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Abstract
Background: The lymphatic system complements the blood circulatory system in absorption and
transport of nutrients, and in the maintenance of homeostasis. Angiopoietins 1 and 2 (Ang1 and
Ang2) are regulators of both angiogenesis and lymphangiogenesis through the Tek/Tie-2 receptor
tyrosine kinase. The response of endothelial cells to stimulation with either Ang1 or Ang2 is
thought to be dependent upon the origin of the endothelial cells. In this study, we examined the
effects of the angiopoietins on lymphatic, venous and arterial primary endothelial cells (bmLEC,
bmVEC and bmAEC, respectively), which were isolated and cultured from bovine mesenteric
vessels.

Results: BmLEC, bmVEC and bmAEC cell populations all express Tie-2 and were shown to
express the appropriate cellular markers Prox-1, VEGFR3, and Neuropilin-1 that define the
particular origin of each preparation. We showed that while bmLECs responded slightly more
readily to angiopoietin-2 (Ang2) stimulation, bmVECs and bmAECs were more sensitive to Ang1
stimulation. Furthermore, exposure of bmLECs to Ang2 induced marginally higher levels of
proliferation and survival than did exposure to Ang1. However, exposure to Ang1 resulted in
higher levels of migration in bmLECs than did to Ang2.

Conclusion: Our results suggest that although both Ang1 and Ang2 can activate the Tie-2
receptor in bmLECs, Ang1 and Ang2 may have distinct roles in mesenteric lymphatic endothelial
cells.

Background
Tek or Tie-2 is the receptor tyrosine kinase (RTK) for the
angiopoietin family of ligands (Ang1, 2, 3, and 4). The
role of Tie-2 in endothelial cells has been extensively stud-
ied over the years, and the discovery of impaired lym-

phatic vessel patterning and function in Angiopoietin-2
(Ang2) knockout mice has since added extra complexity
to this growing field [1]. Tie-2 has also been shown to be
expressed in lymphatic endothelial cells [2]. In vivo stud-
ies using slow-release pellets of an engineered form of
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Ang1, cartilage oligomeric matrix protein-Angiopoietin-1
(COMP-Ang1), have further showed induction of angio-
genesis and ectopic lymphangiogenesis in mouse cornea
[2]. In addition, over-expression of Ang1 in the skin of
mouse ears via recombinant adeno-associated virus gene
delivery induced lymphatic endothelial cell proliferation,
lymphatic vessel enlargement, sprouting, and branching
[3].

Prior to the discovery of the involvement of Tie-2 and its
ligands in lymphangiogenesis, the role of Tie-2 and it lig-
ands in angiogenesis was the focus of mouse genetic stud-
ies. Ang1 deficient mice exhibited phenotypes similar to
those of Tie-2 knockout mice. These phenotypes included
impaired myocardial trabeculation and endocardial
development as well as lack of perivascular recruitment to
endothelial cells undergoing angiogenesis [4]. Ang2 was
initially characterized as an Ang1 competitive antagonist
since transgenic over-expression of Ang2 produced ang-
iogenic defects resembling those of Ang1 or Tie-2 knock-
out mice [5].

In recent studies, evidence suggesting condition-depend-
ent agonistic roles for Ang2 brought into question the ini-
tial characterization of Ang2 as simply a competitive
antagonist of Ang1. Ang2 has been shown to activate Tie-
2 phosphorylation at high concentrations leading to cell
survival via the Akt signalling pathway [6]. Following a
24-hour pre-treatment, Ang2 can lead to vessel growth in
a fibrin matrix model [7]. Ang2 can also induce tubule for-
mation in murine brain capillaries and promote endothe-
lial cell migration [8]. In addition to inhibiting JNK/SAPK
phosphorylation, Ang2 has been shown to induce phos-
phorylation of Tie-2, AKT, Erk1/2, and p38 members of
the mitogen activated protein kinases in the human
umbilical vein endothelial cells (HUVEC) [9]. Other func-
tions of Ang2 in vasculogenesis include promotion of
endothelial cell (EC) adhesion independently of Tie-2
[10], regulation of differentiation of cells surrounding the
cortical peritubular capillaries of the kidneys [11], and
modulation of retinal and hyaloid blood vessel remodel-
ling [12].

Complementing these studies were mouse knockout
experiments that further elucidated the impotance of
Ang2 in endothelial cell function. Ang2-null mice (strain
129/J) exhibited defects in the hyaloid blood vasculature
and gross defects in lymphatic remodelling [1]. Skin
oedema in Ang2-null mice correlated with improper
recruitment of support cells such as smooth muscle cells
responsible for the contractile function of lymphangions
in peripheral or dermal lymphatic vessels [1]. The Ang2-
null mice also developed lethal chylous ascites and edema
in the peritoneal cavity around day 14, correlating with
improperly remodelled lacteals in villi, disorganization

and hypoplasia of intestinal lymphatic capillaries, and
deficient smooth muscle association in mesenteric-col-
lecting lymphatic vessels [1]. The function of Ang2 is
therefore not limited to antagonistic regulation of Ang1 in
Tie-2 signalling.

In this study, we demonstrate that bovine mesenteric
venous, arterial, and lymphatic endothelial cells (bmVEC,
bmAEC, and bmLEC) responded differentially to Ang1
and Ang2. Firstly, both Ang1 and Ang2 activated Tie-2 and
downstream ERK1/2 in bmLEC. However, whereas Ang1
promoted migration in bmLECs, Ang2 slightly more effec-
tively promoted proliferation and survival in these cells.
Secondly, Ang1 more effectively activated Tie-2 and
downstream ERK1/2 in bmVECs and bmAECs than did
Ang2. However, whereas Ang1 promoted survival, and
migration in bmVECs and bmAECs, Ang2 did not stimu-
late the same responses in these cells. Whereas Ang1 pro-
duced a small proliferative response in bmAECs, neither
Ang1 nor Ang2 produced a proliferative response in
bmVECs. Taken together, our results suggest cellular
responses to Ang1 and Ang2 stimulation vary depending
on the origin of the endothelial cells.

