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Abstract
Background: Neuronal ceroid lipofuscinoses (NCLs) are collectively the most common type of
recessively inherited childhood encephalopathies. The most severe form of NCL, infantile neuronal
ceroid lipofuscinosis (INCL), is caused by mutations in the CLN1 gene, resulting in a deficiency of
the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). The deficiency of PPT1 causes a
specific death of neocortical neurons by a mechanism, which is currently unclear. To understand
the function of PPT1 in more detail, we have further analyzed the basic properties of the protein,
especially focusing on possible differences in non-neuronal and neuronal cells.

Results: Our study shows that the N-glycosylation of N197 and N232, but not N212, is essential
for PPT1's activity and intracellular transport. Deglycosylation of overexpressed PPT1 produced in
neurons and fibroblasts demonstrates differentially modified PPT1 in different cell types.
Furthermore, antibody internalization assays showed differences in PPT1 transport when
compared with a thoroughly characterized lysosomal enzyme aspartylglucosaminidase (AGA), an
important observation potentially influencing therapeutic strategies. PPT1 was also demonstrated
to form oligomers by size-exclusion chromatography and co-immunoprecipitation assays. Finally,
the consequences of disease mutations were analyzed in the perspective of our new results,
suggesting that the mutations increase both the degree of glycosylation of PPT1 and its ability to
form complexes.

Conclusion: Our current study describes novel properties for PPT1. We observe differences in
PPT1 processing and trafficking in neuronal and non-neuronal cells, and describe for the first time
the ability of PPT1 to form complexes. Understanding the basic characteristics of PPT1 is
fundamental in order to clarify the molecular pathogenesis behind neurodegeneration in INCL.
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Background
Neuronal ceroid lipofuscinoses (NCLs) comprise a group
of recessively inherited neurodegenerative disorders of
which the infantile form, INCL, is the most severe [1].
Clinical symptoms include motor and cognitive deteriora-
tion, visual failure, and seizures, leading to death in the
first or second decade of life. Pathological findings
include autofluorescent lysosomal storage material, har-
bouring an ultrastructure of granular osmiophilic deposits
(GRODs) in all tissues of the patients [2]. While most cell
types remain unaffected despite the presence of storage
material, cortical neurons are lost during the disease proc-
ess. However, the mechanism of cell death has remained
elusive.

The defective gene behind the INCL disease, CLN1,
encodes for palmitoyl protein thioesterase 1 (PPT1) [3]. It
consists of 306 amino acids, including a signal sequence
of 26 amino acids and three N-linked glycosylation sites.
The enzyme is transported into lysosomes of non-neuro-
nal cells by the mannose 6-phosphate receptor (M6PR)
mediated pathway [4,5]. In mouse cortical neuron cul-
tures, PPT1 is axonally targeted and colocalizes with pres-
ynaptic markers. Furthermore, immunoelectron
microscopy and cell fractionation studies have shown that
neuronal PPT1 is also found in synaptosomes and synap-
tic vesicles [6-8] suggesting an additional function for
PPT1 outside of lysosomes. In vitro- studies have shown
that PPT1 depalmitoylates S-acylated proteins, but its
native substrates have remained unknown [9]. Palmi-
toylation has been shown to play a critical role particu-
larly in neurons, where active vesicular transport and
intracellular signalling take place (reviewed in [10-12]).

To date, 45 disease-causing mutations have been
described in the CLN1 gene [13]. Although the disease is
classified as an infantile form of NCL, the age of onset var-
ies depending on the mutation: nonsense and frameshift
mutations always induce the classical infantile disease,
whereas some missense mutations also associate with the
adult-onset disease form in addition to infantile and juve-
nile forms [14,15]. As a result of the mutations, the activ-
ity of the PPT1 enzyme is either reduced or abolished, or
the expression level of the protein is diminished [16]. The
neuronal localization of PPT1 also varies depending on
the disease phenotype: mutations contributing to a severe
infantile disease caused the retention of the enzyme in the
ER, whereas the steady state localization of the proteins
carrying a juvenile-onset disease mutation was reportedly
unaffected [17]. However, this observation could not be
repeated in non-neuronal cells, where all the mutant
polypeptides were retained in the ER. In general, the accu-
mulation of mutant protein in the ER is not considered to
affect the phenotype [18], although this has not been
studied in INCL.

Even though some aspects of the glycosylation of PPT1
have been studied previously [16,19], we wanted to fur-
ther analyze the effects of its three N-glycosylation sites on
the activity, and especially the trafficking of PPT1, an
aspect not covered previously. Contrary to earlier studies,
our results show that glycosylation at N197 and N234 is
essential for PPT1's activity. We also show that the same
two glycosylation sites are needed for correct lysosomal
targeting of PPT1. In this study, we also demonstrate that
PPT1 self-oligomerizes in vivo. Interestingly, we show that
PPT1 expressed in neurons is differentially modified when
compared with non-neuronal PPT1. Furthermore, PPT1's
distribution in antibody internalization assay was differ-
ent when compared to a classical lysosomal enzyme AGA,
suggesting that PPT1 behaves differently from the
enzymes using mannose 6-phosphate pathway for their
endocytosis. This study reveals new properties of the neu-
ronal PPT1, possibly explaining the vast differences
observed in the CLN1-pathogenesis in different cell types.

