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Abstract

Background: The NCOAZ7 gene product is an estrogen receptor associated protein that is highly
similar to the human OXRI gene product, which functions in oxidation resistance. OXR genes are
conserved among all sequenced eukaryotes from yeast to humans. In this study we examine if
NCOA?7 has an oxidation resistance function similar to that demonstrated for OXRI. We also
examine NCOA7 expression in response to oxidative stress and its subcellular localization in
human cells, comparing these properties with those of OXRI.

Results: We find that NCOAY7, like OXRI can suppress the oxidative mutator phenotype when
expressed in an E. coli strain that exhibits an oxidation specific mutator phenotype. Moreover,
NCOA7's oxidation resistance function requires expression of only its carboxyl-terminal domain
and is similar in this regard to OXRI. We find that, in human cells, NCOA7 is constitutively
expressed and is not induced by oxidative stress and appears to localize to the nucleus following
estradiol stimulation. These properties of NCOA7 are in striking contrast to those of OXRI, which
is induced by oxidative stress, localizes to mitochondria, and appears to be excluded, or largely
absent from nuclei.

Conclusion: NCOA7 most likely arose from duplication. Like its homologue, OXRI, it is capable
of reducing the DNA damaging effects of reactive oxygen species when expressed in bacteria,
indicating the protein has an activity that can contribute to oxidation resistance. Unlike OXRI, it
appears to localize to nuclei and interacts with the estrogen receptor. This raises the possibility
that NCOA7 encodes the nuclear counterpart of the mitochondrial OXRI protein and in
mammalian cells it may reduce the oxidative by-products of estrogen metabolite-mediated DNA
damage.
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Background

In this study we examine the ability of the nuclear coacti-
vator NCOA7 (formerly called the 140 kDa estrogen
receptor associated protein or ERAP140) to function in
protection against oxidative DNA damage. Oxidative
DNA damage occurs when reactive oxygen species (ROS)
attack DNA. ROS are produced as by-products of aerobic
metabolism and the damage produced by ROS has been
implicated in cancer, neurodegenerative diseases, and
aging [1-3].

A number of cellular processes function to prevent the
lethal and mutagenic effects of ROS. Protective enzymes
fall into two broad categories, those that prevent oxidative
DNA damage from occurring and those that repair DNA
damage caused by ROS. The damage prevention genes
include a wide array of enzymes such as catalases, super-
oxide dismutases, peroxidases, and thiol containing pro-
teins that detoxify ROS, thereby preventing them from
causing damage [4-6]. DNA lesions are produced when
ROS escape detoxification and react with, either DNA, or
nucleotide pools to produce oxidized bases or sugars. The
potential mutagenic effects of oxidized DNA bases are
minimized by the DNA repair enzymes [1,7-11]. These
DNA repair enzymes include the MutM/Fpg, Oggl, Nth,
and Nei families of glycosylase enzymes that remove oxi-
dized bases from DNA. This group also includes the MutY
family which removes A residues that are frequently incor-
porated opposite the most predominant oxidative lesion,
8-oxoguanine (8-oxoG), during replication [12-15]. A
third class of antimutagenic enzymes are the MutT family
proteins, which react with oxidized DNA nucleotide tri-
phosphates, 8-oxoG and 8-0x0A, converting them to
monophosphates, thereby preventing their incorporation
into DNA during replication [16,17].

Imbalances between the normal cellular processes that
produce ROS and the mechanisms that prevent and repair
oxidative DNA damage can result in increased mutagene-
sis and cell death [18-20]. Oxidative DNA damage accu-
mulates in cells when an imbalance occurs between ROS
production and detoxification. Such an imbalance
increases the level of ROS and causes more DNA lesions
to be produced than can be processed by the repair
enzymes. Increases in oxidative DNA damage can also
occur as a result of exposure to exogenous oxidative agents
such as ionizing radiation or oxidative chemicals, or a
decrease in DNA repair capacity.

