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Abstract
Background: Protein Ser/Thr phosphatase 5 (PP5) and its Saccharomyces cerevisiae homolog
protein phosphatase T1 (Ppt1p) each contain an N-terminal domain consisting of several
tetratricopeptide repeats (TPRs) and a C-terminal catalytic domain that is related to the catalytic
subunits of protein phosphatases 1 and 2A, and calcineurin. Analysis of yeast Ppt1p could provide
important clues to the function of PP5 and its homologs, however it has not yet been characterized
at the biochemical or cellular level.

Results: The specific activity of recombinant Ppt1p toward the artificial substrates 32P-myelin basic
protein (MBP) and 32P-casein was similar to that of PP5. Dephosphorylation of 32P-MBP, but not
32P-casein, was stimulated by unsaturated fatty acids and by arachidoyl coenzyme A. Limited
proteolysis of Ppt1p removed the TPR domain and abrogated lipid stimulation. The remaining
catalytic fragment exhibited a two-fold increase in activity toward 32P-MBP, but not 32P-casein.
Removal of the C terminus increased Ppt1p activity toward both substrates two fold, but did not
prevent further stimulation of activity toward 32P-MBP by lipid treatment. Ppt1p was localized
throughout the cell including the nucleus. Levels of PPT1 mRNA and protein peaked in early log
phase growth.

Conclusions: Many characteristics of Ppt1p are similar to those of PP5, including stimulation of
phosphatase activity with some substrates by lipids, and peak expression during periods of rapid
cell growth. Unlike PP5, however, proteolytic removal of the TPR domain or C-terminal truncation
only modestly increased its activity. In addition, C-terminal truncation did not prevent further
activation by lipid. This suggests that these regions play only a minor role in controlling its activity
compared to PP5. Ppt1p is present in both the nucleus and cytoplasm, indicating that it may function
in multiple compartments. The observation that Ppt1p is most highly expressed during early log
phase growth suggests that this enzyme is involved in cell growth or its expression is controlled by
metabolic or nutritional signals.
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Background
Mammalian protein phosphatase 5 (PP5) and its ho-
molog protein phosphatase T1 (Ppt1p) from the yeast
Saccharomyces cerevisiae contain a catalytic domain struc-
turally related to the catalytic subunits of PP1, PP2A and
PP2B, and an N-terminal domain consisting of multiple
tetratricopeptide repeats (TPRs) not found in other mem-
bers of this family of phosphatases [1–3]. Homologs have
also been identified in Xenopus laevis [4], Neurospora crassa
[5], Drosophila melanogaster [6], Trypanosoma brucei [7],
Plasmodium falciparum [8,9], and cauliflower [10], and ho-
mologs for Caenorhabditis elegans, Schizosaccharomyces
pombe and Arabidopsis thaliana are predicted (accession
number CAB60937, CAA17690 and AAD21727,
respectively).

Protein phosphatase 5 has been implicated in the control
of cell proliferation, in hormonal signal transduction, and
in hsp90 chaperone function [3,11–17]. However little is
known about the regulation of PP5 or its specific role in
these pathways, and only one physiological substrate for
PP5 has been identified to date, the apoptosis signaling ki-
nase ASK 1 [13]. PP5 can be activated by lipid in vitro, and
removal of the TPR domain or the C terminus generates
an active, lipid insensitive form of the enzyme [18–21].
PP5 phosphatase activity is also altered by hCRY2 and a
fragment of hsp90 in vitro [21,22]. These findings suggest
that PP5 may be autoinhibited and that the binding of
protein partners or lipids to the TPR domain could poten-
tially control PP5 activity in cells, however no reports have
yet documented how PP5 is regulated in vivo. The activity
of PP5 homologs from cauliflower, T. brucei and P. falci-
parum is stimulated by polyunsaturated fatty acids in vitro
[7–10] and removal of the TPR domain from P. falciparum
PP5 increases activity to the same extent as lipid treatment
[8,9]. This suggests that the TPR domain plays a similar in-
hibitory role for all PP5 homologs.