Results
BmLEC isolation and culture
In order to distinguish translucent lymphatic vessels from
surrounding fatty tissue, Evan's blue dye was injected into
exposed mesenteric lymph nodes. The blue staining of
post-nodal lymphatic vessels facilitated excision and
processing of the vessels to extract endothelial cells. Blood
vessels remained red after dye injection (Figure 1A) and
therefore could not be mistaken for lymphatic vessels. Ini-
tial cultures of cells extracted from dispase- and colla-
genase-treated excised bovine mesentery lymphatic
vessels were at least 50% endothelial based on cellular
morphology. Cells cultured from treated vessels were a
mixture of smooth muscle cells (SMCs), fibroblasts, and
cobblestoned bmLECs.

Unlike high-purity endothelial cell populations, a mixed
cell population did not form a cobblestone monolayer
when grown to confluency (Figure 1B). The morphologies
of the different cells within the mixed population were
visually distinguishable. A mixed population of predomi-
nantly SMCs, fibroblasts, and a few bmLECs formed circu-
lar "swirly" patterns (Figure 1C). This morphology has
previously been described by Leak and Jones, and John-
ston and Walker [13,14]. Populations of cells that pre-
dominantly consisted of fibroblasts (Figure 1D) or SMCs
(Figure 1E) had distinct morphologies unlike the cobble-
stoned appearance of bmLEC at confluency (Figure 1F).

To obtain purity greater than 90%, contaminating SMCs
and fibroblasts were eliminated from the culture by direct
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Isolation of Bovine Mesenteric Lymphatic Endothelial CellsFigure 1
Isolation of Bovine Mesenteric Lymphatic Endothelial Cells. A/ Evan's blue dye, when injected into the lymph node of 
bovine mesentery (***), outlined lymphatic vessels (**), but not blood vessels (*). B/ A mixed cell population did not form a 
monolayer in culture. C/ A mixed cell population of predominantly smooth muscle cells and fibroblasts formed circular pat-
terns in culture. D/ Typical morphology of a cell population predominantly comprising of fibroblasts. E/ Morphology of a cell 
population predominantly comprising of smooth muscle cells. F/ Morphology of a cell population predominantly comprising of 
lymphatic endothelial cells. G/ Mixed cultures of cells extracted from lymphatic vessels spontaneously formed lymphatic tube-
like structures with ends attached to the walls of the tissue culture dish. H/ Enlargement of the lymphatic tube-like structure 
seen in "G".
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aspiration, differential trypsinization, and by limited dilu-
tion. Resulting cultures of the primary cells bmLECs had
doubling times of approximately 24 hours [see Additional
file 1], consistent with doubling times reported by Leak
and Jones [13]. These bmLECs were robust and could be
frozen and thawed within 20 passages.

Previously, Leak and Jones [13] described the spontane-
ous formation of lymphatic tube structures in vitro from
confluent monolayer of lymphatic endothelial cells. We
also observed the formation of these tubes in 96-well
plates of bmLEC cell populations left at confluency for at
least a few weeks (Figures 1G and 1H). Cells at the ends of
the tubes attached to and migrated up the sidewalls of the
tissue culture wells (Figure 1G). The formation of lym-
phatic tubular structures in culture indicated that
extracted bmLECs maintain lymphatic phenotypic charac-
ter.

Comparing bmLECs to bmVECs, and to bmAECs
In essence, the strategy used to isolate bmLECs was also
used to isolate bmAECs and bmVECs. Dye injection was
unnecessary since large mesenteric arteries and veins were
discernable from surrounding fatty tissue, unlike milky
white lymphatic vessels. Arteries were thick-walled vessels
that were easily distinguished from slightly larger and
thin-walled veins. Cultured bmLECs, bmVECs, and
bmAECs exhibited the same cobblestoned monolayer
morphology at confluency (Figure 2A), although the
packing of cells together was somewhat different. After the
formation of the confluent monolayer, bmAECs,
bmVECs, and bmLECs continued to grow at different rates
to form tighter-packed monolayer [see Additional file 1].
BmAECs grew fastest at this stage and formed the densest
monolayer. BmAECs were followed by bmVECs, which
formed the second densest monolayer. BmLECs grew at
the slowest rate at this stage and formed the least dense
monolayer [see Additional file 1 and data not shown].

Staining the cells with fluorescent phalloidin revealed that
the arrangement of actin microfilaments in each cell type
appeared similar to each other, typically with dense
peripheral bands of actin filaments, and prominent stress
fibers throughout the cytoplasm (Figure 2A). However
there seemed to be some qualitative differences in the
intracellular distribution of these actin filaments. There
were extensive dense peripheral bands of actin, with rela-
tively few stress fibers in bmVECs, whereas stress fibers
were more prominent in bmAECs. In contrast, bmLECs
seemed to have an intermediate combination of both
actin filament arrangements (Figure 2A).

Upon achieving confluency, apart from differences in cell
packing, bmLECs were indistinguishable from bmVECs
and bmAECs by phase contrast microscopy alone (data

not shown). However, using gene-specific primers and
reverse transcriptase-PCR analysis, and using antibodies
specific for Prox-1, LYVE-1, or Podoplanin and immun-
ofluorescence, we were able to demonstrate that these
endothelial cell preparations retained their lineage-spe-
cific properties in culture. All three cell preparations
expressed Tie-1 and Tie-2 (Figure 2B), whereas bmLECs
but not blood ECs expressed VEGFR-3 (Flt-4) and Prox-1
(Figures 2B). Immunofluorescence also showed bmLECs
to express LYVE-1 and Podoplanin (Figure 2C), both of
which have been shown to be specific markers of lym-
phatic endothelial cells [16]. Furthermore, bmAECs and
not bmVECs expressed neuropilin-1, which has been
shown to be a specific arterial endothelial cell marker [17]
(Figure 2B).

