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Abstract
Background: The pig, Sus scrofa domestica includes both the miniature and commercial domestic
breed. These animals have influenced the human life and economies and have been studied
throughout history. Although the miniature breeds are more recent and have increasingly been
used in a variety of biomedical studies, their cell lines have rarely been established. Therefore, we
sought to establish primary and immortal cell lines derived from both the miniature and domestic
pig to better enable insight into possible in vivo growth differences.

Results: The in vitro lifespan of primary domestic pig fibroblast (PF) and miniature pig fibroblast
(MPF) cells using a standard 3T3 protocol was determined. Both of the primary PF and MPF cells
were shown to have a two-step replicative senescence barrier. Primary MPF cells exhibited a
relatively shorter lifespan and slower proliferation rate compared to those of primary PF cells.
Beyond senescence barriers, lifespan-extended PF and MPF cells were eventually established and
indicated spontaneous cellular immortalization. In contrast to the immortalized PF cells, immortal
MPF cells showed a transformed phenotype and possessed more frequent chromosomal
abnormalities and loss of p53 regulatory function. The lifespan of primary MPF and PF cells was
extended by inactivation of the p53 function using transduction by SV40LT without any detectable
senescent phenotype.

Conclusion: These results suggest that p53 signaling might be a major determinant for the
replicative senescence in the MPF cells that have the shorter lifespan and slower growth rate
compared to PF cells in vitro.
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Background
Research using in vitro cell culture methods has a number
of limitations to a complete understanding of biological
systems in vivo. The primary somatic cells, however, are
valuable tools to enable the study of a variety of cellular
and biochemical functions under tightly controlled exper-
imental conditions. One limitation to primary somatic
cell use that must be managed is their finite proliferative
capacity due to permanent growth arrest known as repli-
cative senescence [1]. Replicative senescence is known to
be triggered by two inter-dependent mechanisms; one is
activation of two tumor suppressor pathways (p16INK4a/
RB and ARF/p53, [2]), the second is a shortening of the
telomeres due to an end-replication problem during chro-
mosome replication [3,4]. To overcome these limitations,
much effort has been put into the establishment of
immortalized cell lines that have an unlimited replicative
potential and normal cellular functions [5-10]. The loss of
a tumor suppressor pathway, such as inactivation of p53
and Rb by simian virus 40 large T antigen (SV40LT),
bypasses senescent-mediated growth arrest and ultimately
extends cellular lifespan [9,11,12]. The maintenance of
telomere length by the overexpression of human telomer-
ase (hTERT) is known to avoid replicative senescence and
to establish immortalized cell lines from various species
[13-17].

Because of the close physiological and anatomical similar-
ities with humans compared to other non-rodent species,
miniature pig breeds have increasingly been used as mod-
els for research in physiology, immunology, toxicology,
nutrition, drug metabolism, and various diseases.
Although the miniature pig breeds are currently used as
general surgical models for many organs, for cardiovascu-
lar research, digestive system models, transplantation and
xenografts [18-21], their primary and immortal cell lines
have rarely been established. Therefore, we have con-
ducted research to establish primary and immortal cell
lines derived from miniature (MPF cells) and domestic
pigs (PF cells) to use as in vitro model systems to explore
and better understand the cellular and biochemical mech-
anisms that underlie in vivo physiological events.

Results
In vitro growth characteristics of primary fibroblast cells 
derived from the miniature and domestic pig
We established two independent lines of primary and
immortalized porcine fibroblast cells from miniature
(MPF cells) and domestic (PF cells) pigs, respectively (Fig-
ure 1A). In the presence of 10% FBS, the growth rate of the
early passage PF cells (P3) was shown to be more rapid
than that of the MPF cells (P3), whereas both cells failed
to proliferate in the presence of 0.5% FBS, thereby indicat-
ing that both cells require FBS for proliferation (Figure
1B). In contrast to primary cells, immortalized MPF cells

