoskeletal responses to
changes in environmental conditions. A clear understand-
ing of the regulation of MT dynamic behavior may eluci-
date causal factors in various diseases and may reveal new
therapeutic targets and strategies. In this work, we intro-
duce novel data collection and analysis capabilities based
on computer vision and machine learning tools. With the
proposed methods, researchers can study MT dynamics
with improved spatial and temporal quantification.

The most notable contribution of the proposed method is
the novel analysis capabilities that are beyond the current
state-of-the-art. Other contributions are the improve-
ments over the manual data collection methods, such as
higher accuracy (length along the MT vs Euclidean esti-
mate), increased number of analyzable MT tracks, and
objective consideration of all MT tracks at a fraction of the
normally required time. Our preliminary results support
manually established findings, and show that automated
analysis of spatial and temporal patterns offers previously
unattainable insights. Most notably, the standardization
of data collection and analysis facilitates a comparative
platform for future biological research.

D w w L w w L w w( , ) [ ( , ) ( , )]1 2 1 2 2 1
1
2

= + (1)

L w w
T

P Pw w w w( , ) [log ( | ) log ( | )].1 2
1

1 2 1 1
= −O Oλ λ

(2)

Table 3: Change in correct classification rates vs. the number of models from EX:B. Separation peaks at W = 3.

W 1 2 3 4 5

Correct (%) 62.11 76.28 94.27 72.33 57.44

Table 2: Correct classification rates for EX:A, B, C.

EX:A EX:B EX:C

Correct AT (%) 95.91 94.27 62.67
Correct MT (%) 92.16 86.96 66.67

First row shows results from automatically tracked MTs, second row shows results from manually tracked MTs.
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As the volume and number of dynamics datasets has
increased in recent years, similarities between the behav-
ioral influence of MAPs and MTDs upon dynamics have
emerged, leading to speculation of similar mechanisms.
Dynamics models may facilitate the union of previously
isolated MAP and MTD datasets, furthering our under-
standing of regulatory mechanisms of MTs.

Despite the difficulties inherent in fluorescence imaging,
the proposed approach confirms manual findings in both
track computation and in analysis. For example, due to
photobleaching, observation durations were generally
limited to only a few minutes with very low signal-to-
noise ratios in images. With emerging techniques in
microscopy and probes, such as the tip-binding proteins
(EB1), much longer acquisition times will be possible
with superior image quality. Our goal is to track all MTs in
live cell images at longer durations. In this direction, the
tracking method can be improved by reliably identifying
all MTs individually. The nature of live cell MT images
requires that frequent intersections, abrupt intensity vari-
ations on a single MT body, and focusing issues must be
addressed adequately.

Methods
The proposed analysis system evaluates MT dynamic
behavior as a function of entire MT life histories through
estimating statistical models from observations. A
number of MT tracks per experimental condition is neces-
sary for reliable estimates of model parameters. Thus, an
automated tracking procedure was used in data collection.

Automated tracking
To achieve reliable models of MT behavior, numerous
observations (MT tracks) are needed. Automated MT

tracking provides a significant increase in analyzable data
volume. The MT tracking problem has a short history in
the literature, since live cell MT imaging has only been a
mainstream research tool for about a decade. However,
similar problems, such as the tracing of curvilinear struc-
tures in images, were previously addressed on neurons,
blood vessels, roads, and so on. The most notable differ-
ence in MT images is the use of fluorescence, which
presents additional difficulties in image analysis. For
example, photobleaching, the gradual decay of fluores-
cence, causes illumination variations. Another issue is the
additive nature of fluorescence. Overlapping MTs result in
brighter regions in images, causing frequent over satura-
tion. In (Fig. 9), such saturation is visible in lower regions
of frames. Additionally, sample fluorescence exacerbates
off-focus blur, which produces great challenges in detect-
ing MT tips moving in and out of focus.

Previous work on automated MT detection and tracking
include [16-18]. In [13,19], we described our tracking
approach for live cell images and introduced the idea of
model based analysis. In [16], the authors extract MT plus
ends using a MT body and a tip model in a multi-scale
operation. In [17] and [18], MTs are traced in segments
from initially selected points and subsequently tracked. In
[17], MTs are searched in a constrained space for tracking
in subsequent frames.

In this work, we used the tracking method from [13]. Con-
ceptually, the proposed approach consists of three com-
ponents, (Fig. 10). First, MT tip candidates are extracted in
every frame of the image sequence. Then, tip correspond-
ences between frames are established into MT tip tracks.
Finally, the MT bodies are traced from the tips to extract
dynamics information.