Activation of Tie-2 in bmECs by Ang2
In order to ensure Tie-2 in bovine cells is sufficiently sim-
ilar to human Tie-2 to be stimulated with human angi-
opoietin ligands, amino acid sequences of bovine, mouse,
and human Tie-2 were aligned with CLUSTALW [see
Additional file 2]. Protein sequence alignment of human,
mouse and bovine Tie-2 indicated 95% identity between
bovine and human sequences and 92% identity between
mouse and human, or mouse and bovine sequences.
More importantly, the residues found by Barton et al. [18]
to be important for the interaction of Tie-2 with Ang2
were conserved across the three species [see Additional file
2, blue boxes], and all tyrosine residues in the kinase
domain were perfectly conserved [see Additional file 2].
Based on this observation, bovine endothelial cells
should be highly suitable for stimulation with human lig-
ands.

The Tie-2 receptor protein levels were greatest in bmAECs,
whereas the levels in bmVECs and bmLECs were lower
(Figure 3A, anti-Tie-2 (33.1)). Once the differences in
expression levels of Tie-2 in each cell were accounted for,
activation of Tie-2 as judged by its autophosphorylation
by Ang2, relative to basal autophosphorylation level
(mock treatment), was highest in bmLECs, and was con-
siderably lower in bmAECs and bmVECs (Figure 3A and
3B). Clustered Ang1, which we have previously demon-
strated is the most potent form of Ang1 [19], stimulated
the activation of Tie-2 in all three cell types above basal
levels (Figure 3A and 3B). Of note, the level of phosphor-
ylation of Tie-2 due to Ang1 stimulation as compared to
the level due to Ang2 stimulation was the same in
bmLECs but different in bmAECs and bmVECs (Figure 3A
and 3B).

Studies of HUVEC and capillary endothelial cell systems
have shown that Ang1 and Ang2 stimulation resulted in
the activation of extracellularly regulated kinase or ERK1/
2 [9,20-22]. In our endothelial cell system, whereas
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Similarities and differences between bmLECs, bmVECs and bmAECsFigure 2
Similarities and differences between bmLECs, bmVECs and bmAECs. A/ BmLECs could not be distinguished from 
bmVECs or bmAECs by cellular morphology alone. Actin staining of the three cells using Rhodamine-phalloidin showed actin 
filaments arranged in dense bands around the cell periphery and actin stress fibers extending throughout the cytoplasm. B/ 
Despite being similar in morphology, RT-PCR analysis showed bmLECs and not bmVECs or bmAECs expressed Prox-1 and 
VEGR-3; bmAECs and not bmVECs expressed neuropilin-1. All cells expressed Tie-2 and Tie-1. C/ By immunofluorescence, 
bmLECs stained positive for podoplanin, Prox-1, and LYVE-1.
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Stimulation of Tie-2 phosphorylation in bmECs by Ang1 and Ang2Figure 3
Stimulation of Tie-2 phosphorylation in bmECs by Ang1 and Ang2. A/ Stimulation of bmLECs, bmVECs, and bmAECs 
with 800 ng/mL Ang1 (clustered with anti-His antibody), or 800 ng/mL Ang2, or with clustering antibody alone (Mock). Ang1 
stimulation resulted in activation of Tie-2 in bmLECs and to a lesser extent bmAECs and bmVECs. B/ Phosphorylated Tie-2 sig-
nals from blots of three independent experiments were measured via densitometry (ImageQuant) and normalized to corre-
sponding total Tie-2 levels. Paired Ang1- and Ang2- stimulated, normalized Tie-2 phosphorylation levels in each experiment 
were compared by ttest and p-values for 95% CI are shown. Both Ang1 and Ang2 stimulated Tie-2 to comparable levels in 
bmLECs, whereas Ang1 was more effective in stimulating Tie-2 in bmVECs and bmAECs. C/ Phosphorylated ERK1/2 signals 
from blots of the same three independent experiments from B/ were measured via densitometry (ImageQuant) and normalized 
to corresponding total ERK1/2 levels. Paired Ang1- and Ang2-stimulated, normalized ERK1/2 phosphorylation levels in each 
experiment were compared by ttest and p-values for 95% CI are shown. Ang1 was more effective in stimulating ERK1/2 phos-
phorylation in all three cell types than Ang2. D/ Stimulation of bmLECs with 800 ng/mL Ang2 resulted in phosphorylation of 
tyrosine residue 992 on Tie-2.
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endogenous protein levels of ERK1/2 were not different in
bmLECs, bmVECs and bmAECs, active phosphorylated
ERK 1/2 (phospho-ERK) levels were quite different. Mock-
treated bmVECs contained high amounts of phospho-
ERK, whose levels increased slightly upon Ang1 stimula-
tion (Figure 3A and 3C). Ang2 stimulation of bmVECs did
not activate ERK1/2 according to phosphorylation levels
of the protein (Figure 3A and 3C). Although bmAECs had
relative low basal levels of phospho-ERK in the mock-
treated sample, these cells responded in a similar fashion
as bmVECS to Ang1 stimulation. Phospho-ERK levels
were increased above basal levels upon Ang1 stimulation,
but not upon Ang2 stimulation in bmAECs (Figure 3A
and 3C). In contrast to bmAECs and bmVECs, stimulation
of bmLECs with either Ang1 or Ang2 resulted in an
increase in phospho-ERK levels, although Ang1 seemed to
provide a more potent signal (Figure 3A and 3C).