(P60) grew faster than immortalized PF cells (P60) (Fig-
ure 1C), implying possible genetic alterations that enable
to change in cellular growth property during immortaliza-
tion process. We next determined the in vitro lifespan of
primary MPF and PF cells using a standard 3T3 protocol.
As shown in Figure 2A, there was a marked difference in
the growth curves of the MPF and PF cells. For MPF cells,
replicative senescence appeared at two distinct passages
(P5 and P28) as judged by a flat morphology and senes-
cence-associated β-galactosidase activity (SA-β-gal) (Fig-
ure 2B and 2C), and a growth rate was shown to decrease
until passage 34, but rapidly increase after passage 35. It is
noteworthy that less than 35% of MPF cells at passage 7
through passage 24 displayed SA-β-gal-positive (Figure 2B
and 2C, data not shown). For the PF cells, the replicative
senescence appeared at two distinct passages (P13 and
P38). Taken together, the MPF cells grew at a slower rate
and had a shorter in vitro lifespan compared to the PF
cells. Since the MPF and PF cells, after passages 35 and 40,
respectively, grew continuously without a detectable
senescent phenotype, we speculate that both the MPF and
PF cells by passage 60 would be spontaneously immortal-
ized.

Cell morphology and cell growth rates of MPF and PF cellsFigure 1
Cell morphology and cell growth rates of MPF and 
PF cells. A. Representative cell morphology of MPF and PF 
cells in early (passage 3; P3) and late passages (passage 60; 
P60) (40× magnifications). B. Relative growth rates of MPF 
and PF cells at an early passage (P3) grown in 10% and 0.5% 
FBS-DMEM as determined by staining cells with crystal violet 
solution every 2 days for 6 days. Data shown are means ± 
SEM (n = 3). Asterisk (*) indicates a significant difference 
between MPF and PF cells grown in the 10% FBS-DMEM (p < 
0.05). C. Relative growth rates of MPF and PF cells at a late 
passage (P60) grown in 10% and 0.5% FBS-DMEM. Data 
shown are means ± SEM (n = 3). Asterisk (*) indicates a sig-
nificant difference between MPF and PF cells grown in the 
10% FBS-DMEM (p < 0.05).
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p53 and p21WAF1 expression and doxorubicin-resistant cell 
viability of primary and immortalized MPF and PF cells
Since it has been well documented that p53 gene, a cell
cycle checkpoint and tumor suppressor, was commonly
inactivated in numerous immortal and transformed cells
[22], we determined expression levels of p53 and
p21WAF1, one of p53-downstream target genes, as well as
biological function of p53 in the primary and immortal-
ized MPF and PF cells. As shown in Figure 3A, expression
level of p53 protein was found to be similar in the primary
and immortalized PF cells, while p21WAF1 was relatively
upregulated in the immortalized PF cells compared to the
primary PF cells. However, we think that expression levels
of p53 and p21WAF1 proteins might be more elevated in
the immortalized PF cells compared to primary PF cells as
normalized to α-tubulin level (P3 and P60 in Figure 3A).
When primary PF cells were treated with doxorubicin (a
DNA-damaging agent) that enables to stabilize and acti-
vate p53 protein, p53 protein level was shown to be mark-
edly elevated with concomitant increase of p21WAF1

(Figure 3B). Interestingly, the expression of p21WAF was
relatively decreased in the immortalized PF cells treated
with doxorubicin (Figure 3B).

However, like other immortalized or transformed cells,
the expression of p53 protein was shown to be markedly
elevated in the immortalized MPF cells, whereas p21WAF1

protein was dramatically downregulated in these cells as
compared to the primary MPF cells (Figure 3A). In addi-
tion, when primary MPF cells were treated with doxoru-
bicin, p53 protein was shown to be markedly elevated in
these cells with concomitantly slight increase of p21WAF1,
whereas expression of the p53 protein was not changed by
a DNA damage response, and p21WAF1 protein was barely
detectable in the immortal MPF cells, regardless of doxo-
rubicin (Figure 3B). Furthermore, in the presence of dox-
orubicin (3 and 5 uM), the immortalized MPF cells were
more resistant to cell death as compared to primary MPF
cells (p < 0.05, Figure 3C), whereas immortalized PF cells
showed slightly increased resistance to doxorubicin (only
at 5 uM) as compared to primary PF cells (Figure 3C).
Taken together, these results indicate that immortalized
MPF cells, but not immortalized PF cells, may be defective
for the p53 regulatory function.