The human OXR1 gene was found in a screen for oxida-
tion resistance genes. It is highly conserved, as homo-
logues are found in all sequenced eukaryotic species from
yeast to humans [21-24]. OXR1 of yeast and humans is an
oxidative and heat stress inducible gene whose product
localizes to the mitochondria. When localized to mito-
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chondria of yeast, human OXR1 can complement the per-
oxide sensitivity of the yeast OXR1 mutant indicating that
human OXR1, like its yeast homologue, can function to
protect against oxidative DNA damage produced by
endogenous and exogenous oxidative agents [21,22]. In
this report we characterize a second human gene, called
NCOA?7, which is highly similar to OXR1. We test its abil-
ity to prevent oxidative mutagenesis when expressed in an
oxidation dependent mutator strain of Escherichia coli
and compare the expression and localization of NCOA7
and OXR1 in human cells.

Results

Isolation of NCOA7 and its OXR2 domain

The NCOA7 gene was found in two ways: (1) by searches
for estrogen receptor associated protein [25], and (2) by
genome searches using the OXR1 protein sequence as a
computer probe to search the human genome for DNA
sequences potentially capable of encoding OXR1 paralogs
[21,22]. The database searches resulted in the identifica-
tion of four such regions; OXR1 itself, which is located on
Chromosome (Chr) 8q23 and an apparent pseudogene
on Chr 15 [21]. Two additional regions were found that
had the structures consistent with functional genes. One is
now called NCOA7 and is located on Chr 6q22.33 and a
less conserved gene, tentatively named OXR3, is located
on Chr 20q11. Analysis of expressed sequence tag (EST)
databases revealed a large collection of ESTs correspond-
ing to OXR1 and NCOA7, suggesting these two genes were
expressed. OXR3 was found to correspond to only one
EST suggesting it is expressed, either rarely, conditionally,
or not at all. Thus we focused this study on the analysis of
NCOA7 and compare its properties with those of OXR1.

Figure 1A compares all of the known protein coding exons
of OXR1 and NCOA?7. The similarity between the two
genes is extensive and genomic analysis indicates a similar
gene structure that includes retention of exon boundaries,
suggesting they share a common origin and are likely to
have arisen from a duplication event. Figure 1A also
shows, in black, the OXR domain cDNA of NCOA?7 that
comprises Image clone 608928 and compares it with the
form of the OXR1 gene previously described (also in
black) [21,22]. The overall identity between full length
OXR1 and NCOA7 is 38%. An overall similarity of 53% is
calculated using standard BLAST parameters allowing
conservative substitutions [26] and correcting for compu-
ter generated truncations of non similar ends. However
specific regions are considerably more highly conserved
and others are unique to NCOA7 or OXR1. Figure 1B
compares the extent of identity of individual exons. The
upstream exons of NCOA7 are unique and are not repre-
sented in the DNA upstream of OXR1, as no sequences
capable of encoding a related peptide are present on Chr
8 upstream of OXR1. Conversely, there is no sequence
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present on Chr 6 in the genomic region upstream of
NCOA?7 that is similar to the first exon of OXR1. Thus, the
upstream exons indicated as unfilled boxes in Figure 1A
represent regions that are unique to either NCOA7 or
OXR1. Analysis of the Chr 6 DNA sequence of the NCOA7
coding region also failed to detect the presence of DNA
sequences capable of encoding peptides related to those
encoded by exons 10 and 11 of OXR1, ruling out the pos-
sibility of potential NCOA?7 splice variants that contain
exons related to these two exons of OXR1.

NCOAT7 can protect cells from oxidative DNA damage

In order to determine if the highly conserved OXR1 and
NCOAZ7 are also functionally related, we performed exper-
iments similar to those that led to the isolation of OXR1
and demonstration of its ability to protect cells from oxi-