Results
The effects of N-glycosylation on the activity and 
transport of PPT1
PPT1 has three N-glycosylation sites at amino acid posi-
tions 197, 212, and 232, and in each of them at least one
N-acetylglucosamine residue is present in the crystal struc-
ture [19]. Glycosylation results in four forms of overex-
pressed PPT1 which can be detected as a 32 kDa non-
glycosylated form and as 34, 36, and 38 kDa mono-, di-
and triglycosylated forms in COS-1 cells [20]. Mutations
in glycosylation sites of PPT1 have been shown to affect
protein folding and degradation, enzymatic activity, lyso-
somal sorting, and transport [16]. In our study, we muta-
genized the serines to alanines in each PPT1 N-
glycosylation consensus site (N-X-S/T) since substitution
of serine in the motif supposedly causes only minimal dis-
tortion to the polypeptide structure [21]. The muta-
genized PPT1 constructs, S199A, S214A, and S234A as
well as the double-mutant construct S199A + S214A were
transfected into COS-1 and HeLa cells and analyzed for
activity, processing, and intracellular localization. The
activities of the glycosylation mutants were calculated
from cell lysates normalized to transfection efficiency. The
results demonstrated that the polypeptide carrying the
S214A mutant presented relatively high enzyme activity
(31% of normal activity on average), whereas the
polypeptides carrying S199A or S234A substitutions
showed severely reduced activities, on average 1–5% of
normal activity (Figure 1A). The PPT1 polypeptide carry-
ing a double mutation at the glycosylation sites S199A
and S214A, also expressed very low enzyme activity. The
intracellular processing of the glycosylation mutants was
analyzed by metabolic labelling and immunoprecipita-
tion. After a one-hour pulse followed by a 2-hour chase,
the mature wild-type PPT1 was detected as a doublet of
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36/38 kDa both in the cells and the media (Figure 1B).
PPT1 carrying glycosylation site mutations S199A and
S234A was detected as doublets and S214A as a major sin-
gle band, suggesting that both of the remaining glycosyla-
tion sites are effectively used in the case of this mutant.
The S214A polypeptide was also secreted into the culture
media, demonstrating that this protein was able to pass
the quality control system of the ER for secretion. PPT1
carrying the S234A mutation was secreted into the culture
media in low yields, while S199A and S199A + S214A –
mutants were fully non-secretory, suggesting that they
mostly retain in the ER. Thus, the current analysis suggests
that the N-glycosylation at asparagine 212 is not crucial
for PPT1 activity or folding. Earlier studies have shown
that PPT1 with a single mutation at any of the three pos-
sible glycosylation sites is still capable of obtaining a man-
nose-6-phosphate (M6P) tag on its sugar structures and
binding to M6P-receptor [16]. Das and co-workers have
shown that the N232Q mutation in PPT1 has the greatest
effect on M6P-receptor binding. Therefore, we also ana-
lyzed the intracellular localization of the glycosylation
mutated proteins in transfected COS-1 cells by immun-
ofluorescence analysis. As suggested by the enzyme activ-
ity measurements, PPT1 carrying the S214A mutation was
transported to lysosomes whereas the S199A – mutant
was retained in the ER. Mutant S234A showed partial
localization to lysosomes, although a major proportion
was retained in the ER (Figure 2). The data indicate that
the N-glycosylation of asparagines 197 and 232 is more
important for PPT1 structure, transport, and function
than the N-glycosylation of N212.

Glycosylation and transport of PPT1 in non-neuronal 
versus neuronal cells
Several studies have suggested an extralysosomal localiza-
tion of PPT1 in neuronal cells [6-8,22], implicating neu-
ron specific properties for PPT1. To approach this
question, we overexpressed PPT1 both in mouse fibrob-
lasts and neurons and compared the apparent molecular
weights of non-neuronal and neuronal PPT1. Western
blot analysis showed that in mouse fibroblasts all three
glycosylation forms of PPT1 were present, the diglyco-
sylated form being the most prominent. In neurons, how-
ever, only two glycosylation forms could be detected
(Figure 3A). Another interesting observation was that
PPT1 overexpressed in neuronal cells migrated differently
in a SDS-gel than PPT1 produced in mouse fibroblasts.
Two neuronal bands focused in the spaces in between the
three bands from fibroblasts, rather than at the same level
with them. To investigate the reason for this, we treated
both samples with PNGaseF to remove all the N-glycans.
Repeated Western blot analyses revealed that deglycosyla-
tion results in two PPT1 bands in fibroblasts while only
one band is seen for neurons (Figure 3A). Also the degly-
cosylated polypeptides differed in their size, the neuronal

Activity and processing of wild type and glycosylation site mutated PPT1Figure 1
Activity and processing of wild type and glycosylation 
site mutated PPT1. (A) COS-1 cells were transfected 
with plasmids producing mutated PPT1 enzymes and lysed 48 
h post-transfection. PPT1 enzyme activity of each lysate (5 µg 
total protein) was analyzed by a one-hour reaction in + 
37°C. Transfection efficacies were controlled by immunoflu-
orescence analysis. The data shown represents an average of 
three independent experiments and the standard deviations 
between these experiments are marked as error bars. (B) 
COS-1 cells were transfected and metabolically labelled with 
35S-Cysteine for 1 hour, chased for 2 hours, immunoprecipi-
tated, separated in SDS-PAGE and autoradiographed. Both 
intracellular and secreted forms of PPT are shown.
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band again migrating in between the two bands from
fibroblasts rather than at the same level with one of them.
This result suggests that in addition to N-glycosylation,
PPT1 contains other cell type specific modifications.

We further analyzed the possible disparity in neuronal
transport of PPT1 and utilized an antibody internalization
assay to compare recycling of PPT1 between non-neuro-
nal and neuronal cells. Mouse fibroblasts and primary
neuronal cultures were infected with recombinant adeno-
viruses encoding PPT1 and a control cDNA, aspartyglu-
cosaminidase (AGA). AGA is a well characterized, classic
lysosomal enzyme that has been shown to utilize the
M6PR-mediated lysosomal transport and endocytosis also
in neurons [23]. As expected, both PPT1 and AGA anti-
bodies were internalized in adenovirus-infected mouse
fibroblasts. However, the distribution pattern of the inter-
nalized antibody was different. Both AGA and PPT1 local-
ized in vesicular structures, but while AGA localized to
perinuclear vesicles, PPT1 was scattered throughout the
cell in smaller structures (Figure 3B). AGA showed colo-
calization with the lysosomal marker Lamp-1 (data not
shown), while only a small fraction of PPT1 was localized
to lysosomes (Figure 3C). When the same experiment was
repeated in neurons, again a clear difference between
PPT1 and AGA antibody internalization was observed.