In order to ascertain whether the autophosphorylation of
Tie-2 detected in these immunoblots reflected ligand-
dependent activation of Tie-2 and not just phosphoryla-
tion by another kinase, we immunoblotted membranes
from bmLECs stimulated with Ang2 with an activation-
specific antibody directed to phosphotyrosine 992. Phos-
phorylation of tyrosine 992 has been shown to reflect acti-
vation of kinase activity in Tie-2 [23]. Tie-2 was
phosphorylated at this residue when bmLECs were stimu-
lated with Ang2 (Figure 3B), indicating that kinase activity
of the tyrosine receptor was activated.

BmLEC proliferation is enhanced by Ang1 and Ang2
Blood vasculature endothelial proliferation in response to
growth factors is considered a key angiogenic response. In
the study of lymphangiogenesis, angiogenesis-related
assays would need to be adapted to the study of key lym-
phangiogenic responses of lymphatic endothelial cells
such as proliferation. Thus, we tested the response of
bmLECs to different proliferative factors. 3H-thymidine
uptake assays of bmLECs stimulated with VEGF-A165,
VEGF-CC156S, bFGF, EGF [see Additional file 3] demon-
strated that all of the growth factors to varying degrees
stimulated thymidine upatke in bmLEC. The greatest
response of bmLECs was to bFGF and VEGF-CC156S [see
Additional file 3] confirming the phenotypic fidelity of
bmLECs in vitro.

Studies have shown that Ang1 stimulation results in the
activation of ERK1/2 [9,20-22]. Ang1 has also been shown
to stimulate proliferation of endothelial cells [21]. To
determine whether Ang1 and Ang2 had differential effects
on the proliferation of different types of endothelial cells,
we tested the levels of thymidine uptake of the three
bmECs in the presence of Ang1 and Ang2 (Figures 4A).
Although the basal proliferative activity of each cell prep-
aration was somewhat varied: highest in bmAECs, lower

in bmVECs, and lowest in bmLECs (data not shown), the
differential responses of the cells to these angiogenic fac-
tors relative to control levels was detectable. BmVECs did
not respond to either Ang1 or Ang2, whereas bmAECs
responded best to Ang1 stimulation (Figure 4A). In con-
trast, bmLECs responded to both Ang1 and Ang2 but best
to Ang2-stimulation (Figure 4A). These results suggest
that endothelial cell type influences proliferative
responses to either Ang1 or Ang2.

In order to make sure Ang1 and Ang2 stimulation did not
increase thymidine uptake in bmLECs independently of
cell cycle progression and cellular proliferation, we per-
formed cell count experiments (Figure 4B). We also per-
formed cell count experiments for bmVECs and bmAECs
with both ligands to ensure reproducibility of the thymi-
dine uptake data (Figure 4C and 4D). Consistent with the
trends shown by thymidine uptake assays, Ang1 and Ang2
both provided proliferative signals to bmLECs, increasing
bmLEC numbers over the 96-hour period of the assay
(Figure 4B). Furthermore, consistent with thymidine
uptake results, Ang2 was marginally more effective than
Ang1 in increasing cell counts of bmLECs, although the
result was not statistically significant (Figure 4B). How-
ever, Ang1 and Ang2 increased bmLEC cell counts signifi-
cantly above mock levels indicating that both Ang1 and
Ang2 were mitogenic for bmLECs (Figure 4B).

Consistent with thymidine uptake results, neither Ang1
nor Ang2 provided proliferative signals to bmVECs (Fig-
ure 4C). Neither ligand increased cell counts of bmVECs
above mock levels over the 96-hour period (Figure 4C). In
contrast and consistent with the trends shown by the thy-
midine uptake results, Ang1 provided a small proliferative
signal to bmAECs, whereas Ang2 did not increase bmAEC
cell counts above mock levels over the 96-hour period
(Figure 4D). Taken together, these cell count results indi-
cate that whether Ang1 and Ang2 are mitogenic depends
on endothelial cell type.

Ang1 promotes bmEC migration
Endothelial cell migration is another well-accepted crite-
rion for the angiogenic response. Ang1 has previously
been shown to induce cell migration, whereas Ang2 has
previously been shown not to drive the migration of
HUVECs [24]. Using a modified Boyden chamber assay
we tested the ability of Ang1 and Ang2 to drive migration
of these three cell types. We found that Ang2 did not pro-
mote migration of these cells whereas Ang1 was able to
drive endothelial cell migration (Figure 5). These results
suggest that although bmLECs, bmVECs, and bmAECs
responded differentially to Ang1 and Ang2 in proliferative
assays, they responded similarly to chemoattractant
effects of Ang1.
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Proliferation of Ang1 and Ang2 stimulated bmECsFigure 4
Proliferation of Ang1 and Ang2 stimulated bmECs. A/ BmLECs, bmAECs and bmVECs were tested for proliferative 
response in the presence of Ang1 and Ang2 via tritiated thymidine uptake. Clustered Ang1 (800 ng/mL) and Ang2 (800 ng/mL) 
did not increase thymidine uptake in bmVECs. Ang1 induced increased thymidine uptake in bmAECs and bmLECs above mock 
levels (clustering anti-His antibody alone). Ang2-treated bmLECs showed higher levels of thymidine uptake than did Ang1-
treated cells. Results from two independent experiments were compiled for the figure. ANOVA p-values for 95% CI are indi-
cated with the colours of the bars corresponding to the colours used to represent cell type. BmLECs (B), bmVEC (C), and 
bmAEC (D) were tested for proliferative response in the presense of clustered Ang1 (800 ng/mL) and unclustered Ang2 (800 
ng/mL) by cell counting. 40 000 cells were seeded (hour 0, approximately 10% confluency) and monitored every 24 hours. 
Trypan blue exclusion was used to determine cell viability. Results were compiled from one representative experiment of two 
independent experiments, each done in tripplicate. ANOVA p-values for 95% CI for cell counts at the 96 hour time points are 
as follows: B/ BmLEC p = 9E-10 (*); C/ BmVEC p = 0.22 (**); D/ BmAEC p = 6E-7 (***).
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Ang2 protects bmLEC from cell death
Many angiogenic factors are known to protect ECs from
serum-deprivation-induced cellular apoptosis (reviewed
by [25]). Ang1 has previously been shown by numerous
groups including ours to protect HUVEC from apoptosis
[26-33]. However, a role for Ang2-mediated EC survival
remains unclear. Results of some studies suggested that
Ang2 counteracts the anti-apoptotic effects of Ang1 and
leads to cell death [5,34-36]. Results of other studies sug-
gested that Ang2 mediates a PI3-kinase-dependent cell