Genetic analyses in S. cerevisiae have yielded few clues
about the function of Ppt1p. Budding yeast lacking PPT1
do not exhibit obvious growth defects or detectable phe-
notypes [2]. Disruption of PPT1 together with one of the
other known phosphatases in budding yeast also reveals
no obvious phenotype [23]. Thus, if Ppt1p has an essen-
tial function in S. cerevisiae, more than one other phos-
phatase can also carry out this role. In this report we have
characterized the activity of recombinant Ppt1p, analyzed
its expression at the level of protein and mRNA, and local-
ized Ppt1p in yeast. Ppt1p can be activated by lipid, is
most highly expressed in early log phase growth, and is
present throughout the cell.

Results
Comparison of Ppt1p and PP5 activity and response to li-
pid treatment
Recombinant Ppt1p expressed as a GST-fusion protein,
then affinity purified and released from GST by thrombin
cleavage yielded a single band of the expected molecular
weight, 58 kDa (Fig. 1A). When assayed side-by-side, the
basal specific activities for recombinant Ppt1p and PP5
were similar toward the artificial substrates 32P-MBP and
32P-casein, respectively (Fig. 1B). Like PP5, the dephos-
phorylation of 32P-MBP by Ppt1p was stimulated by ara-
chidonic acid and other unsaturated fatty acids, but lipids
lacking either a double bond or a carboxylate group were
not effective (Table 1).

In the case of pNPP hydrolysis, others have reported both
saturated and unsaturated fatty acyl coenzyme A esters
stimulate PP5 activity, with concentrations required for
half-maximal stimulation approximately 10-fold lower
than those of their corresponding free fatty acids [21]. We
therefore tested whether a saturated fatty acyl coenzyme A
ester could also stimulate Ppt1p. Ppt1p activity toward
32P-MBP was stimulated by arachidoyl coenzyme A in a
concentration range similar to that observed for AA, with
half-maximal stimulation occurring at approximately 50
µM for arachidoyl coenzyme A and 75 µM for AA. Howev-
er, in contrast to AA stimulation, Ppt1p activity dropped
off sharply at 80 µM arachidoyl coenzyme A and higher.
Similar results were observed for PP5 (data not shown).
This suggests that double bonds are not required to ob-
serve the effect of fatty acyl coenzyme A esters.

Unlike PP5, the activity of Ppt1p toward 32P-casein was
not stimulated by AA, arachidoyl coenzyme A, or linole-
oyl coenzyme A over a range in concentration from 10–
500 µM (Fig. 1B and data not shown). Other unsaturated
fatty acids also failed to stimulate Ppt1p activity with this
substrate (Table 1). These data indicate that Ppt1p is stim-
ulated by polyunsaturated fatty acids, as well as by a satu-
rated fatty acyl coenzyme A derivative, toward some but
not all substrates dephosphorylated by PP5.