Table 4: Example emission distributions of λ1 from EC4, and λ2 from EC5.

AT q1 q2 q3 q4

λ1 μ 4.03 -2.42 0.48 0.01
σ 2.17 2.59 0.91 8.08

λ2 μ 0.58 0.32 0.56 0.22
σ 0.61 3.32 0.65 8.32

Models were trained using automatically extracted tracks.

Table 5: Example emission distributions of λ1 from EC4, and λ2 from EC5.

MT q1 q2 q3 q4

λ1 μ 3.29 0.74 -2.38 0.01
σ 4.20 0.02 2.52 0.01

λ2 μ -0.35 -1.62 1.89 3.55
σ 1.31 8.01 1.59 12.17

Models were trained using manually extracted tracks.
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An automated MT tracking method should address the
following: (i) highly variable tubule shapes, (ii) accurate
estimation of the MT length considering the nonlinear
shape, (iii) frequent occlusions and intersections from
surrounding MTs, and (iv) low signal-to-noise ratios with
spatial and temporal variations in illumination.

To address these issues, we consider MTs as flexible open
curves in the image plane, with a fixed minus end near the
nucleus and a dynamic plus end. Formally, a single MT is
modeled by the open curve C(s), where s ∈ [0, 1] is the
curve parameter. The goal of the MT tracking task is to esti-

Tracked MTs superimposed on selected cells from EC5Figure 8
Tracked MTs superimposed on selected cells from EC5. Tracks were evaluated for their behavioral association to models rep-
resenting EC5 by calculating p(track|EC5). Resulting probabilities were quantized to four categories to aid visibility. Darker tracks 
exhibit lower association with EC5, while brighter tracks are indicative of typical behaviors captured by models.

Example tip detection results in consecutive MT framesFigure 9
Example tip detection results in consecutive MT frames. Tip detection algorithm is sensitive to the proximity of the neighbor-
ing MTs. For example, tips that are close to MT intersections are eliminated due to uncertainty.
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mate the MT length by locating the tip and tracing the
deformation of the MT body, in every frame.

Estimating microtubule tip positions
To address noise and illumination variations, we process
the MT images with a line filter. Let I denote the intensity
function in a frame, then the filter output is given by

where the derivative of the Gaussian is taken along orien-
tations θ at position (x, y), and σ is chosen as the average
MT width. The maximum filter response, If(x, y), is then
binarized to generate a mask showing MT polymer mass.
The binary mask is used for determining tip candidates in
each frame. Example tip detection results from consecu-
tive frames are shown in (Fig. 9).

Once the tip candidates are located in each frame, corre-
spondences are established between frames by using a
multi-frame graph matching algorithm. The reasoning
behind formulating the correspondence as a graph opti-
mization problem is that by matching multiple tips at
once, occasional spurious tips are removed. Furthermore,
the graph matching algorithm provides the flexibility of
skipping frames, which handles missing tips between
frames.

Extracting microtubule tip tracks

Consider a MT time-lapse image sequence with T frames.
Let Ni denote the number of tip candidates detected in

frame i for 1 ≤ i ≤ T. Then, detected tips over the entire

sequence can be individually denoted by  where h

denotes the tip number in frame i, within the range 1 ≤ h

≤ Ni. We construct a graph G = (V, E) whose vertices V are

the detected tip positions in frames 1..T, and the edges E
represent the similarity of tip positions between frames.
Thus, we represent tracks of MT tips with paths over G,
(Fig. 11). Edges between vertices in non-consecutive
frames are allowed, representing tracks with occasional
missing tips.

To compute the similarity between tip positions in differ-
ent frames, edge weights on G, we use the distance
between tip positions constrained on a MT body. Note
that the Euclidean distance cannot be used since different
tips tend to move within close proximity of each other.

Consider two tips  and  in two different frames fi and

fj. The main idea is to check if  and  share a MT body

between fi and fj. If  and  do not belong to the same

MT, then their similarity is insignificant. If  and 

belong to the same MT, then both growing and shortening
cases should be considered between fi and fj. In the case of

a growing MT, we project the position of  on fi to the

same position on fj and compute the distance, dg( , ).