OXR1 8923

NCOA7 6q22.33
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dative DNA damage [21,22]. The protection of cells from
oxidative DNA damage by human OXR1 was most clearly
demonstrated using an mutM mutY mutant strain of E.
coli. The combination of these two mutations causes a syn-
ergistic increase in GC—TA transversion mutagenesis due
to the bacterial cell's inability to prevent mutagenesis by
8-oxoguanine (8-0x0G), the predominant oxidative DNA
lesion [11]. MutM is required for the removal of 8-0xoG
and MutY is required for the removal of A mispaired with
8-0x0G, the predominant replication intermediate lead-
ing to mutagenesis by 8-0xoG. Since 8-0x0G lesions result
in GC—TA transversion, the level of oxidative DNA dam-
age can be monitored using the lacZ cc104 allele. This
allele reverts to Lac+ only by GC—TA transversion [11]
and this transversion is produced primarily as a result of
lesions repairable by the E. coli MutM 8-oxoG DNA glyco-
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7 8 9 10 11 12 13 14 15 16

OXR1 Exon Number

Figure |

A Organization of OXRI and NCOAT7 genes. Exon-intron structures both genes are shown. OXR1 is located on Chro-
mosome 8q22, NCOAY7 is located on Chromosome 6q22.33. The black boxes represent exons comprising the minimal OXR
domains. Exons shown in gray are those regions that are similar in OXRI and NCOA?7. Areas in white are unique to, either
NCOAY7, or OXRI. The striped exons are exons 10 and | I, which are also unique to OXRI. The length of the lines connecting
exons is an indication of the relative size of the intron. B. Shows the comparison of the extent of identity of individual exons
(black boxes) and similarity (gray boxes). The exon numbers listed are those of OXRI.
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A. MV6219 (mutM mutY/ApTrc99A) B. MV6220 (mutM mutY/OXR1)

C. MV6304 (mutM mutY/ full length D. MV6234 (mutM mutY/NCOA7
NCOA7 amino acids 657-942)

Figure 2

Bacterial Papillation Assay. Individual colonies of the white E. coli lacZ cc104 mutant colonies containing the dark blue
microcolonies which are the GC—TA revertants. Panel A shows the high spontaneous mutation frequency of the mutM mutY
strain carrying only the vector. The remaining panels show the reduction in LacZ papillation in the mutM mutY strain resulting
from the expression of either full length, (B) OXRIC; (C), full length NCOA7; (D), NCOA7 (657-942).

sylase enzyme [27,28]. 8-0x0G lesions result from the  inability to repair the lesions, or to remove A mispaired

spontaneous production of ROS as a by-product of nor-  with 8-0x0G results in a mutator phenotype (Figure 2A).

mal aerobic metabolism, which in turn reacts with DNA,

producing lesions that give rise to mutations. The cells  Since expression of the human OXR1 cDNA in the mutM
mutY mutator strain of E. coli results in suppression of

Table I: Quantitative mutation suppression.

Strain genotype  Plasmid/insert Mutation frequency? Standard deviation Mutagenesis suppression
(% reduction of vector control)

mutM mutY pTrc99a vector only 9799 + 2848 NAP
mutM mutY pTrc99a/OXRI [21] 773 + 324 *90
mutM mutY pTrc99a/NCOA7 0.26 +0.22 *>99.9
mutM mutY pTrc99a/OXR2 domain of NCOA7 (657-942) 2635 +725 *73
Wild type pTrc99a vector 0.31 +0.17 *NA

aMutation frequency (Mutants/|07 viable cells). Data represent the averages of at least 6 independent measurements.
b Not Applicable.
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Figure 3
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Full Length1

Expression and stability of full length and truncated NCOAZ7 proteins in E. coli. Cells were either induced or not
with IPTG. Proteins from induced or uninduced exponential phase cells were labeled with 35 [S] Met and chased, then har-
vested either immediately, or after 15, or 30 min further incubation as indicated in the figure. The arrows indicate the positions
of the full length and truncated (657—942) forms of NCOA?7 protein.

spontaneous oxidative GC—TA transversion mutagenesis
[21,22], we tested if expression of NCOA7 produces a sim-
ilar antimutator activity. The full length NCOA7 ¢cDNA
was transferred to the pTrc99a vector and introduced into
the mutM mutY strain. Figure 2C shows that this clone
essentially abolishes spontaneous oxidative mutagenesis.
This indicates that the full length NCOA7 protein func-
tions to protect cells against oxidative DNA damage when
expressed in E. coli. Quantitative mutagenesis assays con-
firm the ability of full length NCOA7 to suppress GC—TA
transversion mutagenesis and demonstrate that oxidative
mutagenesis is reduced by more than 99.9%, which is
similar to the spontaneous levels of mutagenesis seen in a
wild type, repair proficient strain of E. coli (Table 1).