Limited proteolysis of Ppt1p
Removal of the TPR domain of PP5 by limited proteolysis
increases enzyme activity and the TPR domain binds lipid
[7–9,19,20]. Using conditions similar to those employed
with PP5, digestion of Ppt1p with trypsin in the absence
of lipid produced a 44 kDa catalytic fragment that was sta-
ble for at least 30 min and a 20 kDa fragment that was de-
graded within 30 min (Fig. 2A). N-terminal sequence
analysis showed that these fragments are derived from the
catalytic and the TPR domains, respectively (Fig. 2A,2B).
The crystal structure of the PP5 TPR domain revealed three
TPRs followed by an extended α helix [24], however
Ppt1p was originally proposed to contain one additional
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Figure 1
Comparison of the specific activities and response to lipid of Ppt1p and PP5. (A) Recombinant Ppt1p (lane 1) and 
Ppt1p (1–504) (lane 2) were expressed in Escherichia coli, purified by GST-agarose chromatography and cleaved with thrombin. 
Samples containing approximately 7.5 µg of protein were resolved by SDS-PAGE on a 10% polyacrylamide gel and visualized by 
Coomassie staining. The migration of molecular weight standards is indicated to the left. (B) Phosphatase activity of Ppt1p or 
PP5 was assayed for 10 min at 30°C in the absence (�) or presence (■) of 250 µM AA using 10 µM 32P-MBP or 32P-casein as 
substrate. Data are the average ± S.D. from assays performed in triplicate. Three independent experiments performed under 
similar conditions yielded similar results.
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TPR [2]. The pattern of proteolysis and sites of cleavage for
Ppt1p are very similar to those seen with PP5 under these
same conditions [19]. This indicates that Ppt1p also con-
tains an accessible region linking the TPR and catalytic do-
mains and is most consistent with the presence of three
TPRs in Ppt1p. Limited tryptic proteolysis in the presence
of 250 µM AA generated a distinct pattern of fragmenta-
tion (Fig. 2A). A 20 kDa fragment was observed at early
times, but a series of four fragments ranging from 14–16
kDa appeared between 10 and 30 min as the amount of
the 20 kDa fragment decreased. These fragments, which
are derived from the TPR domain, were not observed in
the absence of AA, suggesting that lipid binding alters the
conformation of this domain and its susceptibility to pro-
teolysis. A similar change in susceptibility to proteolysis
upon lipid binding was observed with PP5 [19]. As with
PP5, only lipids that stimulated 32P-MBP dephosphoryla-
tion slowed degradation of the 20 kDa TPR fragment (Ta-
ble 1).

Removal of the TPR domain from Ppt1p by trypsin treat-
ment had no effect on its activity toward 32P-casein, but
increased activity toward 32P-MBP approximately two
fold (Fig. 2C). AA did not stimulate 32P-MBP dephospho-
rylation by Ppt1p after removal of the TPR domain (data
not shown). Thus, lipids that activate Ppt1p alter the sen-
sitivity of the TPR domain to proteolysis, and removal of
the TPR domain causes a loss of the response of Ppt1p to
lipid. However, removal of the TPR domain only modest-
ly increases Ppt1p activity, in contrast to the 5–25 fold el-
evation reported after TPR removal from PP5 [19,20].
Although we cannot rule out the possibility that prote-
olyzed Ppt1p is unresponsive to lipid because it is unsta-
ble, the observations that the catalytic fragment remains

undegraded and control activity is not decreased argue
against this possibility. Alternatively, an inhibitory ele-
ment in the linker region may remain after TPR domain
removal.

The effect of C-terminal truncation on Ppt1p activity
Removal of 10–13 residues from the C terminus of PP5 re-
sults in a highly active enzyme that is only modestly stim-
ulated by lipid [19]. To examine the role of the C terminus
in controlling Ppt1p phosphatase activity, a similar trun-
cation mutant, Ppt1p (1–504), was expressed and charac-
terized (Fig. 1A and 3). Compared to full-length enzyme
Ppt1p (1–504) exhibited a two-fold increase in control
specific activity with both 32P-casein and 32P-MBP. Lipid
did not stimulate Ppt1p (1–504) toward 32P-casein, but
still increased activity with 32P-MBP 12-fold. In contrast,
C-terminal truncation of PP5 activates the enzyme as ex-
tensively as lipid treatment, and little further activation is
seen with lipid [19]. In the case of PP5, subtilisin diges-
tion removed both the TPR domain and the C terminus
[19]. The observation that C-terminal truncation in-
creased Ppt1p activity toward both 32P-casein and 32P-
MBP, but subtilisin digestion increased activity only to-
ward 32P-MBP (see Fig. 2C) suggests that the C terminus
of Ppt1p remained intact during subtilisin digestion.
However, mass analysis of the subtilisin-derived catalytic
fragment would be required to confirm this.