Transformed phenotype and increased chromosome 
abnormality in the immortalized MPF cell line
To address whether primary and immortal MPF and PF
cells have a transformed property, we studied the anchor-
age-independent growth of primary MPF and PF cells by

p53 and p21WAF1 expression and doxorubicin-resistant cell viability of primary and immortalized MPF and PF cellsFigure 3
p53 and p21WAF1 expression and doxorubicin-resist-
ant cell viability of primary and immortalized MPF 
and PF cells. A. Expression of p53 and p21WAF1 proteins in 
the primary and immortal MPF and PF cells. α-tubulin was 
used as a loading control. B. Expression of p53 and p21WAF1 

proteins in the primary and immortal MPF and PF cells grown 
in the absence or presence of doxorubicin (3 uM). α-tubulin 
was used as a loading control. C. Cell viability (%) of the pri-
mary and immortal MPF and PF cells grown in the absence or 
presence of doxorubicin (1, 3, and 5 uM) for 24 hr. The a, b, 
c, and d indicate significant differences (p < 0.05).
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In vitro lifespan and senescence-associated β-galactosidase activity of MPF and PF cellsFigure 2
In vitro lifespan and senescence-associated β-galactos-
idase activity of MPF and PF cells. A. Cumulated cell 
population doubling rates were determined in primary MPF 
and PF cells using a standard 3T3 cell culture protocol. B. 
Senescence-associated β-galactosidase activity (SA-β-gal)-
positive cell numbers of the different passages MPF and PF 
cells. Data shown are means ± SEM (n = 3). The a, b, c, and d 
indicate significant differences (p < 0.05). C. The representa-
tive photographs (40× magnification) of different passages 
MPF and PF cells showing SA-β-gal activity.
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growing the cells in a soft-agar culture condition. As
shown in Figure 4A, immortal MPF (passage 60), but not
immortal PF cells, were enabled to grow in the soft-agar,
suggesting that the immortalized MPF cells should pos-
sess a transformed property. As determined chromosome
abnormality of the primary and immortal MPF and PF
cells by a karyotyping (Figure 4B), 81 of the 100 immor-
talized MPF cells have abnormal chromosome numbers
of 2N = 57.2 on average, while all of primary MPF and PF
as well as immortalized PF cells were shown to have nor-
mal chromosome number of 2N = 38 on average (data
not shown).

Growth properties and in vitro lifespan of cells transduced 
with SV40LT and hTERT
Cellular immortalization and transformation have been
shown to associate with loss of p53 and gain of telomer-
ase activity [23,24]. Therefore, we transduced SV40LT
(one of the p53 inactivators, [25]) and hTERT (human tel-
omerase catalytic subunit) into primary MPF and PF cells
in order to determine a possible causal role of the acti-
vated p53 or telomerase activity for a shorter lifespan and
earlier senescent-mediated growth arrest of the primary

MPF cells as compared to primary PF cells. Growth rate of
the SV40LT- or hTERT-transduced PF cells was shown to
be faster than that of the SV40LT- or hTERT-transduced
MPF cells in the presence of 10% FBS, whereas these cells
failed to proliferate in the presence of 0.5% FBS (Figure 5A
and 5B). In contrast, the SV40LT+hTERT-transduced MPF
cells were shown to proliferate relatively faster than
SV40LT+hTERT-transduced PF cells in the presence of
10% FBS, whereas these cells failed to grow in the pres-
ence of 0.5% FBS (Figure 5C). In examining their in vitro
lifespan by the 3T3 protocol, both SV40LT-transduced
MPF and PF cells proliferated continuously and without
any detectable senescent phenotype (Figure 6A), whereas
transduction of hTERT into primary MPF and PF cells
failed to extend their in vitro lifespan (Figure 6B). Interest-
ingly, the hTERT-transduced MPF and PF cells were shown
to become senescent at passages 9 and 13, and to enter cri-
sis stage from passages 10 and 14, respectively. Mean-
while, transduction of SV40LT+hTERT into primary MPF
and PF cells, like transduction of SV40LT alone, exhibited
an extension of their in vitro lifespan (Figure 6C). Of inter-
est, the growth rate of the SV40LT+hTERT-transduced
MPF cells were shown to be faster than their counterpart
PF cells. PF and MPF cells transduced with SV40LT or
SV40LT+hTERT have continuously proliferated beyond
passage 60 without any detectable senescent barriers and
we are of the opinion that these cells should be immortal-
ized.