In the case of the OXR1, expression of the short OXR1C
isoform, shown in black in Figure 1, is sufficient for its
antimutator function in the bacterial assay [21,22]. To test
if the oxidation resistance activity of NCOA7 coding
sequences also lie in the corresponding region we con-
structed clones that lacked upstream regions and pro-
duced truncated NCOA7 proteins similar to OXR1C. The
NCOA7 (657-942) clone begins at amino acid residue
657 of NCOA7 and extends to its normal termination
codon [25]. Expression of this clone reduces the oxidative
mutator phenotype by 73% when expressed the E. coli
mutM mutY mutant strain (Figure 2D and Table 1). To test
if the weak activity of the truncated protein is due to lower
levels of expression, or instability of the protein, we pulse
labeled total cellular proteins of IPTG induced and unin-
duced cells with 35S-methionine, prepared extracts at var-
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Figure 4
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Subcellular localization of full length FLAG-tagged NCOA7 protein in human MCF-7 cells. MCF-7 cells were cul-
tured in hormone-free medium and transiently transfected with FLAG-tagged full-length NCOA7. Two days after transfection,
cells were treated without or with 100 nM E2 for 2 hours. Cellular localization of NCOA7 was detected by immunofluores-

cence using an anti-FLAG antibody (red stain). Cell nuclei were indicated by the blue DAPI stain. -E2, no estrogen, +E2, estro-

gen treated cells.

ious times after labeling and separated the proteins on
12% polyacrylamide gels by electrophoresis, then
scanned for IPTG inducible bands of the expected molec-
ular weights immediately after labeling and after 15 and
30 minutes of further incubation. The full length NCOA?
protein was readily apparent as a strong band migrating at
the expected molecular weight of 106 kDa, based on the
primary amino acid sequence. It appears to be relatively
stable, showing no detectable diminution in intensity
upon further incubation (Figure 3). The 657-942 frag-
ment is seen as a faint band at its expected molecular
weight of approximately 33 kDa (Lane 2, Figure 3). It
appears to be relatively unstable, since it is weakly detect-
able only at the initial time point immediately after the 5
min chase with cold methionine, and is no longer detect-

able after 15 and 30 min further incubation (Lanes 3 and
4, Figure 3). Thus the weak activity of the 657-942 frag-
ment in the mutagenesis assay is most likely due to its
apparent instability. Despite the low level of expression of
the C-terminal domain compared to the full length pro-
tein, the truncated protein is still capable of suppressing
73% of the oxidative mutagenesis. Thus we propose that
C-terminal domain of NCOA7 and OXR1 proteins defines
the OXR domain that protects cells from oxidative muta-
genesis.

NCOA7 is localized to the nucleus

Protein sequence analysis of NCOA7 indicated that it has
a putative nuclear localization signal. In order to deter-
mine if this sequence does in fact direct the protein to the
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Protein expression of NCOAT7 after treatment with hydrogen peroxide. MCF-7 cells were treated with indicated
concentrations of hydrogen peroxide (H,0O,) for I, 4, 8, or 16 hours. Whole cell lysates were prepared for western analysis.
The protein band corresponding to NCOA7 was indicated by its loss after siRNA-mediated inhibition. Calnexin is a loading

control.