Expression and localization of HA-Ppt1p in yeast cells
To examine when Ppt1p is expressed and where it is local-
ized, a yeast strain (WHT4-1) was generated in which the
PPT1 gene was replaced with cDNA encoding hemaggluti-
nin-tagged Ppt1p (HA-Ppt1p). Immunoblotting showed
that HA-Ppt1p levels were highest in early log phase, and

Table 1: Effect of various fatty acids on recombinant Ppt1p activity

Lipid added Carbon chain Relative Activitya TPR protection

Casein MBP

Arachidonic acid 20:4 1.3 ± 0.0 13 ± 0.5 +
Arachidic acid 20:0 0.6 ± 0.1 0.8 ± 0.3 -

Arachidonyl alcohol 20:4 0.7 ± 0.1 1.1 ± 0.1 -
Arachidonic methyl ester 20:4 0.7 ± 0.1 0.6 ± 0.2 -

Oleic acid 18:1 1.0 ± 0.1 16 ± 1.0 +
Linoleic acid 18:2 1.0 ± 0.1 21 ± 1.3 +

Palmitoleic acid 16:1 1.0 ± 0.1 20 ± 2.1 +

Phosphatase assays included Ppt1p that was incubated in the presence of various lipids each at a final concentration of 250 µM. Assays also con-
tained either 32P-casein or 32P-MBP. Data are presented as the average activity relative to control in the absence of lipid ± S.D. from a single assay 
performed in triplicate. This experiment was repeated three times with similar results. The control values for recombinant Ppt1p were as follows: 
79 ± 1.9 nmol Pi released minute-1 mg-1 for 32P-casein; 35 ± 10 nmol Pi released minute-1 mg-1 for 32P-MBP. A positive score for TPR protection 
indicates the sustained presence of multiple proteolytic fragments in the size range of 14 to 16 kDa after either trypsin or subtilisin digestion when 
compared to the control digest containing vehicle. aRatio of phosphatase activity in the presence of 250 µM of the lipid indicated to the phosphatase 
activity without lipid.
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Figure 2
Limited proteolysis of Ppt1p and its effect on Ppt1p activity. (A) Recombinant Ppt1p samples trypsinized in the 
absence or presence of 250 µM AA were resolved by electrophoresis on 15% SDS-polyacrylamide gel and visualized by 
Coomassie staining. The length of digest (minutes) and the migration of molecular weight standards are indicated. (B) N-termi-
nal sequence analysis of 45 kDa fragments shown in (A) was performed to identify the tryptic cleavage sites within the linker 
region between the TPR and catalytic domains. Tryptic cleavage sites are indicated with the inverted triangles. Bold underlined 
residues are conserved in both Ppt1p and PP5. (C) Recombinant Ppt1p was digested using either trypsin (T) or subtilisin (S) for 
5 minutes in the absence of AA and assayed using either 32P-casein or 32P-MBP in the absence of AA. Data are presented as 
activity relative to control, which is the activity of full-length Ppt1p subjected to mock digest and assayed in the absence of AA. 
Results represent the mean ± S.E. from three or more independent experiments.
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Figure 3
Effect of C-terminal truncation on Ppt1p activity. (A) Phosphatase activity of full-length Ppt1p (�) or the C-terminal 
truncation mutant, Ppt1p (1–504) (■), was determined in the absence or presence of 250 µM AA using 32P-casein or 32P-MBP 
as substrate. Data are the average ± S.D. of triplicate samples from a single experiment. Similar values were obtained in three 
independent experiments performed under the same conditions. (B) C-terminal sequences of Ppt1p and PP5 are aligned to dis-
play the truncation sites for Ppt1p (1–504) and PP5 (1–486) [19]. The truncation sites are indicated with the filled triangles. 
Bold underlined residues are conserved in both Ppt1p and PP5.
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Figure 4
Expression of HA-Ppt1p as a function of cell growth. (A) An overnight culture of WHT4-1 cells (OD600 nm 5~10) was 
used to inoculate fresh medium to OD600 nm 0.2 and the culture grown at 30°C. At the indicated times samples were prepared 
and subjected to immunoblotting using anti-HA antibody. The lower panel shows the bottom half of the same blot probed with 
anti-Cdc28p antibody. This experiment was performed four times independently with similar results. WT; wild type. (B) The 
growth curve was plotted based on direct cell counting using a hemocytometer. The relative amount of HA-Ppt1p was 
obtained by taking the ratio of the band intensity of HA-Ppt1p to Cdc28p. (C) Total RNA was isolated at the indicated time 
after the inoculation of an overnight culture of W303 cells (OD600 nm 5~10) to OD600 nm 0.2. Twenty micrograms of RNA per 
sample were resolved and subjected to Northern analysis with a 32P-labeled PPT1 cDNA probe. The lower panel shows the 
same blot probed for yeast actin mRNA. This experiment was repeated four independent times for both W303 and WHT4-1 
cells with similar results.