survival signal [6,9,37]. To investigate the role of Ang2 in
serum-deprivation-induced cell death, we tested the abil-
ity of Ang1 or Ang2 to promote cell survival on the three
cell preparations. Ang1 protected bmVECs and bmAECs
from cell death, whereas it had minimal effect on bmLECs
(Figure 6). In contrast Ang2 had virtually no effect on
bmVECs and a marginal effect on bmAECs (Figure 6).
Interestingly, Ang2 produced a dramatic survival response
in bmLECs (Figure 6). Together with results from survival
and proliferation assays (Summarized in Table 1), these

Migration of Ang1 and Ang2 stimulated bmECsFigure 5
Migration of Ang1 and Ang2 stimulated bmECs. BmECs were tested for migration in a modified Boyden chamber assay 
in the presence of clustered Ang1 (800 ng/mL) and Ang2 (800 ng/mL). Migration of bmLECs, bmVECs, and bmAECs towards 
clustered Ang1-containing media was significantly increased compared to towards control media (Mock) containing only 1% 
FBS and clustering anti-His antibody. In contrast, Ang2 did not significantly stimulate migration in any of the cell types, com-
pared to control media. Migration was measured using the Boyden Chamber. Results from two independent experiments were 
compiled for the figure. ANOVA p-values for 95% CI are indicated.
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Table 1: Summary of results

EC Type Ligand Tie-2/ERK activation Proliferation Survival Migration

Lymphatic Ang-1 +/++ + + +
Ang-2 +/+ ++ +++ -

Vein Ang-1 +/+ - +++ +
Ang-2 -/- - + -

Arterial Ang-1 +/+ ++ +++ +
Ang-2 -/- - ++ -

Table depicts relative levels of Tie-2 and ERK1/2 activation and relative levels of proliferation, survival in serum-deprivation conditions, and 
migration of Ang1 and Ang2 stimulated bmECs.

Survival of Ang1 and Ang2 stimulated bmECsFigure 6
Survival of Ang1 and Ang2 stimulated bmECs. Death in bmECs was induced by serum starvation and relative amounts 
of cell death compared to 0.1%FBS control (0% survival) were measured by quantification of cytoplasmic histone-associated-
DNA-fragments (mono- and oligonuclosomes) via ELISA (Roche). Ang2 (800 ng/mL) provided marginally better protection 
from serum-deprivation-induced cell death than did Ang1 (800 ng/mL) for bmLECs. Ang2 provided marginally worse protec-
tion from serum-deprivation-induced cell death than did Ang-1 for bmVECs and bmAECs. Results of three independent exper-
iments were compiled for this figure. P-values of unpaired, two-tailed ttest for 95% CI are indicated.
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results further suggest that the origin of endothelial cells
dramatically influences angiogenesis/lymphangiogenesis-
related responses to either Ang1 or Ang2.

Discussion
In this study, we set out to examine whether the type of EC
could affect its response to Ang1 or Ang2. We prepared
ECs from lymphatic, venous and arterial vessels taken
from bovine mesentery and subjected them to numerous
angiogenesis-related in vitro assays. Our results demon-
strate that the activation of Tie-2 by Ang2 stimulation was
as effective as by Ang1 stimulation in bmLECs. In bmVECs
and bmAECs, Ang1 stimulation was more effective than
Ang2 in activating Tie-2 in bmVECs and bmAECs. The
activation of Tie-2 in all three cell types by Ang1 or in
bmLECs by Ang2 correlated with the activation of ERK1/
2. Ang1 activated ERK1/2 in all three cell types, whereas
Ang2 only activated ERK1/2 in bmLECs. Of note, Ang1
seemed to be a more potent activator of ERK1/2 than
Ang2 in bmLECs. These results suggest ERK1/2 is a down-
stream signalling pathway of Tie2 in endothelial cells.
Although Ang1 stimulation correlated with ERK1/2 acti-
vation in all three cells, Ang1 did not promote prolifera-
tion in all three cell types but only weakly in bmAECs and
bmLECs (Table 1). Unlike bmVECs, both bmAECs and
bmLECs had low levels of basal phosphorylated ERK1/2
levels in the mock samples. This finding suggests that the
proliferative response of bmLECs to Ang-2 stimulation
may not be solely under the regulation of ERK1/2 down-
stream of Tie-2. Complex cell-type specific mechanisms
present in the endothelial cells suppress the proliferative
signal from Ang1 in bmVECs, but promote the weak pro-
liferative responses in bmLEC and bmAECs.