nucleus, we produced a FLAG tagged form of NCOA7 and
expressed it in MCF-7 cells by transient transfection.
NCOA7 was originally identified as an estrogen receptor-
associated protein. To examine whether its cellular locali-
zation may be affected by estrogen stimulation, cells were
grown in the absence of hormone and then treated with
100 nM 17 B-estradiol (E2) for 2 hrs. Figure 4 shows that
in the absence of hormone, NCOA7 exhibits a localiza-
tion that is both cytoplasmic and nuclear. The cytoplas-
mic localization of NCOA?7 differs from that of OXR1,
which shows a punctate pattern of staining that colocal-
izes with the mitochondrial marker Mitotracker indicating
its mitochondrial localization [22]. While we can not rule
out the possibility that NCOA?7 is present in mitochon-
dria, it differs from OXR1 and is clearly not concentrated
in this organelle. Therefore OXR1 and NCOA?7 show dif-
ferent localization properties. OXR1 is excluded from
nuclei and localizes to mitochondria, whereas NCOA7
shows diffuse cytoplasmic staining and localizes to nuclei
(Figure 4). Upon treatment of cells with estradiol (E2),
NCOA?7 is concentrated in the nucleus and cytoplasmic
staining appears to be reduced. Thus the treatment with
E2 appears to stimulate nuclear localization.

NCOA7 is not induced by peroxide treatment

OXR1 and many other proteins that protect against oxida-
tive DNA damage are inducible upon exposure to hydro-
gen peroxide [22]. In order to determine if NCOA?7 is
induced in response to peroxide treatments, MCF-7 cells
were treated with hydrogen peroxide, proteins extracted at
various times post treatment. NCOA7 levels were then
measured by western blot. Figure 5 shows that only the
140 kDa band is reduced by NCOA7 specific siRNA treat-

ments, indicating that this is the NCOA7 band. Examina-
tion of peroxide treated cells shows that the levels of
NCOA?7 protein are not detectably altered in response to
treatment. Thus we conclude that NCOA?7 is constitutively
expressed and is not induced by peroxide treatment, dif-
fering in this respect from OXR1.

Discussion

Comparisons of the OXR gene family indicate several key
events have occurred during evolution of OXR domain
proteins. S. cerevisiae carries only one copy of OXR in its
genome. It is 273 amino acids in length and includes only
sequences corresponding to the C-terminal OXR domains
of NCOA7 and OXR1. In higher organisms, the OXR
domain has become associated with additional upstream
protein coding sequences. This occurred prior to duplica-
tion, since there is a high degree of identity and similarity
between NCOA7 and OXR1 throughout their sequences.
The exceptions to this are their N termini, which, in
NCOA?7 contains a nuclear localization sequence, which
is absent in the mitochondrially targeted OXR1. Portions
of their largest central exons are also dissimilar. In
NCOAZY its exon 8 is 357 amino acids in length and con-
tains its estrogen receptor binding site [25], whereas the
corresponding exon 7 of OXR1 is only 255 amino acids in
length and lacks the estrogen receptor binding sequences.
OXR1 also contains several unique exons. These include
exon 10, which has a readily recognizable mitochondrial
targeting sequence [22], and exon 11, which is found in
only one OXR1 isoform (Fig. 1).

The demonstration that the full length NCOA7 protein
can function to prevent oxidative mutagenesis when
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expressed in bacteria suggests it may function in this man-
ner in its native eukaryotic host. In bacteria, this may be a
general function that results in detoxification of various
ROS molecules. The key role for the C-terminal OXR
domains in oxidation resistance is indicated by (1) the
oxidation sensitivity resulting from deletion of the OXR1
gene of yeast [21]; (2) the ability of mitochondrially tar-
geted human OXR domain of OXR1 to complement the
H, O, sensitivity of the yeast oxr1 deletion mutant [22];
and (3) the ability of the OXR domains of either OXR1 or
NCOAZ7 to suppress the oxidative mutator phenotype of
oxidation sensitive E. coli mutants [22] (and Figure 2).
Thus we refer to the C-terminal region of NCOA7 and
OXR1 as the oxidation resistance, or OXR domain. Com-
parison of the OXR domains of OXR1 and NCOA7 with
the yeast gene product, indicates both human genes are
approximately equally similar to the yeast protein when
their OXR domains are compared with the full length
yeast protein; OXR1 has 27%identity and 44% similarity
to yeast OXR1 and NCOA7 has 31% identity and 43%
similarity. Although both human genes are equally simi-
lar to the single S. cerevisiae OXR gene, the yeast OXR gene
is functionally most similar to human OXR1, since both
yeast and human OXR1 proteins are induced by hydrogen
peroxide and heat stress, and localize to mitochondria
[22].