1

2

3

0 10 20 30 40

Time (hrs)

C
el

l d
en

si
ty

 (
N

o.
 o

f c
el

ls
×1

0-8
/m

l)

0.0

0.5

1.0

1.5

2.0

Le
ve

l o
f P

pt
1p

 e
xp

re
ss

io
n

0 3.5 5 7 11 24 36WT

(A)

(B)

HA-Ppt1p

Cdc28p
( 

   
   

 )

( 
   

   
)

(hrs)

(C)

PPT1

ACT1

0 3 6 12 24 36 (hrs)
2.37 kb

1.35 kb
Page 7 of 13
(page number not for citation purposes)



BMC Cell Biology 2003, 4 http://www.biomedcentral.com/1471-2121/4/3
then decreased dramatically during the stationary phase
(Fig. 4A,4B). Northern analysis showed that the PPT1
mRNA levels also increased in early log phase and de-
creased as the cell division decreased upon entering the
stationary phase (Fig. 4C), correlating with protein expres-
sion. The pattern of PPT1 gene expression was identical in
wild-type cells and cells expressing HA-Ppt1p, indicating
that the epitope tag did not alter transcription or message
stability (data not shown).

Cells in early log phase growth when PPT1 gene expres-
sion was maximal were used to localize HA-Ppt1p. Indi-
rect immunofluorescence was required to detect HA-

Ppt1p. Fluorescence microscopy indicated that HA-Ppt1p
was present throughout the cell, including the nucleus
(Fig. 5A). Localization and staining intensity did not ap-
pear to change as a function of bud size or morphology,
suggesting that Ppt1p expression and localization is not
cell cycle dependent.

To confirm that the indirect immunofluorescence proce-
dure did not generate artifacts, the localization of the
spindle pole body protein Spc42p was also examined by
this method. A yeast centromeric plasmid encoding the
fusion protein Spc42p-EGFP was transformed into W303
cells. Direct fluorescence from EGFP and indirect

Figure 5
Localization of HA-Ppt1p in yeast cells during early log phase growth. (A) Yeast cells expressing wild-type Ppt1p 
(W303; a, b, c) or HA-Ppt1p (WHT4-1; d, e, f) were subjected to immunocytochemistry using modified ABC amplification. 
DAPI was used for nuclear staining. The exposure time for the HA-Ppt1p (green) signal was 5 sec. (B) A spindle pole body pro-
tein, Spc42p fused with EGFP (Spc42p-EGFP) was expressed in W303 cells, and localized by both direct green fluorescence of 
EGFP (j) and indirect red immunofluorescence (k) using the same method of amplification. The exposure times for the direct 
EGFP signal and the indirect immunofluorescence signal were 5 sec and 40 msec, respectively. Wild-type cells (W303) were 
used as negative controls for both experiments (a, b, c, and g, h, i). All samples were observed with 1000 × magnification.
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immunofluorescence using the amplification protocol
with anti-EGFP antibody were compared. Both signals re-
vealed specific localization of Spc42p-EGFP to the spindle
pole body (Fig. 5B).

