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Abstract

Background: Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional
complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The
AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such
cytoskeletal interactions are thought to be important for the assembly and remodeling of apical
junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC
in intestinal epithelial cells using a model of extracellular calcium depletion.

Results: Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along
with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into
dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with
nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of
microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated
internalization of junctional proteins into a subapical cytosolic compartment. Likewise,
pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings
and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured
epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic
mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-|
with the E-cadherin-catenin complex.

Conclusion: Our data suggest that microtubules play a role in disassembly of the AJC during
calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/T]
proteins.

Background

Intercellular junctions are a characteristic morphological
feature of differentiated epithelial cell monolayers. They
represent several types of multiprotein complexes assem-
bled at distinct positions within the lateral plasma mem-
brane in areas of cell-cell contacts. The tight junction (T7J)

is the most apically positioned complex followed by the
subjacent adherens junction (AJ). Collectively T] and AJ
are referred to as an apical junctional complex (AJC;
[1,2]). In simple epithelia, TJs and AJs function together to
create a barrier for paracellular movement of solutes and
macromolecules while also playing a crucial role in main-
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tenance of apico-basal cell polarity [3,4]. The integrity and
barrier properties of epithelial cell monolayers are
ensured by transmembrane TJ and AJ proteins that are
engaged in trans-interactions with their partners on the
opposing plasma membrane [2,5,6]. Such transmem-
brane components of TJs include occludin, members of
the claudin family, and immunoglobulin-like proteins
junctional adhesion molecule (JAM)-A and coxsackie ade-
novirus receptor [7,8]. Major transmembrane proteins of
epithelial AJs include E-cadherin and members of nectin
protein family [6,9]. Transmembrane components of api-
cal junctions are clustered and stabilized by an array of
intracellular scaffold proteins that create so called TJ and
AJ cytosolic plaques. The cytosolic T] plaque contains
many different proteins of which members of the 'zonula
occludens' (ZO) protein family are the most extensively
characterized [7,8]. The cytosolic AJ plaque include E-cad-
herin binding partners such as a and B-catenins, and p120
catenin [9,10]. One of the important functions of junc-
tional cytosolic plaques is to provide a link between trans-
membrane TJ/AJ proteins and the cortical cytosketon [11]
allowing efficient transduction of signals from intercellu-
lar junctions to the cell interior as well as "inside out sig-
naling" from cytosolic compartments to intercellular
contacts [1,12].

An emerging theme of junctional research is centered on
understanding mechanisms of AJC disassembly [13-15].
Reversible disruption of epithelial apical junctions is
important for embryonic morphogenesis and tissue
remodeling [16,17]. Furthermore, disassembly of the AJC
plays an important pathophysiological role in the epithe-
lial to mesenchymal transition, a key element in malig-
nant transformation [18]. In addition, disruption of
epithelial apical junctions appears to be a common mech-
anism of host invasion exploited by various bacterial and
viral pathogens (reviewed in [15]).

Disassembly of the epithelial AJC appears to be mediated
by two major mechanisms. One involves reorganization
of perijunctional actin cytoskeleton and another involves
endocytosis of junctional proteins. The relationship
between these mechanisms is not clear but several recent
studies have suggested an important role for F-actin reor-
ganization that results in destabilization of trans-interac-
tions between TJ/AJ proteins of adjacent epithelial cells
and triggers AJC internalization [19-21].

Major actin-driven processes such as cell migration, cyto-
kinesis, vesicle and organelle trafficking require the
involvement of another component of intracellular
cytoskeleton, microtubules [22-24]. Microtubules are fila-
mentous structures created by self-assembly of o /p tubu-
lin  heterodimers [25,26]. Similar to F-actin
microfilaments, microtubules are polarized by having a
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fast growing "plus" and a slow growing "minus" ends
[27,28]. In columnar epithelial cells, prominent bundles
of microtubules align along the lateral plasma membrane.
This population of microtubules orient their minus ends
toward the cell apex and plus ends toward the cell base
[29-31]. In addition, differentiated renal and intestinal
epithelial cells exhibit a dense net of microtubules with
mixed polarity located at the level of apical junctions [29-
31]. Hence, the perijunctional space of differentiated epi-
thelial cells is rich in microtubules. Several recent reports
have suggested a relationship between microtubules and
apical junctions. For example, formation of AJ-like cell-
cell contacts after forced expression of E- and N-cadherin
in fibroblasts was shown to stabilize minus ends of micro-
tubules and to promote microtubule polymerization [32].
On the other hand, microtubule depolymerization was
shown to disrupt the integrity of TJs and AJs in thyroid
and lung epithelial cells [33,34] and to disassemble
endothelial AJs [35]. An AJ scaffold protein, p120-catenin,
has been reported to associate with microtubules [36,37]
and can be transported to intercellular junctions by a
microtubule motor, kinesin [38], whereas -catenin was
shown to interact with dynein, another type of microtu-
bule motor [39]. Further evidence for a role of microtu-
bules in regulation of AJC functions was obtained in
several disease models. For example, microtubules have
been implicated in disruption of endothelial barrier by a
tumor necrosis factor-a [40] and thrombin [41], as well as
in oxidant-induced increase in permeability of intestinal
epithelial monolayers [42]. However, the precise role of
microtubules in regulation of epithelial apical junctions
remains to be investigated.

Based on the above we hypothesized that microtubules
are involved in disruption of apical junctions in simple
epithelia. The present study was designed to examine the
role of microtubules in disassembly of the AJC by using a
classical model of extracellular calcium depletion. We
report that microtubules regulate the formation of con-
tractile-F-actin rings and disruption of the AJC in calcium-
depleted epithelial cells. Both disintegration of the AJC
and reorganization of F-actin are regulated by microtu-
bule turnover (depolymerization/repolymerization) and
the activity of microtubule motors, kinesins.