PPT1 staining was similar to that seen in the fibroblasts.
Small vesicles could be found everywhere in the cell,
although the staining was particularly strong in the axons.
AGA staining was again strongest in the cell soma, typical
of its late endosomal/lysosomal localization [23] and
only a few AGA-positive vesicles could be seen in the neu-
ronal projections (Figure 3D). This observation suggests
that the transport of recycled PPT1 from the plasma mem-
brane back inside the cell differs from that of AGA in both
neuronal and non-neuronal cells.

Self-oligomerization of PPT1
Although the crystal structure of the PPT1 molecule is
established, very little is currently known about the bio-
logical interactions and the molecular structural format of
PPT1 in vivo. Therefore, we used Superose 6HR size-exclu-
sion chromatography on cell lysates to determine whether
the intracellular PPT1 resides in a monomeric or a com-
plex form. As PPT1 has been categorized as a lysosomal

Adenovirus-mediated PPT1 in fibroblasts and neuronsFigure 3
Adenovirus-mediated PPT1 in fibroblasts and neu-
rons. (A) Adenovirus-mediated PPT1 was expressed in 
mouse fibroblasts and neurons. Cell lysates (5 µg of total 
protein) were treated with PNGaseF to remove the N-gly-
cans from the polypeptides. Proteins were separated with 
SDS-PAGE and analyzed by immunoblotting. Antibody inter-
nalization assay was performed in adenovirus infected mouse 
fibroblasts (B) and neurons (D) with both AGA and PPT1 
(green). Double staining with the lysosomal marker LAMP-1 
(red) is shown for internalized PPT1 in fibroblasts (C). Co-
localization is shown in yellow.
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enzyme, we used a subcellular lysosome-containing frac-
tion of PC12 cells as the PPT1 source. The undifferenti-
ated PC12 cells were selected because their endogenous
PPT1 levels are high enough for reliable activity measure-
ments. Cell samples were filtrated and fractionated by
size-exclusion chromatography. Enzyme activities of both
PPT1 and AGA were measured from the elution fractions.
AGA participates in glycoprotein breakdown by catalyzing
the cleavage of the N-glycosidic bond between asparagine
and N-acetylglucosamine [24]. Under native conditions,
AGA exists as a dimer (~ 80 kDa) [25]. AGA activity was
eluted in a fraction corresponding with the molecular size
of a native AGA homodimer (Figure 4). Interestingly, the
activity of PPT1 distributed more broadly between the elu-
tion fractions. A considerable amount of the PPT1 enzyme
activity was demonstrated in the fractions representing
apparent MW > 100 kDa. Another PPT1 activity peak was
observed in fractions that most probably represent the
monomeric form (36–38 kDa) of the enzyme (Figure 4).
This result indicates that a significant amount of native
PPT1 resides in a complex rather than in a monomeric
form.

To further investigate the observed in vivo complex forma-
tion of PPT1, we analyzed the possible self-oligomeriza-
tion of PPT1 by using co-immunoprecipitation assays.
COS-1 cells were double transfected with both GFP-PPT1
fusion protein and wild type PPT1 constructs. Transfected
cells were then lysed and co-immunoprecipitated with
anti-GFP-agarose beads. Western blot analysis of the co-
immunoprecipitates, detected by PPT1 antibody, showed
that both the wild type PPT1 and the GFP-PPT1 were

present, indicating that GFP-PPT1 and PPT1 interacted
with each other (Figure 5A). As controls, we used GFP-
CLN3 and GFP-AIRE fusion proteins [26,27]. CLN3 is
another NCL protein behind the juvenile form of the dis-
ease, shown to be localized to endosomes and lysosomes
[28]. AIRE is a nuclear protein participating in T-cell mat-

Oligomerization of PPT1Figure 5
Oligomerization of PPT1. (A) Cells were transfected 
with wild type pCMV5-PPT1 plasmids or/and with plasmids 
producing a GFP-fusion protein as indicated (GFP-PPT1, 
GFP-CLN3 or GFP-AIRE). The lysates were immunoprecipi-
tated with anti-GFP-conjugated agarose beads. Both lysates 
(Transfection control) and immunoprecipitated samples 
(Anti-GFP-IP) were analyzed by immunoblotting using the 
anti-PPT1 antibody. * = Unspecific binding. (B) Biacore assay 
investigating the self-interaction of purified PPT1 (see meth-
ods).
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uration. PPT1 did not co-precipitate with either of these
fusion proteins (Figure 5A).

To distinguish whether the self-interaction of PPT1 mole-
cules was direct or mediated by other factors, we also per-
formed a direct interaction assay for purified PPT1.
Recombinant PPT1 was purified from the stably trans-
fected CHO-cells [8] by the method modified from Bel-
lizzi et al [19]. The purified enzyme was then used to
analyze direct dimerization of PPT1 in a plasmon reso-
nance energy transfer assay using Biacore application.
However, the results of the Biacore analysis showed that
purified PPT1 was not capable of interacting with itself
under these in vitro conditions (Figure 5B) suggesting that
other as of yet unknown factors mediate the subcellular
complex formation of PPT1.

Effects of disease mutations on the properties of PPT1
Mutations in PPT1 have been shown to result in disease
with variable age of onset and progression. Previous stud-
ies have reported some correlation between the disease
mutation phenotype and the localization of PPT1 [17].
Also the effects of known missense mutations on PPT1
activity have previously been explored [16,17,19], but the
G108R mutation resulting in an adult phenotype has not
been examined in an overexpressing system [29]. There-
fore we analyzed the activity of PPT1 carrying G108R and
included two other mutants in the analysis, namely M1I
(late infantile) and R122W, also denoted as PPTFin,
(infantile), the latter as a known inactive control. The
activities of the wild type and mutant enzymes were ana-
lyzed in transiently transfected COS-1 cells and the data
were normalized by immunoblotting and densitometric
scanning for the expression level of PPT1 (Figure 6). The
initiator codon mutation M1I resulted in the enzyme dis-
playing a nearly full activity but reduced expression. In
contrast, the adult onset mutation G108R showed approx-
imately 4% activity compared with that of the wild type
enzyme. As a control, PPTFin was lacking the enzyme activ-
ity completely.