When HA-Ppt1p or EGFP-Ppt1p was overexpressed from
the GAL1 promoter in a centromeric or episomal plasmid,
respectively, indirect immunofluorescence of HA-Ppt1p
or direct fluorescence from EGFP-Ppt1p showed that both
proteins were also localized throughout the cell.

Discussion
PP5 and its homologs in other species represent a sub-
family of PPP enzymes distinguished by the presence of
an N-terminal domain containing multiple TPR repeats.
Ppt1p from the yeast Saccharomyces cerevisiae was the first
homolog of mammalian PP5 to be described. Thus far, ge-
netic approaches have not revealed functions for budding
yeast Ppt1p. In this report, we have characterized Ppt1p
activity in vitro and examined its expression.

In the case of mammalian PP5, results from lipid stimula-
tion and binding, limited proteolysis and truncation stud-
ies taken together suggest the TPR domain and the C
terminus inhibit PP5 activity in a coordinated manner
and that lipid binding to the TPR domain activates the en-
zyme in vitro [18–20]. In the present study we used assay
conditions for Ppt1p identical to those in which PP5 was
shown to be activated by removal of the TPR or C-termi-
nal regions [19]. Under these conditions Ppt1p is also
stimulated by lipids toward 32P-MBP, and activating lip-
ids slow TPR domain proteolysis. These results indicate
that Ppt1p has a similar domain structure to PP5 and is ac-
tivated in a similar manner by lipid binding to the TPR do-
main. Removal of the TPR domain prevents stimulation
by lipid, but only modestly increases Ppt1p activity. Car-
boxyl-terminal truncation modestly increases Ppt1p activ-
ity toward both 32P-MBP and 32P-casein, and does not
prevent further lipid stimulation of 32P-MBP dephospho-
rylation. These results distinguish Ppt1p from mammali-
an PP5 and suggest that the C terminus is less important
in controlling Ppt1p activity. Although more work will be
required to determine its role in lipid stimulation, remov-
al of the TPR domain had only a small effect on Ppt1p ac-
tivation. Ppt1p contains two short stretches of amino
acids, a 15-residue sequence between the linker helix and
the catalytic domain (residues 174–188), and a ten-resi-
due sequence just preceding the extreme C terminus (res-
idues 474–484), that are not found in other PP5
homologs reported thus far ([1–10], and accession num-
bers CAB60937, CAA17690 and AAD21727). The pres-
ence of these additional sequences in Ppt1p may underlie
the differences in the responses of Ppt1p and PP5 to N or
C-terminal truncation. Additional studies will be required

to determine if our observations reflect structural and reg-
ulatory properties unique to Ppt1p.

Ppt1p and PP5 exhibit similar specific activities toward
32P-casein in the absence of lipid. However Ppt1p activity
toward this substrate was not stimulated by lipids. These
results highlight the fact that PPP enzymes often exhibit
substrate specific effects in vitro and that the use of a single
substrate to study this family of enzymes can be
misleading. Like PP5, the control activity of Ppt1p is low
toward the commonly used artificial substrates such as
32P-casein and 32P-MBP compared to other PPP enzymes
[18]. Thus, it is not clear whether the selective lipid stim-
ulation of Ppt1p toward 32P-MBP reflects a substrate-di-
rected effect, or whether 32P-casein is simply a poor
substrate for Ppt1p. Egloff and colleagues identified seven
acidic surface residues on the catalytic face of PP1c γ that
are replaced by neutral or basic residues in PP2A [25].
They suggest the presence of these acidic residues in PP1c
γ may explain why casein is a good substrate for PP2A, but
not for PP1. Based on a sequence alignment with PP1c γ,
these seven acidic residues are not conserved in Ppt1p. Us-
ing the program Modeller [26], a homology model of the
catalytic domain of Ppt1p was built based on three PP1
structures – PDB http://www.pdb.org[27] codes 1FJM
[28], 1IT6 [29] and 1JK7 [30]. This model shows that the
catalytic face of Ppt1p is generally less acidic than that of
PP1c γ and does not indicate the presence of other acidic
residues that could act in the same fashion as those on
PP1c γ. Thus the reason for low Ppt1p activity toward this
acidic substrate may be more complex than can be ex-
plained by electrostatic repulsion.