Results

Microtubule depolymerization blocked disassembly of the
AJC and formation of contractile F-actin rings in calcium-
depleted epithelial cells

The majority of experiments in the present study utilized
SK-CO-15 human colonic epithelial cells [43]. These cells
rapidly polarize, within 5-7 days creating high-resistance
(500-1,000 Ohm x cm?) monolayers and are a good
model for study of apical junctions in intestinal epithe-
lium [43,44]. To investigate whether disassembly of the
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Depolymerization of microtubules attenuates disassembly of the AJC in calcium-depleted SK-CO-15 cells. In
fully polarized SK-CO-15 cells cultured at normal concentration of extracellular calcium, AJ proteins E-cadherin and -catenin
and T] proteins occludin and ZO-1 are localized at areas of cell-cell junctions producing a characteristic 'chicken wire' pattern.
In vehicle treated cells, | h of calcium depletion leads to translocation of junctional proteins from areas of cell-cell contacts into
centrally-located ring-like structures. The microtubule-depolymerizing agent nocodazole (30 uM) prevents disassembly of the
AJC and cytosolic translocation of junctional proteins. Bar, 10 um.
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Depolymerization of microtubules blocks disassembly and internalization of apical junctions in different epi-
thelial cell lines. Similarly to SK-CO-15 cells, T84, Caco-2 and MDCK cell lines readily respond to | h calcium depletion by

translocating junctional proteins 3-catenin, occludin and ZO-

| from areas of cell-cell contacts into cytosolic ring-like struc-

tures. Depolymerization of microtubules with nocodazole (30 pM) inhibits disassembly of the AJC and translocation of junc-

tional proteins in all tested epithelial cell lines. Bar, 10 um.

AJC in calcium-depleted SK-CO-15 cells is dependent on
microtubule integrity, we examined this process in cells
where microtubules were depolymerized with nocoda-
zole. At normal (~2 mM) calcium concentrations, epithe-
lial AJ (E-cadherin and B-catenin) and TJ (occludin and

Z0O-1) proteins were located primarily at the areas of cell-
cell contacts creating characteristic "chicken wire" staining
patterns (Figure 1). In vehicle-treated SK-CO-15 cells,
depletion of extracellular calcium for 1 h caused disrup-
tion of AJs and TJs and accumulation of E-cadherin, B-cat-
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Microtubules regulate formation of contractile F-actin rings in calcium-depleted epithelial cells. (A) In confluent
SK-CO-15 cells cultured in the normal-calcium medium, apical actin is organized in a perijunctional F-actin belt at the AJC level.
In vehicle treated cells, calcium depletion for | h resulted in formation of apical contractile F-actin rings, whereas depolymeri-
zation of microtubules with nocodazole (30 M) prevents assembly of F-actin rings. Bar, 10 um. (B) In SK-CO-15 cells cultured
at normal-calcium conditions, apical microtubules (red color) are organized in a loose horizontal meshwork, which does not
significantly overlap with F-actin (green color). Calcium depletion results in reorganization of microtubules into dense plaques
positioned inside contractile F-actin rings where microtubules partially colocalize with actin microfilaments (arrows). Bar, 5
pum.
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Stabilization of microtubules attenuates disassembly of apical junctions and inhibits contractility of F-actin
rings. SK-CO-15 cells were incubated for | h in calcium-free media in the presence of vehicle or the microtubule-stabilizing
drugs docetaxel (10 uM) or pacitaxel (10 uM). Note that microtubule stabilization attenuates disassembly of the AJC and trans-
location of E-cadherin and occludin into the subapical cytosolic compartment and also blocks contraction of F-actin rings. Bar,
10 um.

enin, occludin and ZO-1 in subapical ring-like structures  cal microtubules (see Additional file 1), prevented trans-
(Figure 1). Treatment of SK-CO-15 cells with nocodazole  location of all studied AJ/TJ] proteins from intercellular
(30 uM), which effectively eliminated the majority of api-  junctions to subapical cytosolic rings (Figure 1).
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To ensure that the microtubule-dependence of AJC disas-
sembly was not unique to SK-CO-15 cells, we investigated
whether nocodazole affects disruption of apical junctions
in other intestinal (T84 and Caco-2) and renal (MDCK)
epithelial cell lines. Immunolabeling for B-catenin, occlu-
din, and ZO-1 in T84, Caco-2 and MDCK cells, respec-
tively, demonstrated similar responses of these cellsto 1 h
of calcium depletion as manifested by accumulation of
junctional proteins in subapical cytosolic rings (Figure 2).
Microtubule depolymerization with nocodazole (30 uM)
blocked such translocation of AJC proteins into cytosolic
ring-like structures in all examined cell lines (Figure 2).
These data strongly suggest that microtubule dependence
of the AJC disassembly is a common feature of different
types of simple epithelia.