We compute the shortening case, ds( , ), in the same

way. Then, the weight on G between vertices  and  is

computed as

Once G is constructed, we compute a maximum weight
matching of G where paths correspond to MT tracks. In
graph theory, a vertex disjoint path cover C is a covering of
G where each vertex of G is in one and only one path of C.
The weight of a path cover is defined as the sum of weights
on its edges. Using the notion of path cover, the problem
of finding the best MT tracks corresponds to finding the
maximum weight path cover of G with the weights defined
by the similarity in (4). Formally, a maximum weight path
cover C(G) is a path cover which satisfies

where  and u, v are two vertices

in G for which the similarity is computed as in Eq.(4).
Note that between two frames the best tracks can be com-
puted as the maximum match of a bipartite graph. How-
ever, for multiple frames, the problem becomes NP-hard.
Here, we adopt the approximation proposed in [20].

The described method is sufficient to track MT tips
between different frames. However, without tracing the
MT body, the best estimates of MT growth and shortening
would be limited to Euclidean approximations between
tip positions, (see Current analysis method). Since in live
cell images, the MT body is typically non-linear, this
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θ

σ θ (3)

ti
h

ti
h t j

r

ti
h t j

r

ti
h t j

r

ti
h t j

r

ti
h

ti
h t j

r

ti
h t j

r

ti
h t j

r

Sim t t ei
h

j
r d dg s( , ) .

min( , )= − (4)

C G W C
C

i
i

( ) argmax ( )= (5)

W Ci Sim euve Cuv i
( ) ( )= ∈∑

Conceptual overview of MT tracking procedureFigure 10
Conceptual overview of MT tracking procedure.
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approximation is a rough one in practice. Instead, we
determine the MT body length in all frames.

Estimating microtubule body
In essence, we compute the MT body length along the
body in each frame and determine the growth and short-
ening as consecutive length differences. Given the tip
positions in each frame, we estimate the deformable curve
constituting the MT body between these tips and a fixed
point along the MT body. Note that the fixed point does
not have to lie on the body of a specific MT for the pur-
poses of computing the growth and shortening. In cases
where the fixed point lies on another MT rather than the
MT being measured, the resulting change in length is still
a better estimate than the Euclidean case, so long as the
fixed point taken consistently across frames. Details of fix-
ing this point can be found in [13]. Due to the constant
deformations, the fixed point location may exhibit small
variations, (Fig. 5d – 5f). This is the major contributor of
errors in length estimation between frames. Finally, based
on the estimated plus and minus ends of the MT, the MT
body is extracted using active contours with ridge features.

Model based analysis
A number of studies examined physical models for MT
structure and dynamics. We refer the interested reader to
[21-23], and the references therein, for a review of previ-
ous models of MT dynamic instability. For example, in
[23], the authors use a simulation model to investigate the
fluctuations in tubulin concentration in relation to MT
dynamics. In contrast to previous dynamics models, we
propose using machine learning methods for modeling

various MT behavior patterns occurring in different experi-
mental conditions.

MT behavior can be considered as a random process that
evolves in time. For example, (Fig. 12) shows different
behaviors of hypothetical MTs from different MT popula-
tions. MTs in the middle row exhibit a growth tendency,
while MTs in the top row show several length excursions
within the same amount of time. The bottom chart shows
two different shortening MT groups for visual comparison
of behavior patterns.

Automated tracking is sufficient to quantify traditional
dynamics parameters. We propose an analysis approach
targeting behavioral information beyond what is pro-
vided by the traditional parameters. We begin with
including contextual information in time. In other words,
as opposed to parsing the growth and shortening events
out of MT tracks (life histories), we keep the MT tracks
intact. Therefore, each MT track is treated as an observa-
tion from some behavior pattern. For example, the tracks in
(Fig. 12, top row and middle row) are observation
instances from different behavior patterns. Thus, if g
denotes a small, and G denotes a large growth events, then
the observed tracks, ggggGGGG and ggGGggGG should be
treated as different behaviors even if the average growth
rates may be equal. This definition of a MT behavior pattern
leads to new analysis capabilities. Each behavior pattern
can be described by a model. Subsequently, estimated
models are used in analyzing MT dynamic behavior; for
instance, in evaluating dynamic similarities between MT
populations.

Example diagram of constructed graph, G = (V, E), across frames, fi, is shown in (a)Figure 11
Example diagram of constructed graph, G = (V, E), across frames, fi, is shown in (a). A sample solution is shown in (b), where 
each path corresponds to a MT track.
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In modeling the MT dynamic behavior, biological insights
provide essential guidance. Similar behavior patterns are
known to be shared between different experimental con-
ditions, while MT populations within a cell may exhibit
dissimilar patterns. Thus, modeling design should handle
expected variations of behavior within each experimental

condition, and similarities between different experimen-
tal conditions.