The subcellular localization of mutated PPT1 has been
shown to vary, depending on the cell type and on the type
of mutation [4,5,8,17]. We used immunofluorescence
staining in transiently transfected HeLa cells and recom-
binant SFV-infected mouse primary neurons to further
map previously unknown intracellular localizations of
mutant proteins M1I and G108R. In transfected HeLa
cells, double staining together with the late endosomal/
lysosomal marker Lamp1 showed that the wild type pro-
tein reached the lysosomes, as did the M1I mutant (Figure
7A and 7B). This confirms that the initiator codon muta-
tion M1I (ATG → ATA) results only in a reduced expres-
sion level of PPT1 and does not affect the natural
intracellular transport of the protein from ER to lyso-

somes. PPT1 polypeptides carrying the G108R (adult)
mutation were retained in the ER and showed a colocali-
zation with the ER marker protein PDI (protein disulfide
isomerase) (Figure 7C), similarly to the classical infantile
onset R122W mutation (PPT1Fin) serving as a control. As
in HeLa cells, the distribution of the wild type and M1I
enzymes was uniform also in neurons. They localized in
the projections of the cells, partially colocalizing with the
synaptic vesicle marker SV2 (Figure 7D and 7E). PPT1
with the G108R mutation also displayed some staining in
the neuron projections, but did not colocalize with SV2.
Instead, it showed partial colocalization with the ER-spe-
cific PDI. No overlap with the Golgi marker or the lyso-
somal marker was detected (data not shown). In
conclusion, the G108R mutant causing the adult pheno-
type does not show significant activity in COS-1 cells and
it is not transported similarly to the wild type enzyme in
HeLa cells or mouse primary neurons. Thus the activity or
the localization was not able to explain the variability in
the disease phenotype.

Due to the observed difference in the glycosylation degree
between neuronal and non-neuronal PPT1, it was of inter-
est to compare the glycosylation degree of the mutant and
the wild type proteins in different cell types. We per-
formed an immunoblot analysis from the lysates derived
from both transfected COS-1 cells and SFV-infected neu-
rons. The G108R and PPT1Fin -mutants harbouring an

Enzyme activity of PPT1 with disease mutations in trans-fected COS-1 cellsFigure 6
Enzyme activity of PPT1 with disease mutations in 
transfected COS-1 cells. COS-1 cells were transfected 
with plasmids producing mutated PPT1 enzymes. The cells 
were lysed 48 h post-transfection and the enzyme activity of 
each lysate (5 µg of total protein) was analyzed by a one-
hour reaction in + 37°C. The data was normalized for PPT1 
expression by immunoblotting and densitometric scanning. 
Here the background activity is assumed to be zero. The data 
shown represents an average of three independent experi-
ments and the standard deviations between these experi-
ments are marked as error bars.

Activity of mutant PPT1 enzymes

3.5

87.5

0
10
20
30
40
50
60
70
80
90

100
110

WT Fin M1I G108R

%
 o

f W
T

0

Page 6 of 14
(page number not for citation purposes)



BMC Cell Biology 2007, 8:22 http://www.biomedcentral.com/1471-2121/8/22
amino acid substitution in the middle of the polypeptide
chain, and thus likely to have disturbances in their fold-
ing, presented mostly the tri- and diglycosylated forms of
the protein in COS-1 cells (Figure 8A). Notably, no differ-
ences could be seen in the glycosylation levels between
the mutant proteins causing late or early onset pheno-
types. In the case of the PPT1Fin and G108R -mutated pro-
teins, the amount of the triglycosylated protein was
increased when compared to wild type and M1I-mutated
proteins (40% vs. 30%), indicating that in total, the glyc-
osylation degree of the mutants was higher than that of

the wild type enzyme or the M1I mutated enzyme (Figure
8B). In neurons, this observation was repeated with even
greater differences between the mutants and the wild type
protein (Figure 8A). The enzymes with a higher degree of
N-glycosylation were the most prominent ones among the
mutants, including M1I, unlike in the wild type PPT1,
where a lower degree of glycosylation was evident.

To investigate the possible role of mutations in the ability
of PPT1 to form complexes, four different mutations, each
causing a different phenotype, were selected for GFP-pull
down analyses: R122W (infantile), F85del (late infantile),
L219Q (juvenile), and G108R (adult) (Table 1). To create
conditions that mimic a homomeric interaction, we
mutagenized both the GFP-PPT1 and PPT1 constructs.

Glycosylation degree of mutant PPT1 moleculesFigure 8
Glycosylation degree of mutant PPT1 molecules. (A) 
10 µg of total protein from the cell lysates of transfected 
COS-1 cells and SFV infected neurons was analyzed by 
immunoblotting and densitometric scanning. The numbers 3, 
2 and 1 indicate the three differently glycosylated forms of 
PPT1. (B) The graph represents relative amounts of tri-, di-, 
and monoglycosylated forms of PPT1 in transfected COS-1 
cells. The data shown represents an average of three inde-
pendent experiments and the error bars show the standard 
deviations between these experiments.
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Intracellular localization of wild type and mutant PPT1 in non-neuronal and neuronal cellsFigure 7
Intracellular localization of wild type and mutant 
PPT1 in non-neuronal and neuronal cells. HeLa cells 
(A-C) transfected with pCMV5-PPT1 plasmids and neurons 
(D-F) infected with PPT1-SFV bearing the indicated muta-
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using the PDI antibody (red). Colocalization is shown in yel-
low. Scale bar = 20 µm.
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After co-immunoprecipitation with GFP-agarose and
Western blot detection with PPT1 antibody, we compared
the extent of dimerization of the mutated polypeptides
with that of the wild type proteins, taking into account the
differences in the expression levels (Figure 9A). The exper-
iment was replicated several times, and although we could
not quantitate the results repeatedly, the analyses demon-
strated that all the mutated PPT1 polypeptides were able
to form homodimeric complexes and that the interaction
intensities between mutant proteins were somewhat
stronger than those observed between wild type proteins
(Figure 9B). In summary, our data suggest that the
mutated proteins utilize their glycosylation sites more
efficiently than the wild type proteins in neurons as well
as in other cell types studied here. They also show higher
degree of oligomerization than the wild type molecules.
However, neither of the described properties can be
directly used to explain the variations in the disease onset
age.