Previous studies by several groups including ours [19,45-
47] demonstrated that formation of apical contractile F-
actin rings plays a central role in driving disassembly of
epithelial AJC during calcium depletion. Thus, we hypoth-
esized that microtubules can either control assembly/con-
traction of F-actin rings or act downstream of actomyosin
rings by mediating internalization of junctional proteins
from disrupted intercellular contacts. To distinguish
between these two mechanisms, we examined the effect of
microtubule depolymerization on formation of contrac-
tile F-actin rings. SK-CO-15 cells were preincubated with
either nocodazole (30 uM) or vehicle followed by 1 h of
calcium depletion in the presence of the drug, and the
organization of perijunctional actin microfilaments was
visualized using a fluorescent derivative of phalloidin. At
normal calcium concentration, apical F-actin was organ-
ized primarily as a belt encircling the entire cell at the level
of the AJC (Figure 2A). In vehicle-treated SK-CO-15 cells,
calcium depletion triggered dramatic reorganization of
apical actin microfilaments into centrally-located contrac-
tile rings (Figure 3A). The formation of such F-actin rings
was prevented in nocodazole-treated cells (Figure 3A).
Next we performed immunofluorescence labeling for a-
tubulin to investigate if calcium depletion causes reorgan-
ization of apical microtubules. In polarized SK-CO-15
cells cultured in normal calcium medium, a relatively
loose horizontal web of microtubules was observed at the
cell apex with a minor fraction extending along the peri-
junctional F-actin belt (Figure 3B). Calcium depletion
caused formation of dense plaques of microtubules posi-
tioned within the contractile F-actin rings (Figure 3B). At
the periphery of such plaques, microtubules appeared to
be in direct contact with actin microfilaments (Figure 3B,
arrows). Collectively, these data suggest that calcium
depletion triggers orchestrated reorganization of apical F-
actin and microtubules and that microtubule integrity is
necessary for the assembly of contractile F-actin rings.

http://www.biomedcentral.com/1471-2121/7/12

Microtubule stabilization attenuated disassembly of apical
junctions and prevented contraction of F-actin rings
Reorganization of microtubules during calcium-depletion
is likely to involve their movement and spatial reorienta-
tion. This process can occur via two different mechanisms
that were attributed to two populations of microtubules
with different turnover rates. Redistribution of dynamic
(rapidly turning over) microtubules is controlled by
polymerization and depolymerization at opposite ends of
their filaments (treadmilling mechanism), whereas trans-
location/reorientation of stable (slowly turning over)
microtubules can be driven by microtubule motors
[27,28,31,48]. To determine whether microtubule turno-
ver is essential for the formation of contractile F-actin
rings and disassembly of the AJC in calcium-depleted epi-
thelial cells, we used two microtubule stabilizing drugs,
docetaxel and pacitaxel. These agents have been reported
to suppress microtubule depolymerization and promote
their polymerization [49-51]. We rationalized that inhibi-
tion or attenuation of AJC disassembly by microtubule
stabilization would indicate a role for dynamic microtu-
bules in this process. SK-CO-15 cells were pretreated with
either docetaxel or pacitaxel (both at 10 uM) followed by
1 h of calcium depletion in the presence of the same con-
centrations of the drugs. Such exposure of cell monolayers
to pacitaxel (Additional file 1) or docetaxel (data not
shown) significantly increased the density of apical micro-
tubules, thus confirming the microtubule-stabilizing
action of these drugs. In calcium-depleted SK-CO-15 cells,
both agents attenuated disassembly of the AJC and trans-
location of E-cadherin and occludin from cell-cell con-
tacts into cytosolic ring-like structures (Figure 4). These
effects appeared to be transient, since after 2 h of calcium
depletion, the majority of E-cadherin and occludin disap-
peared from apical junctions even in microtubule-stabi-
lized cells (data not shown). In addition to attenuation of
AJC disassembly, docetaxel or pacitaxel prevented the for-
mation of apical contractile F-actin rings (Figure 4). These
findings strongly suggest that dynamic microtubules regu-
late disassembly and internalization of TJs and AJs as well
as contraction of perijunctional F-actin microfilaments in
calcium-depleted epithelial cells.

Given the important role for microtubule dynamics in the
AJC disassembly, we sought to investigate if calcium
depletion alters balance between stable and dynamic
microtubules in epithelial cells. Stability of microtubules
in living cells is controlled by several mechanisms; the
best characterized involves posttranslational modifica-
tions of a-tubulin [52,53]. A common posttranslational
modification occurs via enzymatic removal and readdi-
tion of a tyrosine residue at the C-terminal end of a-tubu-
lin that produces detyrosinated and tyrosinated (Tyr)
tubulin, respectively [52,54]. Detyrosinated and Tyr-tubu-
lin comprise two distinct microtubule populations in vivo
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Figure 5

Calcium depletion causes reorganization of acetylated and tyrosinated apical microtubules and decreases the
amount of acetylated microtubules. (A) Acetylated (Acetyl) and tyrosinated (Tyr) microtubules (red color) are accumu-
lated inside of contractile F-actin rings (green color) after | h of calcium depletion of SK-CO-15 cells. Bar, 5 um. (B) Repre-
sentative Western blots demonstrate significant change in expression of acetylated but not total or tyrosinated o-tubulin in
SK-CO-15 cells after | and 2 h of calcium depletion relatively to a non-depleted control.

Page 8 of 19

(page number not for citation purposes)



BMC Cell Biology 2006, 7:12

E-cadherin

Occludin

http://www.biomedcentral.com/1471-2121/7/12

Vhle, - AMP-NP A

Figure 6

Kinesin microtubule motors mediate disassembly/internalization of AJs and TJs and regulate contraction of F-
actin rings. SK-CO-15 cells were incubated for | h in calcium-free media in the presence of either vehicle or kinesin inhibi-
tors 5' -adenylylimidodiphosphate (AMP-PNP, 500 M) or aurintricarboxylic acid (ATA, 50 uM). Note that inhibition of kinesin
motor activity blocks contraction of F-actin rings and translocation of E-cadherin and occludin into subapical cytosolic rings.