Likewise, additional cell-specific mechanisms may be
present in blood endothelial cells that suppress the prolif-
erative and survival signals from Ang2, but are present in
lymphatic endothelial cells to promote the proliferative
and survival signals from Ang2. This was implied by our
findings that Ang2 was not a proliferative signal for
bmAECs or bmVECs but only for bmLECs. Similarly,
Ang2 did not strongly support serum-free survival of
bmVECs and bmAECs but significantly promoted the sur-
vival of bmLECs (Table 1). Of note, the level of ERK1/2
activation stimulated by Ang2 in bmLECs was lower than
the level stimulated by Ang1, which did not provide as
potent a proliferative or survival signal as Ang2 in
bmLECs. In summary, our data shows that endothelial
cells of different origin have different sets of cellular
responses to Ang1 and Ang2 stimulation, suggesting that
Ang1 and Ang2 activate distinct sets of signalling mole-
cules in the signalling cascades of endothelial cells of dif-
ferent origin. Thus, we recommend the consideration of
Ang2 as a full agonist in endothelial cells of lymphatic ori-
gin, but a partial agonist in endothelial cells of blood ori-

gin. Since Ang1 and Ang2 also elicited slightly different
responses from bmAECs and bmVECs in our study (Table
1), the subtype of endothelial cells of blood origin need to
be taken into consideration in future studies of Ang1 and
Ang2 signalling and function.

Until recently, Ang2 was thought to be an Ang1 competi-
tive antagonist. This conclusion was made based on the
finding that transgenic over-expression of Ang2 produced
blood vasculature defects resembling those of Ang1 or Tie-
2 knockout mutants [1]. Ang2 competitively blocked acti-
vation of Tie-2 by Ang1 but Ang2 was equally as effective
as Ang1 in activating Tie-2 phosphorylation in NIH 3T3
fibroblasts ectopically expressing Tie-2 [1]. This finding
suggested that endothelial cells have additional compo-
nents that allow functional discrimination between the
two angiopoietin [1]. Our findings clearly indicates that
the additional components suggested by these initial stud-
ies of Ang2 are endothelial cell-type specific and may be
responsible for the agonistic activities of Ang2 in lym-
phatic endothelial cells. Although there are some func-
tional redundancies, each angiopoietin may be driving a
distinct set of cellular events within a specific type of
endothelial cell.

Ang2 induction has been shown to associate with progres-
sion and prognosis of a variety of human cancers. High
expression of Ang2 in malignant tissue correlates with
poor survival rate, and/or high frequency of metastasis,
and/or high microvascular density (MVD) in patients with
advanced colorectal carcinoma, breast cancer, gastric car-
cinoma, hepatocellular carcinoma (HCC), non-small cell
lung cancer (NSCLC), prostate cancer, and ovarian cancer
[38-47]. In contrast, expression of Ang1 in these tumours
was often found to be at comparatively low to undetecta-
ble levels. These studies implicate Ang2 as a potentially
potent target of anti-angiogenic cancer therapy. In fact,
blocking Ang2 activity by antibodies and specific peptide
inhibitors has been efficacious in suppressing tumour
growth and reducing endothelial cell proliferation in mice
[48].

This evidence suggests that Ang2 is not simply a "context-
dependent antagonist/agonist" of Tie-2 signalling; Ang2
can also be a potentially effective candidate target of ther-
apy for pathological conditions involving both angiogen-
esis and lymphangiogenesis, such as cancer metastasis.
Importantly, drug designs intended to target Ang2- while
avoiding Ang1-mediated signalling may produce fewer
side effects. This point lends justification to further inten-
sive studies to characterize the cell-type specific mecha-
nisms responsible for differential responsiveness to Ang1
and Ang2 stimulation in angiogenesis as well as in lym-
phangiogenesis. Cells systems such as the one described
in this study would be useful tools in this endeavour.
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Historically, the angiogenesis field has advanced faster
and farther than that of lymphangiogenesis. The discovery
of lymphatic markers and the emerging evidence implicat-
ing the lymphatic system's central role in a variety of path-
ological conditions has attracted research interest and
driven the field forward. One important question emerges
as researchers are confronted with the design of pharma-
ceuticals in enhancing or mitigating lymphangiogenesis:
whether it is possible to specifically target one vascular
system without adversely compromising the functions of
other vascular system when there is evidence of shared
molecular regulators such as the angiopoietins behaving
differently in the two systems. Addressing this important
question requires in vitro systems such as the one
described here, that allows simultaneous characterization
of the signalling pathways downstream of the angiopoie-
tins in each of the three cell types: venous, arterial and
lymphatic endothelial cells.

Conclusion
We have isolated primary endothelial cells from lym-
phatic (bmLECs), vein (bmVECs), and arterial (bmAECs)
vessels of bovine mesentery. The cells express specific
markers of their respective lineages, and were used to test
the hypothesis that endothelial cell type determined cellu-
lar response such as proliferation, migration, and survival
to Ang1 and Ang2 stimulation. We found that indeed,
while Ang1 was a chemoattractant for all three cells, Ang1
was a more potent survival signal than Ang2 in bmAEC
and bmVEC. In contrast, Ang2 was a more potent survival
and proliferative signal than Ang1 in bmLECs. Our data
suggests that each endothelial cell type possesses a unique
repertoire of signalling proteins that allows that cell type
to differentially respond to the angiopoietins.