Discussion
This study was launched to clarify the effects of glycosyla-
tion and complex formation on the properties of PPT1.
Previously, the three N-glycosylation sites of PPT1 have
been shown to be utilized in non-neuronal cells and their
effect on PPT1 activity has been studied by mutagenizing
the glycosylation site asparagines to glutamines [19]. Sin-
gle N → Q mutations were reported to cause only minor
effects on PPT1 activity, and double mutations resulted in
a minimum of 20% activity. In this study, we utilized a
different strategy for generating the glycosylation site
mutations. Rather than changing the specific asparagines
to another amino acid, we altered the glycosylation site
consensus sequence N-X-S/T by mutating serines to
alanines. This was done to spare the polypeptide back-
bone and the side chains from any major distortions
[21,30]. Interestingly, our results differed significantly
from the previous analyses. The activity of all the glyco-
sylation site mutants was greatly reduced, and only the
N212 glycosylation site mutant could retain a considera-
ble enzyme activity. Thus, our data implicates that glyco-

sylation is important for PPT1 activity, and the most
important site for it is N197, followed by N232 and N212.

It has been shown that the glycosylation of asparagine 232
has a fundamental role in the M6P-receptor binding and
thus it was proposed to have an effect on the proper lyso-
somal transport of PPT1 in non-neuronal cells [16]. Our

Oligomerization rate of wild type and mutant PPT1 mole-culesFigure 9
Oligomerization rate of wild type and mutant PPT1 
molecules. (A) COS-1 cells were either single or double 
transfected with pCMV5-hPPT1 or with plasmids having the 
indicated mutations, together with GFP-vector (c) or with 
the corresponding GFP-PPT1 construct having the same 
mutation in the PPT molecule (m). The cells were lysed 48 h 
post-transfection. To verify the transfections, 10 µg of total 
protein from the lysates was analyzed by SDS-PAGE and 
immunoblotting using both anti-GFP antibody (not shown) 
and anti-PPT1 antibody (Transfection). The lysates were then 
subjected to immunoprecipitation using anti-GFP-agarose 
beads. Immunoprecipitates were analyzed by SDS-PAGE and 
immunoblotting using the anti-PPT1 antibody (IP). (B) The 
graph represents the dimerization degree of mutant proteins 
compared to wild type (calculated as a ratio between the 
immunoprecipitated GFP-PPT/PPT and the transfected GFP-
PPT/PPT). An example of a single experiment's quantification 
is shown experiments.
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Table 1: Phenotype variability of the CLN1-patients

Mutation Allele inherited with Phenotype Reference

Y109D (c325T > G) LINCL
M1I (c3G > A) [42]

Y247H (c739T > C) JNCL
F85del (c252-
254delCTT)

Exon skipping

LINCL [17]
(IVS6-1G > T)

G108R (c322G > C) R151X (c451C > T) ANCL [14]
L219Q (c656T > A) R151X (c451C > T) JNCL [52]
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studies on the intracellular transport of glycosylation site
mutants did not confirm these conclusions. We investi-
gated both intracellular and secreted PPT1 by immuno-
precipitation and analyzed the localization of the enzyme
by immunofluorescence. We showed that the same glyco-
sylation mutations that affected the PPT1 enzyme activity
also had the most severe impact on the transport of PPT1.
When the N197 glycosylation site was mutated, PPT1 was
retained in the ER, although the N232 glycosylation site –
mostly involved in the M6P-receptor binding – was unaf-
fected. When the N232 glycosylation site was mutated,
PPT1 localized to the ER – but also partially to lysosomes.
The same mutant was also secreted into the media. Thus,
our data suggest that the role of M6P-receptor-mediated
lysosomal trafficking might not be as crucial for PPT1 as it
has previously been thought.

The relative inefficiency of gene therapy trials to treat
INCL suggests that the trafficking of PPT1 may have novel
properties. M6P-receptor-mediated trafficking has offered
a substantial advance to treat lysosomal storage disorders
since most soluble lysosomal enzymes can diffuse in the
brain tissue. For example, in glucoproteinoses, gene ther-
apy and bone marrow transplantation have been advanta-
geous in animal models and even in human studies,
especially in cases where the M6PR-mediated trafficking
of the lysosomal enzyme has been shown to operate in
neurons [23,31-35]. However, the therapeutic studies in
Ppt1-deficient mice involving AAV-mediated PPT1, have
ameliorated the CNS pathology only in localized areas,
suggesting that the neuronal trafficking of PPT1 has unde-
fined features [36-38]. In this study, we could observe sev-
eral new properties for neuronal PPT1, including altered
modification compared to PPT1 in fibroblasts. Both of the
cell types analyzed here were infected with the same
recombinant PPT1-adenovirus [7] including the human
cDNA, so it is unlikely that our finding would result from
different splice variants. One could postulate that the gly-
cosylation is actually similar in these cells, and that the
differences seen in the number of the bands would result
from some other modification. Further studies are needed
to clarify the precise nature of these modifications, but
phosphorylation and lipid modifications could be poten-
tial study targets. With the antibody internalization assay,
trafficking differences could be seen both in fibroblasts
and neurons compared with another lysosomal enzyme
AGA, which is known to utilize the M6P-receptor. While
the AGA antibody was endocytosed into perinuclear lyso-
somes, the endocytosed PPT1 antibody only partially
localized to lysosomes, mostly retaining in small vesicles
distributed throughout the cell. We conclude that an
increasing amount of evidence pinpoints the existence of
an alternative pathway for PPT1 sorting in addition to the
M6P-receptor-mediated route.