Bar, 10 um.

where the former is considered stable and the later is
highly dynamic [52,53]. Another posttranslational modi-
fication of a-tubulin that stabilizes microtubules involves
acetylation of a lysine residue at position 40 in the amino-

terminus [53,54]. We examined distribution and expres-
sion of stable and dynamic microtubules in control and
calcium-depleted SK-CO-15 cells using two monoclonal
antibodies specific for acetylated and tyrosinated a-tubu-
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Figure 7

Kinesin-1 is localized at intact and internalized apical junctions in colonic epithelial cells. In confluent SK-CO-15
(A) and T84 (B) epithelial cell monolayers cultured at high-calcium conditions, kinesin-1 (red color) colocalizes with the T] pro-
tein occludin and the AJ protein -catenin (arrows). In calcium-depleted cells, kinesin-1 colocalizes with internalized junctional
proteins (arrowheads). Bar, 5 pm.

Page 10 of 19

(page number not for citation purposes)



BMC Cell Biology 2006, 7:12

Occludin

T84 normal calcium

T84 no calcium

Figure 8

Kinesin-2

http://www.biomedcentral.com/1471-2121/7/12

Merged

NG

Kinesin-2 is not localized at intact or internalized epithelial apical junctions. In polarized T84 epithelial cells monol-
ayers cultured under normal conditions, or in the calcium-depleted conditions, kinesin-2 (red color) is diffusely distributed in
cytosol and does not colocalize with the T] protein occludin (green color). Bar, 5 um.

lin. Immunofluorescence labeling and confocal micros-
copy demonstrated accumulation of both acetylated
(stable) and tyrosinated (unstable) microtubules inside
contractile F-actin rings in calcium-depleted cells (Figure
5A, arrows). Furthermore, Western blot analyses demon-
strated a significant decrease in the amount of acetylated
but not tyrosinated or total a-tubulin in SK-CO-15 cells
after 1 and 2 h of calcium depletion (Figure 5B), thus indi-
cating decreased microtubule stability. This observation
confirmed our pharmacological data suggesting that
dynamic microtubules are involved in the formation of
contractile F-actin rings and disassembly of the epithelial
AJC.

Inhibition of kinesin motors attenuated reorganization of
apical F-actin and disassembly of the AJC

Reorganization of microtubules as well as vesicle traffick-
ing along them in epithelial cells are known to be regu-
lated by microtubule motors [31,48,55]. These proteins

mediate unidirectional movement of cargo towards plus
or minus ends and thus are categorized as "plus end" or
"minus end" motors [48,55]. Members of the kinesin pro-
tein family encompass plus end microtubule motors
whereas dynein represents a minus end motor [55,56].
Since both kinesins [37,38] and dynein [39] have been
shown to interact with and mediate intracellular traffick-
ing of AJ plaque proteins, we reasoned that the polarity of
perijunctional microtubules would dictate which type of
microtubule motor is involved in disassembly and inter-
nalization of the AJC. There is evidence to suggest that
microtubules in polarized epithelial cells are organized in
such a fashion that their minus ends are enriched at the
cell apex close to apical junctions [29,30]. Hence, one
would predict that internalization of junctional proteins
would be directed toward microtubule plus ends and
should thus be mediated by kinesin motors. We tested
this hypothesis by investigating effects of two pharmaco-
logical inhibitors of kinesins viz., adenylylimidodiphos-

Page 11 of 19

(page number not for citation purposes)



BMC Cell Biology 2006, 7:12

http://www.biomedcentral.com/1471-2121/7/12

Kinesin-1

Figure 9

Kinesin-1 is enriched at the areas of cell-cell contacts in normal human colonic mucosa. Cross-sections of normal
human colonic mucosa reveal a significant pool of kinesin-1 (red color) localized at the areas of cell-cell contacts where it colo-
calizes with the AJC protein, JAM-A (arrows). By contrast, kinesin-2 (red) labeling demonstrates diffuse intracellular distribu-
tion of this protein without significant colocalization with JAM-A (green) at intercellular junctions. Bar, 10 um.

phate (AMP-PNP, [57,58]) and aurintricarboxylic acid
(ATA, [59,60]), on AJC disassembly during calcium deple-
tion. SK-CO-15 cells were pretreated with either AMP-
PNP (500 uM) or ATA (50 uM) or vehicle followed by 1 h
calcium depletion in the presence of the inhibitors. Both
AMP-PNP and ATA attenuated translocation of E-cadherin
and occludin from apical junctions to the subapical
cytosolic compartment and blocked contraction of F-actin
rings (Figure 6). Since these pharmacological inhibitors
are effective against all kinesin classes, we next attempted
to identify which class of kinesins may mediate the forma-
tion of contractile F-actin rings and internalization of AJC
proteins during calcium depletion. Although approxi-
mately 45 kinesin genes have been recognized in the

mammalian genome [61], the two likely candidate regu-
lators of AJC disassembly and internalization are kinesin-
1 and kinesin-2. In particular, kinesin-1 has been reported
to mediate trafficking of the AJ proteins N-cadherin [62]
and p120 catenin [37,38] and, in MDCK cells, it has been
shown to localize in areas of cell-cell contacts [37].
Kinesin-2, on the other hand, has been reported to inter-
act with the PAR-3-PAR-6-atypical PKC polarity complex
in neurons [63] and has been implicated in the formation
of the apical plasma membrane domain in polarized kid-
ney epithelial cells [64,65].