Since hTERT, distinct from SV40LT, failed to extend cellu-
lar lifespan, we examined expression and relative activity
of hTERT in the control and hTERT-transduced cells.
Although hTERT mRNA was found to be expressed as
determined by RT-PCR, the hTERT activity did not
increase in the hTERT-transduced cells as compared to
nontransduced cells (data not shown). Furthermore, we
found that endogenous telomerase activity in the primary

Growth rates of primary MPF and PF cells transduced with SV40LT, hTERT and SV40LT+hTERTFigure 5
Growth rates of primary MPF and PF cells trans-
duced with SV40LT, hTERT and SV40LT+hTERT. 
Relative growth rates of the MPF and PF cells transduced 
with SV40LT (A), hTERT (B) and SV40LT+hTERT (C) grown 
in DMEM supplemented with either 10% FBS or 0.5% FBS. 
Data shown are means ± SEM (n = 3). Asterisk (*) indicates a 
significant difference in the cells grown in the 10% FBS-
DMEM (p < 0.05).
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Anchorage-independent growth and chromosome abnormal-ities of the immortal MPF cellsFigure 4
Anchorage-independent growth and chromosome 
abnormalities of the immortal MPF cells. A. Repre-
sentative photographs showing primary and immortal MPF 
and PF cells grown under soft-agar culture conditions for 3 
weeks (Left), and the foci numbers of primary and immortal 
MPF and PF cells grown in the soft-agar (Right). HeLa cells 
served as the positive control. The number shown in the 
graph are means ± SEM (n = 3). Asterisk (*) indicates a signif-
icant difference (p < 0.001). B. Representative photographs 
showing metaphase chromosomes of primary and immortal 
MPF and PF cells (400× magnifications; Left), and average 
number of chromosomes of primary and immortal MPF and 
PF cells (Right). The number shown in the graph are means ± 
SEM (n = 100). Asterisk (*) indicates a significant difference 
(p < 0.05).
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and immortal MPF and PF cells was similar to that in the
primary human BJ fibroblast cells (data not shown).
These results suggest that activation of the telomerase
might not be necessary for cellular immortalization at
least in the MPF cells of this study, whereas loss of p53
should be sufficient for immortalization and p53 activa-
tion in these cells might be a major determinant for the
replicative senescence.

Discussion
Although numerous immortalized cell lines have been
established from various domestic animals, such as
bovine, equine, ovine, avian, canine and porcine
[10,15,26-29], here, we first report establishment of the
spontaneous immortalized cells derived from miniature
pigs.

One of the major regulatory pathways for replicative
senescence is known to come from activation of p53, one
of the best characterized cell cycle checkpoints and tumor
suppressors [9,30]. p53 functions as transcriptional acti-
vator or repressor and plays a crucial role in cell prolifera-
tion and transformation by tightly regulating expression
of the various cell cycle negative regulators and apoptosis-
inducing factors such as p21WAF1 and BAX, respectively
[31-33]. It has been documented that p53 activity is mark-
edly elevated in the senescent cells, whereas loss of p53 is
sufficient to escape senescent barriers and ultimately
become immortalized in a variety of cells [34-36].

A shortening of telomere length by inactivation of telom-
erase should also be associated with senescent-mediated
growth arrest in a variety of species [9,36]. In normal
somatic cells, the telomere shortening occurs in each cell
division as a result of the end-replication problem of DNA
polymerase [37]. Critically shortened telomeres trigger
loss of chromosomal integrity and concomitantly activate
DNA damage response that eventually results in irreversi-

ble cell cycle arrest (senescence) through activation of p53
function [38].

In the present study, the primary MPF cells showed slower
growth rate and shorter in vitro lifespan compared to the
primary PF cells. The shorter lifespan in the primary MPF
cells might be caused by activation of p53 as judged by rel-
ative expression levels of p53 and p21WAF1 (one of the
p53-downsteam target genes). Although expression of
p53 was elevated in immortalized MPF cells compared to
their counterpart cells, expression of p21WAF1 was shown
to be dramatically decreased in these cells. However, there
is a question of how p21WAF1 is downregulated in the
immortalized MPF cells possessing a significantly higher
steady-state level of p53 protein. This converse expression
pattern of p53 and p21WAF1 in the immortalized MPF cells
has been commonly observed in other immortalized cells
[39,40]. It is also well-characterized that when p53 pro-
tein is inactivated by point mutation, its stability is known
to increase owing to evasion of MDM2-dependent ubiqui-
tin-mediated proteolysis [41]. Therefore, we speculate
that p53 function in the immortalized MPF cells might be
inactivated by point mutation.