Formally, we denote each experimental condition by EC,
consisting of groups of behavior patterns, w. All experi-
mental conditions have a known label, while patterns

Example life history plots from hypothetical MTs showing different behaviorsFigure 12
Example life history plots from hypothetical MTs showing different behaviors. Life histories were inspired by [33]. Individual 
MTs in the top undergo several length excursions, while the MTs in the middle row exhibit an overall growth tendency. The 
bottom chart shows individual MTs, distinguished by filled and open circles, which are superimposed on the time axis for visual 
comparison. While both groups of MTs display shortening, the group indicated by the open circles shorten gradually as com-
pared with the rest of the MTs.
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making up a condition are unknown. The problem is to
estimate a model λ for each pattern w, such that differ-
ences between ECi and ECj, i ≠ j, are emphasized, while
each pattern may occur in different experimental condi-
tions, w ∈ ECi and w ∈ ECj. Note that our formulation calls
for a discriminative approach between EC, while descrip-
tive models of w is the goal across different EC's.

A well known class of models used in representing activity
is the Hidden Markov Models (HMMs). In the past, they
have been used in numerous applications, most notably
in speech recognition, [24], and in genomic sequence
analysis, [25-28]. Particularly in activity context, HMMs
were used in activity recognition [29], abnormal activity
detection, gesture recognition, and American Sign Lan-
guage recognition. In the next section we review the essen-
tials of HMMs, while referring the reader to [24] for
further details.

Hidden Markov models
HMMs are probabilistic generative models estimating the
statistics of a process from observation sequences gener-
ated by that process. The modeled process is assumed to
be not directly observable, thus hidden states capture sta-
tistics of the process, subject to stochastic constraints. In
practice, hidden states generally correspond to certain
physical characteristics of the process. Detailed informa-
tion on modeling with HMMs can be found in [24,28].
Concisely, HMMs, denoted by λ, are described by param-
eters λ = (π, A, B), where π is the state priors, A is the tran-
sition, and B is the emission probabilities. Given an
observation sequence O = (o1, o2,..., oT), where t = 1..T
denotes time, and a model λ = (π, A, B), the quantity
P(O|λ) can be computed efficiently. Given a set of obser-
vation sequences, estimating the parameters of λ is gener-
ally performed using maximum likelihood methods,
while discriminative techniques were suggested in classifi-
cation tasks, [30,31].

Modeling microtubule dynamics by HMMs
From the biological perspective, classification of tracks to
respective EC is not the end goal for dynamics analysis
since labels of EC are known a priori. However, estimated
behavior models, λ, provide novel analytical capabilities.
Furthermore, model parameters may reveal further
insights into MT dynamic behavior. Our formulation of
the problem aims to extract behavior patterns through
estimating λ, while discriminating between different EC.
In doing so, we employ the classification score as our
measure of model reliability. The problem description
motivates us to use a model based clustering approach to
estimate a λ for each w. HMM based clustering methods
are discussed in [32].

After parameter estimation, each EC is represented by a
mixture of λ where dynamics variations within each EC
are modeled by the components of the mixture. In this
sense, each λ models the (pseudo-)center of a w, the com-
ponent behavior patterns contributing to the resulting
behavior in respective EC. The estimation of λ is primarily
a modeling task, while discrimination between w is han-
dled by clustering the observations, MT tracks, into behav-
ior patterns represented by the respective w.

Model estimation
We define the quantity P(O|λ) as the similarity measure
between the observation sequences O and the cluster
center λw of dynamics category w. Expected overall likeli-
hood

is maximized through

• Repartition

- assign o to cluster Cw such that

w = arg maxw' log p(o|λw')

• Reestimate models

- train λw on Cw, w = 1..W

In each iteration of the algorithm, observation o is
assigned to maximally likely cluster Cw, whose center λw is
re-estimated using the new members of Cw. The iterations
are terminated when no significant increase in the overall
likelihood is observed.

Model evaluation
As mentioned, we utilize the classification accuracy
between EC as our measure for overall model reliability.
We compute the probability p(o|EC) by

where Pw is the relative number of cluster members, and
estimate the separation by counting the number of cor-
rectly classified tracks o ∈ O using the decision rule

Note that the decision is conditional on λw, EC, represent-
ing contributions of each member λw of EC.

L P w
o Cw w
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