We thus analyzed the distribution of kinesins 1 and 2 in

control and calcium-depleted colonic epithelial cells
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Figure 10

Association of kinesin-1 with AJ proteins. T84 cell lysates were immunoprecipitated with either anti-kinesin-1 heavy chain
antibody, anti-kinesin-2 heavy chain antibody, or control mouse IgG and immunoblotted for different junctional proteins as
described in the Methods section. Kinesin-1 co-precipitates with A proteins E-cadherin, B-catenin and p120 catenin, but not
with T] proteins occludin and JAM-A or desmosomal component desmoglein-2. No co-pecipitation of any tested junctional
protein with either kinesin-2 or control IgG is seen.
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using anti-kinesin heavy-chains-specific monoclonal anti-
bodies. Kinesin-1 appeared to be selectively enriched at
the AJC in polarized SK-CO-15 and T84 cells where it
colocalized with occludin and B-catenin (Figure 7A, B,
arrows). In calcium-depleted epithelial cells, kinesin-1
redistributed from areas of cell-cell contacts along with
junctional proteins and colocalized with internalized
occludin and B-catenin in the subapical cytosolic com-
partment (Figure 7A, B, arrowheads). In contrast, kinesin-
2 staining was dot-like throughout the cell and did not
colocalize with AJC proteins in control and calcium-
depleted T84 (Figure 8) and SK-CO-15 (data not shown)
cells. These findings suggest that the kinesin-1 motor may
play a role in regulating endocytosis and intracellular traf-
ficking of TJ/AJ proteins during calcium depletion. To test
physiological relevance of these in vitro kinesin immu-
nolabeling data, we examined localization of kinesin-1 in
normal human colonic mucosa. We observed significant
enrichment of kinesin-1 at the areas of lateral cell-cell con-
tacts between differentiated colonocytes at the mucosal
surface (Figure 9). This labeling pattern was indistinguish-
able from that of the known AJC protein JAM-A, and both
kinesin-1 and JAM-A significantly colocalized at intercel-
lular junctions (Figure 9, arrows). In contrast, kinesin-2
demonstrated diffuse intracellular distribution in normal
colonic mucosa and did not accumulate in areas of cell-
cell contact, nor did it colocalize with JAM-A (Figure 9).

Given our intracellular localization data for kinesin-1 in
Figures 7 and 9, we next examined if kinesin-1 was physi-
cally associated with AJC proteins. Immunoprecipitates
obtained from intestinal epithelial cells using the anti-
kinesin-1 heavy chain antibody were analyzed for the
associated junctional proteins by Western blotting. We
found that kinesin-1 immunoprecipitates from T84 cells
contained readily detectable amounts of the AJ proteins E-
cadherin, B-catenin and p120 catenin (Figure 10). By con-
trast, no co-immunoprecipitation of the TJ proteins occlu-
din and JAM-A, or the desmosomal protein desmoglein-2
was detected. Similar co-precipitation of kinesin-1 with AJ
proteins was detected in SK-CO-15 cells (data not shown).
The anti-kinesin-2 heavy chain antibody did not co-pre-
cipitate any junctional proteins under these experimental
conditions (Figure 10). Likewise, a control mouse IgG did
not co-immunoprecipitate AJC proteins from SK-CO-15
(Figure 10) or T84 (data not shown) cell lysates. Collec-
tively, these immunoprecipitation data suggest specific
association of kinesin-1 heavy chain with the E-cadherin-
catenin complex in intestinal epithelial cells.
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Discussion

Microtubules regulate disassembly of epithelial apical
junctions by controlling formation of contractile F-actin
rings

In the present study, we report a novel mechanism that
regulates disassembly of the epithelial AJC by using a clas-
sical tool of junctional research, depletion of extracellular
calcium. It is generally believed that disintegration of epi-
thelial monolayers during calcium depletion is initiated
by disruption of trans-dimers of E-cadherin, the only cal-
cium-binding protein in apical junctions [66,67]. We
recently observed that such perturbation of E-cadherin-
mediated adhesion in human intestinal epithelial cells
triggers the selective early formation of contractile apical
actomyosin rings without obvious effects on general cell
shape and apico-basal cell polarity [19]. It is likely that
contraction of apical F-actin rings in calcium-depleted
cells provides mechanical force to overcome trans-interac-
tions between various junctional proteins in two adjacent
membranes and to separate intercellular adhesions
[19,46,47]. This activates endocytosis of AJC components,
in turn accelerating cell separation [20]. In the present
study, we found that actomyosin contraction alone is not
sufficient to disrupt the AJC in calcium-depleted epithelial
cells and that microtubules are critical for this process.
Two lines of evidence support this conclusion. First, phar-
macological modulation (disruption or stabilization) of
microtubules themselves or inhibition of microtubule
motors kinesins prevented or attenuated disassembly of
the AJC (Figures 1, 2, 4 and 6) and the formation of con-
tractile F-actin rings (Figures 3A, 4 and 6). Second, in cal-
cium-depleted cells, apical microtubules reorganized into
dense plaques positioned inside contractile actomyosin
rings (Figure 3B) and kinesin-1 colocalized with intact
and internalized apical junctions (Figures 7, 9).

Our finding that depolymerization of microtubules pre-
vents the formation of contractile F-actin rings (Figure 3)
suggests that microtubules act upstream of the actomy-
osin reorganization during calcium depletion. It is likely
that microtubules either transduce signals from disrupted
AJs to the apical actomyosin cytoskeleton or regulate reor-
ganization of actin microfilaments. Indeed, physical inter-
actions of microtubules with epithelial AJs (via p120
catenin [11]) and with F-actin (via coronin, IQGAP, the
dynein/dynactin complex, unconventional myosins, etc.,
[23,24]) are well documented.