Molecular interactions of several NCL proteins have been
partially resolved. CLN5 has been shown to interact with
both CLN2 and CLN3 [39]. CLN6, the protein behind the
variant late infantile NCL, was recently shown to form
dimers in cross-linkage experiments [40]. However, so far
the molecular interactions of PPT1 have not been ana-
lyzed in detail. Our data suggest that PPT1 can
homodimerize or oligomerize in vivo. Both GFP-PPT1 and
PPT1 proteins used in the co-immunoprecipitation assay
are highly glycosylated. Glycosylation usually prevents
aggregation and thus the interaction is not likely to be due
to a bias via aggregation of overexpressed protein. More
importantly, the demonstration of the active enzyme in
the large molecular weight fraction of the cell homoge-
nate during the size-exclusion chromatography supports a
true interaction between PPT1 molecules, either directly
or via other molecules. PPT1 has been crystallized as a
monomer from a secreted protein sample [19]. Neither
could we detect oligomerization in a secreted, monomeric
sample. Thus it is possible that the intracellular oligomer-
ization of PPT1 involves other, yet unresolved molecules.
The understanding of the physiological relevance of the
oligomerization for the action of PPT1 also awaits further
studies. Interestingly however, we could detect that
mutant PPT1 molecules show a higher degree of oli-
gomerization. This may represent a means to regulate the
activation and/or transport of the enzyme. For example,
acyl protein thioesterase 1 (APT1), a functional relative
for PPT1, forms a dimer which has to dissociate before the
enzyme displays activity [41]. This suggests that the dimer
formation and dissociation may occur reversibly also in
the case of PPT1.

PPT1 activities of mutant proteins have been carefully
analyzed earlier from transfected COS-1 cell lysates, puri-
fied protein samples and patient lymphoblasts [16,42].
While severe INCL-mutations produced inactive enzymes,
the mutations causing later onset disease showed low
residual activity. However, it has not been possible to
draw a straight correlation between the level of residual
activity and the age of onset, since the late infantile and
juvenile phenotype-causing mutations both possessed
activities between 6 and 30% of the wild type enzyme.
Also in this study, the overexpressed PPT1 carrying the
adult phenotype mutation G108R was shown to have
only a low activity of 3.5%. The activities of PPT1G108R
have earlier been measured in patient fibroblasts and leu-
kocytes and they were similar to those of patients with the
early onset disease [14]. As the residual PPT1 enzyme
activity of mutant proteins have not correlated with the
disease phenotypes, previous studies have proposed that
decreased enzyme stability plays a major role in determin-
ing the phenotype [16]. A late onset mutation M1I dis-
played almost full activity (87.5% of wild type) as
analyzed by overexpression in COS-1 cells. It has been
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proposed that the start codon ATA would be utilized in
the patients' tissues, resulting in low but clinically relevant
expression of the normal enzyme [16]. Our current obser-
vations support this suggestion, since also the intracellular
localization of this mutant was uniform with wild type
enzyme both in HeLa cells and neurons. It can be con-
cluded that the enzyme activity level per se cannot be used
to distinguish later onset diseases from each other.

In the current study we could not define the molecular
basis for the adult phenotype caused by the G108R muta-
tion. The G108R polypeptides fully colocalized with the
ER marker PDI in HeLa cells being well in line with earlier
findings [17]. Neuronal G108R was transported further to
the extensions but did not colocalize with the presynaptic
markers, the target for the wild type and M1I polypep-
tides. Evidently PPT1G108R can delay the development of
the disease until adulthood without reaching the synaptic
vesicles. This may implicate that PPT1 has some func-
tional roles along the secretary pathway. Further research
is needed to locate the place(s) of action for neuronal
PPT1 and to clarify the molecular networks affected by
PPT1 deficiency.

Conclusion
In this study we show that the N-glycosylation of asparag-
ines 197 and 232 is important for PPT1 activity. We fur-
ther describe the ability of PPT1 to form complexes.
Disease mutations resulting in a classic early onset or later
onset forms of INCL were shown to have an effect both on
the glycosylation degree of PPT1 and its ability to form
complexes, but neither of these phenomena could explain
the genotype-phenotype correlation. The current study
also demonstrates that intracellular transport and matura-
tion of PPT1 show properties that differ from those
involved in the classic mannose 6-phosphate receptor
mediated sorting. Prominent differences in the endocytic
trafficking of PPT1 can be seen when compared to a well
characterized lysosomal hydrolase. Also the size and the
modifications of neuronal PPT1 differ from those of PPT1
produced in fibroblasts. Therefore, further investigations
in this complex field are essential to resolve the precise
disease mechanisms of INCL. Most importantly, clarifica-
tion of the neuronal transport properties of PPT1 will
offer a basis for developing novel therapeutic strategies.

Methods
Construction of expression plasmids and recombinant 
Semliki Forest viruses
The preparation of cDNAs encoding wild type and mutant
(F85del, R122W, L219Q) PPT1 inserted in pCMV5
expression vector have been previously described by Salo-
nen et al. [17]. The GFP-PPT1 fusion protein construct was
prepared as follows: the EGFP sequence was PCR multi-
plied with the primers 5'AAAACTGCAGATGGTGAG

CAAGGGCGAGGAGCTGT and 3'GTAACCCTGCAGCTT-
GTACAGCTCGTCCATGC utilizing the pEGEP-C1 plas-
mid (Clontech) as a template. The resulting PCR
fragments were digested with Pst I and ligated to the Pst I
site located 3' to the signal sequence of PPT1 at amino
acid 26 (His). The mutagenesis of the patient mutations
M1I (c3G > A), F85del (c252-254delCTT), G108R (c322G
> C), Y109D (c325T > G), R122W (c364A > T), Q177E
(c529C > G), V181M (c541G > A) and L219Q (c656T >
A), were performed in the PPT1-pCMV5 and GFP-PPT1-
pCMV5 using a site-directed mutagenesis kit according to
the manufacturer's protocol (Stratagene). The mutagene-
sis of the three glycosylation sites of PPT1, S199A (c595-
596AG > GC), S214A (c640T > C), S234A (c700T > C) and
a double mutant of the two first sites S199A + S214A, were
performed similarly. The reading frames were confirmed
with ABI3730 Automatic DNA Sequencer using the
BigDye™ Terminator Cycle Sequencing Kit v3.1 (Applied
Biosystems). Recombinant Semliki Forest Virus (SFV)
encoding the wild type PPT1 was constructed as previ-
ously described [8]. The coding regions of the mutant
PPT1 (M1I, G108R, Y109D) were cloned to the BamHI
site of the pSFV1 vector and the recombinant PPT1-SFV
were prepared as previously described [43].