In accordance with previous data [42], our results have
indicated that the activation of p53 signaling should be a
major determinant for the replicative senescence in the
cells derived from pigs, because inactivation of the p53
signaling by SV40LT was shown sufficient for both pri-
mary MPF and PF cells to escape from the senescent bar-
rier. However, we can not rule out that a variety of other
genetic alterations, such as inactivation of Rb by SV40LT
or less well characterized associations of p300/CBP and
Bub1 with SV40LT, might be also involved in cellular
immortalization [43]. Furthermore, since the spontane-
ously immortalized PF cells are recognized to possess
functional p53 activity, it is also possible that cellular
immortalization of pig cells might be occurred by external
microenvironmental changes [44,45] or other endog-
enous genetic alterations such as loss of Ink4a/Arf tumor
suppressor, without loss of p53 function [46].

In the case of telomerase activity, endogenous telomerase
activity in the all primary and immortalized pig cells used
in the present study was found to possess minimum basal
levels that are similar to that in the human BJ fibroblast
cells. Moreover, we failed to reconstitute telomerase activ-
ity in the PF and MPF cells by overexpression of human
telomerase catalytic subunit (hTERT), although expres-
sion of exogenous hTERT in those cells was verified by RT-
PCR (data not shown). A couple of research groups have
demonstrated that most somatic cells derived from pigs,
unlike human somatic cells, are known to possess endog-
enous telomerase activity [47,48]. However, recent reports
have also demonstrated that endogenous telomerase

In vitro lifespan of MPF and PF cells transduced with SV40LT, hTERT and SV40LT+hTERTFigure 6
In vitro lifespan of MPF and PF cells transduced with 
SV40LT, hTERT and SV40LT+hTERT. Cumulated pop-
ulation doubling rates of the MPF and PF cells transduced 
with SV40LT (A), hTERT (B) and SV40LT+hTERT (C) are 
determined by a standard 3T3 cell culture protocol. Data 
from three experiments are shown as means (n = 3).
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activity was shown to be restricted in the particular tis-
sues/organs of pigs, and introduction of hTERT failed to
reconstitute telomerase activity in the cells derived from
pig [30,49,50]. These results suggest that telomerase activ-
ity might be required for cellular immortalization in the
pig cells, depending on cell types, tissue origins or culture
conditions.

Since it has been documented that p53 protein is stabi-
lized and activated through its phosphorylation under the
various cellular insults such as DNA damage and onco-
genic stresses [51], the relatively increased p53 level in the
primary MPF cells of early passage (P3) compared to pri-
mary counterpart PF cells (P3) reflects that the primary
MPF cells might be prone to possess relatively higher cel-
lular stresses, compared to the primary PF cells. Among
various cellular stresses that enable to activate p53, chro-
mosome-spindle attachment might be improperly regu-
lated in the primary MPF cells, by which a relatively higher
steady-state level of the p53 protein would be maintained
in these cells. This speculation is further supported in that
cells containing abnormal chromosome numbers (3N)
are dramatically increased in the immortalized MPF cells
possessing inactivated p53 function, and deregulation of
chromosome-spindle attachment could activate not only
p53-dependent checkpoint pathway but also stimulate
replicative senescence [52,53]. Therefore, we assume that
the loss of the p53 activity in the immortalized MPF cells
should increase chromosome abnormality, ultimately
leading to cellular transformation.

Conclusion
Collectively, the results of this study demonstrate a
number of molecular and cellular biological differences
between primary and immortalized cells derived from
domestic and miniature pigs. Primary MPF cells showed
relatively slower growth and shorter in vitro lifespan com-
pared to the PF cells. Furthermore, activation of p53 func-
tion might be a major cause to display relatively earlier
senescent phenotype and slower growth property in the
MPF cells as compared to PF cells. In contrast to immor-
talized PF cells, immortalized MPF cells showed the loss
of p53 function and the increased chromosomal abnor-
mality, which might lead these cells to be transformed.

Methods
Animals
Göttingen miniature pigs were used as the miniature pig
strain, while the three-way crossbred pig (Duroc, Landrace
and Yorkshire) that is commercially used for pork produc-
tion was our domestic strain. The Göttingen strain minia-
ture breed was developed at Göttingen University in the
1960s by the cross-breeding of the Minnesota miniature
pig initially with the Vietnamese pot-bellied pig and fol-
lowed by the German Landrace pig which yielded pale

skin animals. The Göttingen strain is a white non-pig-
mented small-sized miniature pig with an adult body
weight of 30–40 kg [54]. All animals received humane
care in compliance with the guide for the care and use of
laboratory animals [55].