How microtubules can regulate the formation and con-
traction of apical actomyosin rings in calcium-depleted
cells remains enigmatic. In a previous study [19] we pro-
posed that these apical F-actin rings resemble contractile
actomyosin structures involved in a variety of physiologi-
cal processes such as cytokinesis and wound closure. Our
present observation of microtubule-dependent biogenesis
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of actomyosin rings during calcium depletion reinforces
this idea, since microtubules have been shown to modu-
late organization of contractile apparatus in cleavage fur-
rows between dividing mammalian cells [68,69] or
around wounds made in Xenopus oocytes [70]. These
interesting mechanistic parallels strongly suggest that the
same signaling cascades/molecular complexes may be
involved in cytoskeleton-dependent AJC disassembly in
calcium-depleted epithelial cells and in other contractile
processes such as furrow ingression and wound closure.
Several recent studies suggest a molecular mechanism by
which microtubules regulate actomyosin contractility
during cytokinesis [71,72] and wound closure [73]. This
mechanism involves members of the Rho family of small
GTPases. Microtubules have been shown to regulate local-
ized activity of Rho GTPases by binding to and accumulat-
ing Rho GTP exchange factors and/or Rho GTPase-
activating proteins [24], which are positive and negative
regulators of Rho GTPase activity, respectively. We specu-
late, therefore, that Rho GTPases may also link reorgani-
zation of microtubules and the actomyosin cytoskeleton
in calcium-depleted cells. Indeed, Rho GTPases have been
directly implicated in regulation of assembly and integrity
of intercellular junctions [11,74] and we have preliminary
data suggesting an important role of Rho-associated
kinase in disassembly of AJC during calcium depletion
(data not shown).

Role of microtubule dynamics in disassembly of the AJC
and biogenesis of contractile F-actin rings

Our results indicate that turnover of microtubules is
important for disassembly/internalization of apical junc-
tions and biogenesis of contractile F-actin rings. Turnover
of microtubules can occur either by dynamic instability
(alternating phases of growth and shrinkage at the plus
end) or treadmilling (growth of the plus end and shorten-
ing at the minus end) [26-28]. Depending on the rate of
the above processes, microtubules can be classified as
either dynamic or stable. The former is turned over within
5 min, whereas the later remain intact for several hours
[75,76]. In living cells, these two populations of microtu-
bules appear to be spatially and functionally segregated as
has been shown for neurite outgrowth [52], migration of
fibroblasts [77] and intracellular vesicle trafficking in
hepatic cells [78]. Here, we report that microtubule stabi-
lization with docetaxel or pacitaxel significantly attenu-
ated disruption of TJs and AJs (Figures 4) and contraction
of apical F-actin rings in calcium-depleted epithelial cells
(Figure 4). These effects of microtubule stabilization
appear to be transient since prolonged calcium depletion
resulted in AJ and TJ disruption even in microtubule-sta-
bilized cells. However in docetaxel or pacitaxel-treated
cells, internalized AJC proteins were diffusely distributed
in the cytosol and did not accumulate in subapical ring-
like structures (data not shown). These observations sug-
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gest a specific role of microtubule turnover in regulation
of intracellular trafficking of AJC proteins. Interestingly,
dynamic microtubules may also be involved in disruption
of endothelial barrier caused by thrombin and transform-
ing growth factor since microtubule stabilization with
pacitaxel was shown to completely block such stimulus-
induced disassembly of AJs and reorganization of F-actin
in cultured endothelial cells [41,79]. These results are con-
sistent with published data on the role of microtubule
turnover in biogenesis of contractile rings during cytoki-
nesis and wound healing where stabilization of microtu-
bules inhibited contraction-driven cleavage furrow
ingression [80] and wound closure [70].

Importantly, disassembly of both endothelial and epithe-
lial junctions is accompanied by changes in the stability of
microtubules. Indeed, either thrombin or cytokine-
induced disintegration of endothelial AJs was paralleled
by the decrease in the amount of acetylated a-tubulin
[41,79], which is a marker for stable microtubules. Simi-
larly, AJC disassembly in calcium-depleted SK-CO-15 cells
resulted in decreased acetylation of a-tubulin (Figure 5B),
suggesting increased instability of microtubule [53,54]. In
contrast, the amount of Tyr-tubulin in epithelial cells was
not affected by calcium depletion (Figure 5B), thus illus-
trating a preserved balance between tyrosinated and dety-
rosinated microtubules. Collectively, these data suggest
that deacetylation rather then tyrosination represents a
specific mechanism for increased microtubule dynamics
that may regulate disassembly of intercellular junctions in
epithelial and endothelial cell monolayers.

Microtubule motors, kinesins, are involved in disassembly

of epithelial AJC

We observed that two structurally different inhibitors of
kinesin motor activity, AMP-PNP and ATA, blocked con-
traction of apical F-actin rings and attenuated disruption /
internalization of apical junctions in calcium-depleted
cells (Figure 6). This is the first functional data implicating
kinesin motors in down-regulation of cell-cell adhesion.
Furthermore, our findings suggest that two major mecha-
nisms of microtubule reorganization including microtu-
bule turnover and kinesin-driven motility cooperate in
disassembly of the AJC. Interestingly, we previously found
similar cooperation between actin turnover and myosin
[I-mediated reorganization of actin microfilaments dur-
ing disruption and reestablishment of epithelial apical
junctions [19,81].