Animals
C57/BL WT and C57/BL Ppt1∆ex4 mice [44] were bred and
housed in National Public Health Institute's facilities. The
study was approved by the Laboratory Animal Care and
Use Committee of the National Public Health Institute,
Helsinki. The study has been carried out following good
practice in laboratory animal handling and the regula-
tions for handling genetically modified organisms.

Cell culture, transfections, and SFV infections
COS-1 and HeLa cells were cultured in Dulbecco's modi-
fied Eagles' medium (DMEM) supplemented with 10%
fetal calf serum, 50 mg/ml streptomycin and 100 IU/ml
penicillin, 5% CO2/37°C. PC12 cells were cultured on
collagen coated dishes in RPMI 1640 medium supple-
mented with 10% horse serum, 5% fetal calf serum and
antibiotics. Mouse hippocampal and cortical neurons as
well as mouse fibroblasts were prepared from wild type
C57/BL mouse embryos and maintained as previously
described [6,45]. For the glycosylation assays and immun-
ofluorescence, COS-1 and HeLa cells were single trans-
fected similarly using mutated (M1I, G108R, Y109D,
Q177E, and V181M) and wild type PPT1-pCMV5 con-
structs. All cells were transfected using the calcium phos-
phate method as described previously [46]. The cells were
used for different experiments 48 h after transfection. For
immunofluorescence and glycosylation infections, mouse
neurons were cultured for six days in vitro (6 div) and
infected with recombinant SFV-PPT1 virus (wild type,
M1I, G108R, Y109D, and R122W) for 1 h at 5% CO2/
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37°C. The virus was removed and the cells were incubated
further for 8 h in the original medium.

Immunofluorescence staining
For immunofluorescence analysis, the neurons were fixed
with 4% paraformaldehyde in PBS for 15 min at room
temperature and washed three times with PBS. To increase
the penetration of antibodies and to avoid unspecific
binding, the cells were incubated in 0.5% BSA and 0.1%
Triton X-100 in PBS for 30 min and in 0.5% BSA- PBS for
another 30 min. Transfected HeLa cells were fixed and
permeabilized with cold methanol for 2 min in -20°C,
washed twice with PBS and incubated in 0.5% BSA- PBS
for 30 min. In neurons, double immunostainings were
performed with rabbit anti-human PPT1 antibody
(1:700) together with either mouse ER antibody anti-pro-
tein disulfide isomerase (PDI 1:50, Stressgen) or mouse
anti-synaptic vesicles (SV-2 1:50) obtained from the
Developmental Studies Hybridoma Bank. In HeLa cells,
anti-human PPT1 antibody was used with either PDI,
Golgi antibody anti-giantin (1:1000) provided by Hans-
Peter Hauri (Department of Pharmacology, Biozentrum,
University of Basel, Switzerland) [47], or lysosomal mem-
brane glycoprotein antibody anti-human LAMP1 (H4A3,
1:100) from the Developmental Studies Hybridoma Bank
(University of Iowa, IA). The cells were incubated with pri-
mary antibodies diluted in 0.5% BSA-PBS for 1 h and
washed three times with PBS. Secondary antibody incuba-
tion was performed with the rhodamine (TRITC)-conju-
gated anti-mouse IgG + IgM and fluorescein (FITC)-
conjugated anti-rabbit IgG (1:250, Jackson ImmunoRe-
search Laboratories). The coverslips were mounted with
Gel Mount (Biomeda Corp.) and viewed with Leica con-
focal microscopy. The images were further processed with
Adobe Photoshop CS and Adobe Illustrator CS software.

Metabolic labelling and immunoprecipitation
COS-1 cells were cultured in Dulbecco's modified Eagle's
medium supplemented with 10% fetal calf serum and
antibiotics. For transfection, the cells were seeded on 3 cm
plates at a density of 3 × 105 cells per well. Transfection
was performed with the FuGENE 6 transfection reagent
(Roche) using 1 µg of the wild-type or mutant PPT1 cDNA
construct per well. Following a 48 h incubation the cells
were metabolically labelled for 1 h with [35S]Cys (Amer-
sham Pharmacia Biotech) followed by a 2 h chase. Immu-
noprecipitation was carried out with fixed Staphylococcus
aureus cells (Calbiochem) using a GST-PPT antibody
(1:700). The polypeptides were denatured by boiling
them 5 min prior to loading. The labelled polypeptides
were separated by 14% SDS–PAGE under reducing condi-
tions and visualized by autoradiography.

Adenovirus infection, deglycosylation, and antibody 
internalization assay
Construction of recombinant adenoviruses Ad-PPT1wt
and Ad-AGAwt and the adenovirus infection protocols
have been described previously [7,48]. Mouse primary
neurons were grown on cover slips for 8 days before infec-
tion, infected for an hour and grown for another four days
before the antibody internalization experiment or western
blot analysis. Mouse primary fibroblasts were seeded on
cover slips one day before infection and the antibody
internalization assay and western blot analysis were done
24 h after infection. For antibody internalization assay,
cover slips were incubated two hours in medium contain-
ing antibodies against PPT1 (8414, 1:700 [6]) or AGA
(1:200, [49]). Cover slips were transferred to normal
growth media for another 2 hours and fixed with 4% PFA.
To visualize the internalized antibody, cells were stained
with a secondary antibody. For double immunostaining,
LAMP-1 was used as described above. For deglycosylation
analysis, the cells were lysed with D'cell Angelica buffer
(50 mM Tris-HCl, pH 7.4, 300 mM NaCl, 1% Triton X-
100 0.1% BSA) and the lysates were treated with N-gly-
cosidase F (PNGaseF; New England Biolabs) according to
the manufacturer's instructions. In short, 5 µl of total pro-
tein was treated with 2 µl of PNGaseF in 20 µl reaction
buffer for 1–16 h at 37°C. Samples were analyzed with
14% SDS-polyacrylamide gel and immunoblotting using
a PPT1 specific polyclonal antibody.