Cells, cell culture conditions, and cell growth kinetics
Porcine fibroblast cells isolated from the ears of two 1-
day-old female miniature pigs (MPF) and two 1-day-old
female domestic pigs (PF) were grown and maintained in
DMEM/high glucose (Hyclone) media enriched with 10%
FBS (Hyclone), 1% penicillin-streptomycin (Gibco), and
2 mM L-glutamine (Gibco). To determine cellular
lifespans in this study, primary MPF and PF cells were
plated at a density of 3 × 105 cells/10 cm dish and pas-
saged every 3 days following the standard 3T3 protocol;
the number of population doublings per day was calcu-
lated.

Cell growth and growth rates were determined by plating
cells at a density of 1 × 104 cells in 10% FBS and 2.5 × 104

cells in 0.5% FBS in 6-well plates and staining with a
0.01% crystal violet solution every other day for 6 days.
Crystal violet was extracted from the stained cells using
10% acetic acid and subjected to spectrophotometric
analysis (595 nm) to determine relative cell growth rates
[56]. To assess responses to DNA damage, relatively early
passage (P4) and late passage (P60) cells were treated with
doxorubicin (0, 1, 3, and 5 uM)) for 24 h, and their via-
bility measured by the standard trypan blue exclusion
method.

Senescence-associated β-galactosidase assay
To conduct the senescence-associated β-galactosidase
activity assay, cells were fixed with 0.5% glutaraldehyde
(pH 7.2) and washed in PBS (pH 7.2) supplemented with
1 mM MgCl2 and then stained in X-gal solution (1 mg/mL
X-gal, 0.12 mM K3Fe [CN]6, 0.12 mM K4Fe [CN]6, 1 mM
MgCl2 in PBS at pH 6.0) overnight at 37°C. After washing
with phosphate-buffered saline, the plates were viewed by
light microscopy.

Plasmids, retroviral infection, and transfection
Cells were infected with replication-defective retroviruses
produced by a PT67 amphotropic packaging cell line
(Clontech) that had been transfected with pBabe-SV40LT-
puro vector. Supernatants of the stable transfected PT67
cells (>70% confluent) were filtered through a 0.45 um
filter to remove cellular debris and used to infect the cells
three times at 12 h internals. The infected cells were
selected with 2 ug/mL puromycin (Clontech) for 7 days.
Cells were transfected with the pCI-hTert-neo vector and
selected with 500 ug/mL neomycin (G418, Gibco) for 2
weeks.
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Western blotting
Cell extracts were prepared using a RIPA lysis buffer con-
taining 1× protease inhibitor cocktail (Roche). Proteins in
the cell extracts (50 ug) were separated on a 4~12% pre-
cast SDS-PAGE gradient (Invitrogen) and transferred to
PVDF membranes (Millipore). The membranes, which
had been blocked with 5% skim milk, were incubated
with anti-p53 antibody (sc-126, Santa Cruz Biotechnol-
ogy, 1:500 dilution), anti-p21WAF1 antibody (sc-397,
Santa Cruz Biotechnology, 1:200 dilution), and anti-α-
tubulin antibody (T9026, sigma, 1:5000 dilution), fol-
lowed by incubation of HRP conjugated anti-mouse IgG
and anti-rabbit IgG secondary antibody (Pierce). The
immunoblot signals were detected with a SuperSignal
West Pico kit (Pierce).

Soft-agar assay
To measure cell anchorage independence, the primary
MPF and PF cells (1 × 104) were cultured in 6-well soft-
agar dishes (1.6% and 0.7% bottom and top agar, respec-
tively) for 3 weeks.

Karyotyping
The mitotic chromosomes of MPF and PF cells were
obtained following standard methods with slight modifi-
cations. Thus, cells were initially plated in 10% FBS con-
taining DMEM for 48~72 h, treated with 0.01 mg/mL
colcemid (Gibco), lysed for 15 min in a hypotonic solu-
tion, and fixed in a methanol:acetic acid (3:1) solution.
Chromosomes were stained with 4% Giemsa solution in
Gurr's buffer and the number of chromosomes in met-
aphase (n = 100 cells) from each cell line were deter-
mined.

Statistical analysis
All experiments were replicated three times at least. Statis-
tical significance was assessed by ANOVA, followed by
Duncan's test in SAS software package (Ver.9.1).
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