Our immunolabeling/confocal microscopy data strongly
implicated kinesin-1 in the biogenesis of contractile F-
actin rings and/or intracellular trafficking of internalized
AJC proteins in calcium-depleted cells. Kinesin-1 (for-
mally known as conventional kinesin or KIF5, [82]) is a
plus end microtubule motor functioning as a tetramer of
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two heavy chains and two light chains [56,61]. The
kinesin-1 heavy chain contains a motor domain that
binds to microtubules and has intrinsic ATPase activity
[83]. We found that kinesin-1 heavy chain was specifically
enriched at the AJC in polarized SK-CO-15 and T84 epi-
thelial cells where it colocalized with TJ and AJ proteins
(Figure 7). Furthermore, in normal human colonic
mucosa, kinesin-1 was also enriched at the areas of cell-
cell contacts (Figure 9). Specific localization of kinesin-1
at the epithelial AJC is a novel finding. Indeed, previous
studies either detected accumulation of kinesin-1 at non-
specified lateral contacts in MDCK cells [37], or failed to
observe enrichment of kinesin-1 in intercellular junctions
of PtK2 epithelial cells [84]. Importantly, we found not
only localization of kinesin-1 at the epithelial AJC, but
also co-precipitation of this motor protein with AJ pro-
teins, E-cadherin, B-catenin and p120 catenin (Figure 10).
These data are in agreement with previous reports of asso-
ciation of kinesin-1 with p120 catenin in fibroblasts
[37,38,62]. However, our study provides the first evidence
that this microtubule motor may bind to the assembled E-
cadherin-catenin complex in polarized epithelial cells.
During calcium depletion, kinesin-1 redistributed from
the disrupted AJC into the subapical cytosolic compart-
ment where it colocalized with internalized TJ /AJ compo-
nents (Figure 7). This finding, together with our
pharmacological data (Figure 6), strongly suggests the
involvement of kinesin-1 in intracellular trafficking of AJC
proteins along microtubule tracks. In contrast, our data do
not support the role of kinesin-2 in reorganization of api-
cal junctions and epithelial cytoskeleton in calcium-
depleted cells (Figures 8, 9, 10).

Conclusion

The present study describes a novel mechanism that regu-
lates disassembly of epithelial apical junctions during
extracellular calcium depletion. This mechanism involves
microtubule-mediated formation of contractile actomy-
osin rings that break cell-cell contacts as well as microtu-
bule-dependent transport of internalized junctional
proteins. Dynamic reorganization of microtubules and
activity of kinesin motors are essential for these processes.
Furthermore, our data highlight potential roles of kinesin-
1 in cytoskeletal reorganization and trafficking of AJC pro-
teins in calcium-depleted epithelial cells. Such microtu-
bule-dependent disassembly of the AJC may represent a
common mechanism that underlies physiological remod-
eling of apical junctions during normal epithelial mor-
phogenesis and mediates disruption of epithelial barriers
by pathogenic and inflammatory stimuli.

Methods

Antibodies and other reagents

The following primary polyclonal (pAb) and monoclonal
(mADb) antibodies were used to detect TJ, AJ, and microtu-
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bule proteins by immunoflurescence labeling and West-
ern blotting: anti-occludin, ZO-1, E-cadherin mAbs, anti-
occludin and JAM-A pAbs (Zymed Laboratories, San Fran-
cisco, CA); anti-B-catenin pAb, anti-total a-tubulin,
acetylated-tubulin and tyrosinated-tubulin mAbs (Sigma-
Aldrich, St. Louis, MO), anti-kinesin heavy chain (H1)
mAb (Chemicon International, Temecula, CA); anti-
kinesin-2 (K2.4) mAb (Covance, Berkley, CA). Alexa-488-
conjugated phalloidin, as well as Alexa-488 or Alexa-568
conjugated donkey anti-rabbit and goat anti-mouse sec-
ondary antibodies were obtained from Molecular Probes
(Eugene, OR); horseradish peroxidase-conjugated goat
anti-rabbit and anti-mouse secondary antibodies were
obtained from Jackson Immunoresearch Laboratories
(West Grove, PA).

Docetaxel was generously provided by Sanifi-Aventis.
Nocodazole, pacitaxel, 5' -adenylylimidodiphosphate,
aurintricarboxylic acid and other reagents of the highest
analytical grade were obtained from Sigma.

Cell culture

SK-CO-15, a transformed human colonic epithelial cell
line, was a gift from Dr. Enrique Rodriguez-Boulan, Weill
Medical College of Cornell University, New York. SK-CO-
15, Caco-2 and Madin Darby Canine Kidney (MDCK) epi-
thelial cells (both from the American Type Culture Collec-
tion, Manassas, VA) were grown in Dulbecco's modified
Eagle's medium supplemented with 10% fetal bovine
serum, 2 mM l-glutamine, 15 mM HEPES, 1% nonessen-
tial amino acids, 40 pg/ml penicillin and 100 pg/ml strep-
tomycin, pH 7.4. T84 cells (American Type Culture
Collection) were cultured in a 1:1 mixture of Dulbecco's
modified Eagle medium and Ham's F-12 medium supple-
mented with 10 mM HEPES, 14 mM NaHCO,, 40 pg/ml
penicillin, 100 pg/ml streptomycin, 5% newborn calf
serum, pH 7.4. For all experiments, epithelial cells were
grown for 6-10 days on collagen-coated, permeable poly-
carbonate filters, 0.4 um pore size (Costar, Cambridge,
MA). Filters with a surface area of 0.33 and 5 cm? were
used for immunocytochemical and biochemical experi-
ments respectively.