Methods
bmLEC isolation and culture
Methods for isolation and culture of bovine endothelial
cells were adapted from previously established methods
[13,14]. Sections of the gut mesentery were taken from
freshly slaughtered cattle at a local abattoir (Better Beef,
Guelph, Ontario). The mesenteric sections were brought
back to the laboratory in warm PBS. Connective and fatty
tissues, which were superficially rinsed with 75% ethanol,
were removed to expose lymph nodes and vessels. Sterile
0.1% Evan's Blue dye was injected into the lymph nodes
to high light the lymphatic vessels. Dye was flushed from
excised vessels with warm PBS supplemented with penicil-
lin (100 Units/mL, Life Technologies), streptomycin (100
µg/mL, Life Technologies), and fungizone (2.5 µg/mL
Gibco, Invitrogen). Distal ends of excised vessels were
occluded with surgical suture in order to infuse a solution
of dispase I (2.6 U/mL, Roche) and collagenase A (1 mg/
mL, Roche). Vessels occluded at both ends to trap the
enzyme solution were incubated in PBS at 37°C for 10

minutes. Cells dislodged by the treatment were grown on
plates coated with 1% bovine gelatin (Sigma-Aldrich), in
DMEM (Dulbecco's modified eagle's medium, Sigma-
Aldrich), and standard conditions. Cells isolated from
four animals and several vessels from each animal were
used in these studies.

bmVEC and bmAEC isolation and culture
Isolation of cells from venous and arterial vessels from
bovine mesentery followed a similar strategy as described
for bmLECs. However, the use of dye was unnecessary.
Cells isolated from four animals and several vessels from
each animal were used in these studies.

Eliminating contaminating cells
In order to establish high-purity cultures of bovine
mesenteric endothelial cells (bmECs), a combination of
strategies were used. Firstly, cells that were uninhibited by
contact and grew atop the monolayer of endothelial cells
were removed by several washes with trypsin such that the
monolayer underneath was not disturbed. Secondly, visi-
ble regions of the monolayer that did not appear cobble-
stoned at confluency were removed by direct aspiration.
Finally, limited dilution into 96-well plates was used to
isolate groups of homogenous endothelial cells. Groups
of cells comprising of more than 90% endothelial cells
were used in experiments. 90% estimates of purity were
based on monolayer cobblestone appearance.

Detection of transcripts by RT-PCR
Total RNA was prepared from cells isolated from bovine
gut mesentery using Tri-Reagent (Sigma-Aldrich) accord-
ing to manufacturer's instructions. cDNA was synthesized
from 1 µg of total RNA with Thermoscript reverse tran-
scriptase (Invitrogen) according to manufacturer's instruc-
tions. PCR was performed with Taq polymerase (Qiagen)
with primer sequences: Tie-1 (forward primer 5'-TGA CTT
TGC GGG AGA ACT GG-3', reverse primer 5'-CTC CGA
CCA GCA CGT TTC GG-3'), Tie-2 (forward primer 5'-GAT
TTT GGA TTG TCC CGA GGT CAA G-3', reverse primer 5'-
CAC CAA TAT CTG GGC AAA TGA TGG-3'), Neuropilin-1
(forward primer 5'-CAG AAC GCT GCC CAC TGC AT-3',
reverse primer 5'-CTT TCT GGG TCC TTT TTA TC3'),
VEGFR3 (forward primer 5'-CGG TGC CCA GTG CGT
GGG ACG-3', reverse primer 5'-TTG ACT AGC CAT CGT
AGG ACA-3'), Prox-1 (forward primer 5'-TTG TCA CCC
AAT CAC TTG AAA-3', reverse primer 5'-CTT CCA GGA
AGG ATC AAC ATC-3') and GAPDH (forward 5'-ACC ACA
GTC CAT GCC ATC AC-3', reverse primer 5'-TCC ACC
ACC CTG TTG CTG TA-3')

Cell imaging
bmECs were grown to confluency on gelatin-coated glass
coverslips, fixed with 4% paraformaldehyde in PBS for 10
minutes at room temperature, and permeabilized with
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0.1% TritonX-100 (Sigma-Aldrich) for 1 minute at room
temperature. Fixed and permeabilized cells were stained
with haematoxylin and eosin (H&E) or with immunoflu-
orescence using antibodies: Prox-1(RDI), LYVE-1 (RDI),
and podoplanin. The following protocol was used for
Rhodamine-Phalloidin staining: Fixed and permeabilized
cells were incubated in Rhodamine-phalloidin (Molecu-
lar Probes, 1:40 dilution) in PBS for 15 minutes, and
washed. Cells were mounted on microscope slides with
aqua-polymount (Polysciences Inc.) or DAPI-containing
Vectashield mounting medium (Vector Laboratories)
where appropriate. Bright-field microscope images were
produced with the Zeiss Axioplan 2 light microscope (Carl
Zeiss). Confocal images were produced using Carl Zeiss
LSM 510 laser scanning confocal microscope. Fluorescent
images were produced using the Zeiss Axiovert 200 M.

Stimulation of bovine endothelial cells
BmECs grown on gelatinized plates were moved to bare
plates 24 hours prior to stimulation. Cells were stimulated
for 15 minutes with human recombinant Ang1 or Ang2
(800 ng/mL, R&D Systems) in 10% FBS. For stimulations
with recombinant Ang1, which contains a polyhistidine
tag, anti-polyhistidine monoclonal antibody (anti-His,
R&D Systems) was used to cluster the ligand according to
manufacturer's instructions (ligand to antibody ratio
1:20). Where indicated, mock treatment refers to cells
incubated with anti-His antibody alone. Three independ-
ent experiments were used to compile the quantitative
results of figure 3.

Cell Lysis and Tie-2 Immunoprecipitation
Bovine ECs were washed twice with ice-cold PBS supple-
mented with 2 mM activated sodium orthovanadate
(Sigma-Aldrich, see [15] for activation protocol). Cells
were lysed on ice for 30 minutes with RIPA lysis buffer
supplemented with 2 mM sodium orthovanadate, and
complete protease inhibitors (Roche). Tie-2 was immuno-
precipitated from equal protein amounts of cleared whole
cell lysates with 2 µg of anti-Tie-2 antibody C-20 (Santa
Cruz Biotechnology) pre-coupled to 25 µl protein A-
sepharose (Amersham Biosciences) for 1 hour at 4°C.