The association of the NCOA7 gene product with the
estrogen receptor is curious for a gene product involved in
protection from oxidative DNA damage. It is noteworthy
that several DNA repair proteins have recently been iden-
tified as estrogen receptor associated proteins. These
include the O¢-methylguanine methyltransferase DNA
repair protein, the 3-methyladenine DNA N-glycosylase
repair protein, and the TG specific mismatch repair pro-
tein TDG [29-31]. The result that NCOA?7 is another ER
associated protein that has DNA maintenance properties,
suggests that ER association of these related classes of pro-
teins may be a common feature. It has been proposed that
NCOA7 may sense the oxidative state of the cell and reg-
ulate responses to oxidative DNA damage and the result
that NCOA7 can function to protect cells from oxidative
DNA damage strengthens this hypothesis [25]. It may also
play a direct role in oxidation resistance, a possibility that
is particularly intriguing in light of results indicating that
estrogen metabolism causes oxidative DNA damage (for
review see: [32]). When estrogens, such as B-estradiol, are
metabolized to catechol estrogen quinones and semiqui-
nones, they enter into a redox cycling reaction in which
the quinones are reduced to semiquinones. The semiqui-
nones, in turn, spontaneously oxidize to back to quinones
producing ROS [33]. Oxidative DNA damage has been
demonstrated to result as a by-product of estradiol metab-
olism [34], thus it is possible that NCOA7 functions to
mitigate oxidative DNA damage resulting from estrogen
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metabolism by bringing it in close proximity to estrogens
upon import into the nucleus. Moreover, such an oxida-
tion resistance mechanism of NCOA7 should be
enhanced by the presence of estrogen, since this stimu-
lates NCOA?7 entry into the nucleus (Figure 4).

Both NCOA7 and OXR1 gene products show their highest
levels of expression in brain tissue [22,25], suggesting
they may play a critical role in protecting brain cells from
oxidative DNA damage. Thus, it will be of interest to see if
either or both of these proteins function to protect against
neurodegenerative diseases that are affected by oxidative
damage and apoptosis.

Conclusion

The NCOA7 gene produces a product that is similar to
OXR1 in sequence and in function. It is able to increase
resistance to prevent oxidative mutagenesis when
expressed in bacteria. This function requires only its C-ter-
minal OXR domain, which is conserved from yeast to
human cells. NCOA7 differs from OXR1 in several key
respects, unlike the mitochondrial and inducible OXR1
gene product, the NCOA7 gene product localizes to the
nucleus and is associated with the estrogen receptor. Thus,
these two oxidation resistance proteins appear to have dif-
ferent and unique roles. Yeast carries only a small OXR1-
like protein that is similar to the OXR domains of both
OXR1 and NCOA7?, but is functionally most similar to
mammalian OXR1. In higher eukaryotes the two OXR
domain genes appear to have arisen by duplication of an
ancestral OXR gene after acquiring a common upstream
sequence.

Methods

Construction of NCOA7 and OXR2 domain expression
vectors

Potential OXR protein coding regions were identified by
searches of the human genome using the OXR1 protein
sequence described previously [21] as a computer probe
using the tBLASTn program to scan the human genome
[26]. The potential OXR1 coding sequences identified
were then used to find corresponding expressed sequence
tags (ESTs). cDNA clones expressing the ESTs were from
the IMAGE consortium clone bank and obtained either
from In Vitrogen (Carlsbad, CA) or Clonetech/BD-Bio-
science (Mountainview, CA), then sequenced to confirm
their identity. One cDNA, image clone 608928, carries the
sequences of region of chromosome 6q22.33 that are sim-
ilar to the OXR1C isoform sequence of OXR1 described
previously [21]. Digestion of this clone with EcoR1 and
Xhol released the cDNA region and allowed its transfer to
the prokaryotic expression vector pTrc99a (Pharmacia).
This domain of NCOA7 was subcloned from 608928 by
PCR using primers EcoRI-up-608928 (ATC ATC GAA TTC
AAA GAA GAA AAA AGC AAG) and Sall-down (ATC ATC
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GTC GAC ATC AAA TGC CCA CAC CTC) then digesting
the PCR products with EcoR1 and Sall and inserting the
digested PCR product into the EcoR1 and Sal1 sites of the
pTrc99A expression vector to produce NCOA7 (657-
942). The full length NCOA7 cDNA was transferred from
the pcDNA 3.1 vector [25] to the pTrc99A bacterial expres-
sion vector by digestion with BamHI and Xhol and ligat-
ing the 5 kb NCOA7 fragment into the BamHI and Sall
sites of the pTrc99A vector.