PPT1 purification and antibodies
Conditioned media from a recombinant CHO-PPT1 cell
line [8] containing secreted PPT1 was collected and con-
centrated with Centriprep YM-10 concentrators (Milli-
pore) adjusted to 5 mM HEPES pH 7.0 and 0.5 M NaCl
and applied to Hi Trap Phenyl HP column (Amersham
Pharmacia). The column was washed with 5 mM HEPES
buffer with decreasing salt concentration and PPT1 was
eluted with 5 mM HEPES, 70% ethanol, pH 7.9. To neu-
tralize the sample, it was eluted into tubes containing 1 M
HEPES, pH 7.0. The buffer was then changed to 5 mM
HEPES, 150 mM NaCl and the sample was applied to a
HR-12 column for size-exclusion chromatography. The
volume of this further purified sample was reduced with
Centricon YM-10 concentrators (Millipore). The final
yield was about 1.15 mg of PPT1 per 300 ml of crude
medium. Rabbits were immunized by four sequential
subcutaneous injections of 160 µg of PPT1 in Freund's
complete adjuvant. The blood was collected two weeks
after the last immunization and the serum was further
affinity purified using GST-PPT1 fusion protein. The anti-
body titers and specificity were determined by immun-
ofluorescence, Western blot, and immunohistochemistry.
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Surface plasmon resonance analysis
Binding of PPT1 with itself was studied with surface plas-
mon resonance analysis in a Biacore 2000 biosensor
(Biacore). A saturating amount of purified PPT1 was cov-
alently attached to a flow cell of a biosensor chip using
standard amine coupling according to the manufacturer's
protocol. Varying concentrations of PPT1 was diluted in
Hepes buffered saline (HBS) with two different pH-values
(5 and 7.4) and used as analytes. An empty flow cell was
used as a negative control.

PC12 cell fractionation and size-exclusion 
chromatography
PC12 cells were homogenized in HB-buffer (3 mM imida-
zole, 250 mM sucrose, pH 7.4) with a glass homogenizer.
The homogenate was centrifuged at 800 g for 10 min in an
eppendorf tube centrifuge to provide the PNS. To provide
the lysosomal fraction, the supernatant was further centri-
fuged at 10 000 g for 20 min. The pellet was washed with
HB-buffer and recentrifuged at 10 000 g for 20 min. The
pellet was resuspended in D'ell Angelica buffer (see
above) and filtrated with 0.22 µm Spin-X filter tubes (Cos-
tar). Size-exclusion chromatography of the sample was
performed with a Superdex 75 column (V = 25 ml, Amer-
sham Pharmacia Biotech) in PBS at room temperature.
The flow rate was 0.25 ml/min and fractions of 0.25 ml
were collected. Molecular weight markers for the size-
exclusion chromatography were purchased from BioRad
Laboratories.

Enzyme activity assays and glycosylation degree analysis
The aspartylglucosaminidase (AGA) activity assay was
based on the colorimetric measurement of liberated N-
acetylglucosamine from the synthetic substrate 2-aceta-
mido-1-β-(L-aspartamido)-1,2-dideoxy-β-D-glucose
(AADG) as described earlier [50]. For PPT1 enzyme activ-
ity and Western blot analysis, transfected COS-1 cells and
SFV-infected mouse primary hippocampal neurons were
washed twice with cold PBS and lysed with freeze-thaw-
cycles in water supplemented with protease inhibitors
(Complete, Roche). The PPT1 activity assay was per-
formed as described earlier [51] using 5 µg of total protein
from crude cell lysate or 30 µl from size-exclusion chro-
matography fractions. The substrate (4-methylumbellif-
eryl-6-thiopalmitoyl β-D-glucoside, 4-MU-6S-Palm-βGlc)
was purchased from Moscerdam Substrates. The amount
of released 4-MU was determined with a fluorometer. Free
4-MU (Sigma) diluted in stop-buffer (0.5 M NaHCO3/
Na2CO3 pH 10.7, 0.025% Triton X-100) was used as a
standard. For glycosylation degree analysis, 10 µg of total
protein was assayed with 14% SDS-PAGE and immunob-
lotting using a PPT1 specific polyclonal antibody. This
antibody was raised in rabbit against recombinant PPT1
produced by the baculovirus expression system (code
8414) [6]. The specificity of the antibody was tested by

western blot using purified PPT1 and both preimmune
and immune rabbit serums for the detection (data not
shown). The protein bands were visualized by ECL (Amer-
sham Biosciences) or alkaline phosphatase reaction (New
England Biolabs) and quantitated by densitometric scan-
ning using Scion Image software (Scion Corporation).

GFP-coimmunoprecipitation and immunoblotting
For the GFP-coimmunoprecipitation assays, COS-1 cells
were seeded one day before transfection to 92 mm dishes
and grown to 50–80% confluency. The cells were double
transfected with mutant PPT1-pCMV5 and GFP-PPT1-
pCMV5 (wild type, R122W, G108R, L219Q, and F85del)
constructs. Single transfections using pEGFP-C1 vector,
PPT1-pCMV5 and Herring Sperm DNA were used as con-
trols. Cells were collected 48 h after transfection and lysed
with D'ell Angelica buffer (see above). A sample of the
crude lysate was taken for transfection analysis and the
rest was immunoprecipitated with anti-GFP agarose beads
(GFP (B-2) AC: sc-9996 AC, Santa Cruz Biotechnology).
Samples were analyzed with 14% SDS-polyacrylamide gel
and immunoblotting using a PPT1 specific polyclonal
antibody.
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