Immunoblotting
Proteins were resolved on 10% PAGE gels and transferred
to PVDF (Perkin Elmer) membranes. Antibodies used in
immunoblots were: anti- phosphotyrosine 4G10 anti-
body (1 µg/ml, Upstate Biotechnologies), phosphoTie-2-
specific anti-pTyr992 antibody (1:1000, Cell Signalling),
anti-Tie-2 antibody 33.1 (0.5 µg/ml, BD Biosciences
Pharmingen), and phospho and pan Erk1/2 (44/42
MAPK, 1:1000, Cell Signalling).

3H-Thymidine uptake assay
Bovine ECs were seeded in 96-well plates at a density of
4500 cells/well in 100 µL 10% FBS DMEM. After 24 hours,
10% FBS DMEM was replaced with 1% FBS DMEM + anti-
His antibody (16 ug/mL, "Mock"), with 1% FBS DMEM +
Ang1 (800 ng/mL) clustered with anti-His antibody (1:20
ligand to antibody ratio), or with 1% FBS DMEM + Ang2
(800 ng/mL). Cells treated thus were pulsed for 6 hours
with 2 µCi of 3H-thymidine (Amersham). After 6 hours,
the 96-well plates were placed in -80°C for cell lysis
before 3H-thymidine incorporation was measured with
the TopCount NXT Microplate Scintillation and Lumines-
cence Counter (Packard). 3H-thymidine incorporation by
bmLECs stimulated by various growth factors: bFGF (1
ng/mL, Sigma-Alrich), EGF (5 µg/mL, Invitrogen), VEGF-
A165 (10 ng/mL, R&D Systems), and VEGF-CCys156Ser (1 µg/
mL, R&D Systems) were determined using the same pro-
cedure. Results from two independent experiments, each
with four replicates were compiled for figure 4A.

Cell count assay
40 000 cells were plated in each well of 6-well plates at the
start of the assay in 10%FBS media or in mock media sup-
plemented with 800 ng/mL supper-clustered Ang1 or 800
ng/mL Ang2 and cell numbers were monitored every 24
hours for 96 hours via cell counting with the haemocy-
tometer. Mock media of bmLECs consisted of 5% FBS, of
bmVECs consisted of 2.5% FBS, and of bmAECs consisted
of 1% FBS. These percentages of FBS were required to
maintain the respective cells over 96 hours while main-
taining a detectable level of cellular proliferation and
minimizing cell death. All mock media contained 16 ug/
mL clustering anti-His antibody. Results of figure 4B–D
were compiled from one representative experiment of two
independent experiments, each done in tripplicate. Both
experiments showed the same results (data not shown).

Modified Boyden Chamber Migration Assay
Bovine ECs were grown for 24 hours before they were
serum starved for 2 hours in 0.1% FBS DMEM. Serum
starved bovine ECs were then trypsinized and seeded in
500 µL of 0.1% FBS DMEM at a density of 84 000 cells/
well in the upper chamber of 6 well plates containing 8
µm pore-size inserts (Falcon). 1.5 mL of the following
were placed in the bottom wells: 10% FBS DMEM (posi-
tive control); 0.1% FBS DMEM + anti-His antibody (16
µg/mL, "Mock"); 0.1% FBS DMEM + Ang1 (800 ng/mL)
clustered with anti-His antibody (1:20 ligand to antibody
ratio); 0.1% FBS DMEM + Ang2 (800 ng/mL,). BmECs
migration occurred over a 4-hour time period. Membrane
of inserts were fixed and stained with filtered Harris' hae-
matoxilin prior to mounting on microscope slides with
aqua-polymount (Polysciences Inc.). Results from two
independent experiments were compiled for figure 5, ten
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random fields were counted for each of three replicates of
each experiment.

Cell death ELISA
Bovine ECs were seeded in 6-well plates at a density of 100
000 cells/plate and grown for 24 hours in standard tissue
culture conditions and DMEM supplemented with 10%
FBS before the start of the assay. To examine cell death due
to serum starvation, 10% FBS DMEM was replaced with
0.1% FBS DMEM + anti-His (16 µg/mL), with 0.1% FBS
DMEM + Ang1 (800 ng/mL, clustered with anti-His anti-
body), or with 0.1% FBS DMEM + Ang2 (800 ng/mL). In
order to achieve detectable levels of cell death, bmLECs
were harvested after 24 hour serum starvation, bmVECs
after 48 hours, and bmAECs after 72 hours. Cell death was
determined by quantifying cytoplasmic histone-associ-
ated-DNA-fragments (mono- and oligonuclosomes) via
the ELISA (enzyme-linked immunosorbent assay, Cell
Death ELISAplus, Roche) according to manufacturer's spec-
ifications. Results of three independent experiments each
done in tripplicate were compiled for figure 6.

Statistic Analysis
Paired, one-tailed t-tests were performed for the x-ray film
densitometry results of the three independent experi-
ments compiled for figures 3B and 3C. These parameters
were appropriate since compared samples were not ran-
domly selected as in proliferation, survival and migration
assays. Compared samples belonged to the same x-ray
film with the same film exposure time and linearity,
which were different in each of the three experiments. Fur-
thermore, trends of Ang1 being more effective in activat-
ing Tie-2 in bmVECs and bmAECs, and in activating
ERK1/2 in the three cells remained constant in all three
experiments (data not shown). Unpaired, two-tailed t-
tests were performed on 95% confidence intervals for the
survival assay presented in figure 6. ANOVA was per-
formed when ttest analysis of more than two samples was
required as in the proliferation and migration assays pre-
sented in figures 4 and 5.
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