Mutagenesis assays

Mutagenesis assays were performed essentially as
described elsewhere [28]. Briefly, full length NCOA7, or
OXR domain coding regions were expressed from the
pTrc99A vector in a mutM mutY strain of E. coli. This strain
carries the lacZ cc104 allele which reverts only by GC—TA
transversion [11], a signature mutation of oxidative DNA
damage[27,28]. Mutagenesis is assessed as the number of
dark blue, LacZ+ revertant papillae that appear within
individual white LacZ-colonies after 5 days incubation.
Quantitative mutagenesis assays were performed by grow-
ing cells overnight, spreading cells on plates that contain
lactose as the sole carbon source to determine the number
of Lac+ revertants, and on glucose plates to determine the
total number of cells. LacZ reversion frequencies are
expressed as revertants/107 viable cells.

Protein expression in E. coli

Cells were grown to early exponential phase (approx. 107
cells/ml), induced with 1 mM IPTG for 90 min, or unin-
duced, then pulse labeled with 35 [S]-Met (10 pnCi/ml) for
5 min, chased with 100 pg/ml cold Met for 5 min, then
harvested immediately (lanes 1, 2, 5 and 6), incubated for
an additional 15 min (lanes 3 and 7), or 30 min (lanes 4
and 8) in order to assess protein stability. Protein extracts
were prepared for separation on 12% SDS-polyacrylamide
gel electrophoresis using standard methods described
elsewhere[35]. Gels were analyzed using a Fuji BAS-2500
phosphorimager and accompanying Fuji Film image anal-
ysis software.

Immunofluorescence Assay

FLAG-tagged full-length NCOA7 was transiently trans-
fected into a breast cancer cell line MCF-7 following the
manufacturer's protocol (Lipofectamine 2000, Invitro-
gen). To investigate estradiol-dependent localization of
NCOA?7, cells were maintained under hormone-free con-
ditions. Two days post transfection, cells were treated
without or with 100 nM 17 B-estradiol (E2) for 2 hours.
Following treatment, cells were washed with Phosphate
Buffered Saline (PBS) and fixed in 3.7% formaldehyde in
PBS for 10 min at 40°C. Cells were then washed with PBS
and permeabilized with 0.2% Triton X-100 for 5 min at
40C. Cells were blocked in 10% fetal bovine serum (FBS)
for 30 min at room temperature, and incubated with M5

http://www.biomedcentral.com/1471-2121/8/13

anti-FLAG antibody (Sigma) at 1:500 dilution in 5% FBS
for 1 hr at room temperature. After the primary antibody
incubation, cells were washed with PBS and incubated
with secondary antibody (AlexaFluor-568 goat anti-
mouse, Molecular Probes) at 1:1000 dilution for 45 min.
After washing in PBS, cells were mounted onto slides with
Vectashield containing DAPI and imaged by fluorescence
microscopy.

Western analysis

MCE-7 cells were treated without or with varying concen-
trations of hydrogen peroxide (H,0,) for 1, 4, 8, or 16
hours. Whole-cell lysates were then prepared in RIPA lysis
buffer (0.15 mM NaCl/0.05 mM Tris- HCI, pH 7.2/1%
Triton X-100/1% sodium deoxycholate/0.1% SDS). 40 ug
of the lysates was resolved by SDS/PAGE, transferred to a
nitrocellulose membrane, and blotted with an anti-
NCOA?7 antibody. Cell lysates in which the NCOA7
expression was inhibited by siRNA targeting NCOA7 were
included to identify the protein band corresponding
NCOA?7.
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