Calcium depletion and pharmacological modulation of
apical junction disassembly

To deplete extracellular Ca2+, confluent epithelial monol-
ayers were washed twice with calcium-free Eagle's mini-
mum essential medium for suspension culture (S-MEM,
Sigma) supplemented with 2 mM EGTA, 10 mM HEPES,
and either 10% dialyzed fetal bovine serum (for SK-CO-
15, MDCK and Caco-2) or 5% dialyzed newborn calf
serum (for T84 cells) and were incubated in S-MEM for
indicated times at 37°C [19, 85]. For microtubule depo-
lymerization, cells were preincubated in media containing
normal levels of calcium and 30 uM nocodazole for 60
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min at 37°C and then for another 60 min at 4°C. After
this preincubation, cells were incubated for 60 min at
37°Cin the S-MEM containing the same concentration of
nocodazole. This temperature-switching protocol was
devised to promote disassembly of all microtubules
including nocodazole-resistant, cold sensitive ones [86].
For microtubule stabilization or kinesin inhibition, cells
were preincubated with drugs in normal calcium media
for 60 min at 37°C followed by 60 min incubation in S-
MEM containing the same concentration of inhibitors.
Stock solutions of water-insoluble inhibitors were pre-
pared in DMSO and diluted in cell culture media immedi-
ately before each experiment. The final concentration of
DMSO was 0.1%; the same concentration of the vehicle
was included in appropriate controls.

Immunofluorescence labeling

Calcium-depleted epithelial monolayers were rinsed twice
with ice-cold calcium- and magnesium-free Hanks bal-
anced salt solution containing 10 mM HEPES, whereas
control monolayers were rinsed with HEPES-buffered
Hanks balanced salt solution containing calcium and
magnesium (HBSS*). Cells were fixed/permeabilized in
absolute methanol (-20°C for 20 min) followed by block-
ing in HBSS+ containing 1% bovine serum albumin
(blocking buffer) for 60 min at room temperature and
incubation for 60 min with primary antibodies in block-
ing buffer. Cell monolayers were then washed, incubated
for 60 min with Alexa dye-conjugated secondary antibod-
ies followed by rinsing and mounting on slides with Pro-
Long Antifade medium (Molecular Probes). For
fluorescent labeling of microtubules or F-actin, monolay-
ers were fixed for 15 min in 3.7% paraformaldehyde
(PFA), permeabilized for 10 min with 0.5% Triton X-100
(TX-100) and sequentially stained with primary anti-
tubulin and Alexa dye-conjugated secondary antibodies,
whereas F-actin was labeled with Alexa-conjugated phal-
loidin. For tissue labeling, 5 um frozen tissue sections of
normal human colon obtained from discarded surgical
resection specimens at the Emory University Hospital
were mounted on glass coverslips, air-dried and fixed in
100% ethanol (-20°C for 20 min) and immunolabeled as
described above. Stained cell monolayers and tissue sec-
tions were examined using a Zeiss LSM510 laser scanning
confocal microscope (Zeiss Microimaging Inc., Thorn-
wood, NY) coupled to a Zeiss 100 M axiovert and 63x or
100x Pan-Apochromat oil lenses. Fluorescent dyes were
imaged sequentially in frame-interlace mode to eliminate
cross talk between channels. Images shown are represent-
ative of at least 3 experiments, with multiple images taken
per slide.

Immunoblotting
Cells were homogenized in a RIPA lysis buffer (20 mM
Tris, 50 mM NaCl, 2 mM EDTA, 2 mM EGTA, 1% sodium
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deoxycholate, 1% TX-100, and 0.1% SDS, pH 7.4), con-
taining a proteinase inhibitor cocktail (1:100, Sigma) and
phosphatase inhibitor cocktails 1 and 2 (both at 1:200,
Sigma). Lysates were then cleared by centrifugation (20
min at 14, 000 x g) diluted with 2x SDS sample buffer and
boiled. Polyacrylamide gel electrophoresis and Western
blotting were conducted by standard methods with 10-20
pg protein per lane. The results shown are representative
immunoblots of three independent experiments.

Immunoprecipitation

Confluent monolayers of T84 and SK-CO-15 cells were
harvested into an immunoprecipitation buffer (50 mM
PIPES, 50 mM HEPES, 1 mM EDTA, 2 mM MgSO,,, 1% TX-
100, and 0.5% Igepal, pH 7.0), supplemented with protei-
nase inhibitor cocktail and phosphatase inhibitor cock-
tails 1 and 2. Cells were homogenized, centrifuged and
supernatants were precleared with Protein G-coupled
Sepharose beads (Amersham Biosciences, Buckingham-
shire, UK) for 60 min at 4°C. Precleared lysates (500 pl)
were then incubated overnight at 4°C with 5 pg of either
anti-kinesin-1 heavy chain mAb (clone H1; Chemicon),
anti-kinesin-2 heavy chain mAb (clone K2.4; Covance) or
control mouse IgG (Jackson Laboratories). Immunocom-
plexes were recovered by incubation with Protein G-
Sepharose beads for 3 h at 4°C with constant rotation.
The beads were pelleted and washed four times (10 min
per wash at 4°C) with the immunoprecipitation buffer.
Beads were then boiled for 5 min in 80 pul of 2x SDS sam-
ple buffer and pelleted by centrifugation. Equal volumes
of supernatants (20 pl) were loaded into polyacrylamide
gels and analyzed by electrophoresis and Western blotting
as described above. T84 or SK-CO-15 total cell lysates
loaded at 15 pg of total protein per lane were used as a
control.
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Additional material

Additional File 1

Effects of nocodazole and pacitaxel on apical microtubules in colonic
epithelial cells. Polarized monolayers of SK-CO-15 cells were treated for
2 h with either nocodazole (30 uM) or pacitaxel (10 uM) or vehicle, and
microtubules and apical junctions were visualized using antibodies against
a-tubulin and [-catenin respectively. As can be seen, the microtubule-
depolymerizing agent nocodazole causes disappearance of the tubulin fil-
ament meshwork at the level of the AJC, whereas microtubule-stabilizing
drug pacitaxel dramatically increases the density of apical microtubules.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-7-12-S1.jpeg]
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