Others have proposed that fatty acyl coenzyme A esters are
potential physiologic regulators of PP5, since these com-
pounds stimulate pNPP hydrolysis by PP5 in vitro at phys-
iologically relevant concentrations and are approximately
10-fold more potent than their free fatty acid counterparts
[21]. Although we confirmed this observation using PP5
and pNPP (data not shown), in our hands similar levels
of AA and arachidoyl coenzyme A were required for half-
maximal stimulation of 32P-MBP dephosphorylation in
the case of both Ppt1p and PP5. Although more work is
required to examine this issue thoroughly, our results sug-
gest that the large differences in potency between free fatty
acids and fatty acyl coenzyme A esters seen using pNPP
may not extend to all protein substrates. In addition, it
will be important to determine if lipids in any form play
a role in the regulation of PP5 or Ppt1p in vivo.

Ppt1p was present in both the nucleus and cytoplasm of
S. cerevisiae. No difference in compartmentalization or
staining intensity in cells was observed as a function of
cell or bud size. This suggests that the level or localization
of Ppt1p is not controlled as a function of cell cycle
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progression. Both nuclear and cytoplasmic localization
have been reported for other PP5 homologs. In some cas-
es, including P. falciparum and HeLa cells, nuclear staining
appeared more intense than cytoplasmic staining [2,9].
Based on studies with heterologously expressed human
PP5-GFP fusion proteins, it has been proposed that nucle-
ar localization requires a stretch of sequence in the C ter-
minus [31]. However, other sequences or signals are also
likely to contribute to nuclear localization of PP5 and its
homologs, since rat and mouse PP5, which are identical
to human PP5 in this region do not appear to be nuclear
in all cell types [32,33]. In addition P. falciparum PP5 is
primarily nuclear [9], although it is not well conserved in
the relevant C-terminal region but contains a potential bi-
partite nuclear localization signal not found in other PP5
sequences reported thus far. The functional significance of
differential localization is not known at this time.

Ppt1p levels are highest during periods of rapid growth
and drop off when growth slows (Fig. 4B), raising the pos-
sibility that this enzyme may have a role in controlling cell
growth [34] and its expression may be regulated by a met-
abolic or nutritional signal [35]. The observation that
Ppt1p levels rose and fell in parallel with mRNA levels
suggests that Ppt1p expression is primarily controlled at
the level of gene transcription. Studies of PP5 and its ho-
mologs in cultured cells and various organisms also sug-
gest it may play a role in development [5,6] or during
rapid cell growth [2,7].

Conclusions
Ppt1p shares several biochemical properties with PP5 and
other homologs, including a similar domain structure and
stimulation by lipid in vitro. Unlike PP5, Ppt1p is not fully
activated by removal of the TPR domain or by removal of
9 C-terminal residues, suggesting that these regions may
not play an autoinhibitory role in Ppt1p. Ppt1p is ex-
pressed in early log phase growth and decreases dramati-
cally as cells approach the stationary phase, suggesting
that Ppt1p could play a role in cell growth or may be con-
trolled by metabolic or nutritional signals. Like PP5, the
observation that Ppt1p is localized in both the nucleus
and cytoplasm implies that it may function in several sub-
cellular compartments.

Although our findings suggest some differences may exist
in regulatory properties of Ppt1p and PP5, many bio-
chemical and cellular properties are shared. In addition a
recent report has shown that Ppt1p is co-purified with
Hsp82p and Hsc82p, the S. cerevisiae homologs of hsp90
[36], indicating that Ppt1p and PP5 have at least one com-
mon protein partner and suggesting that, like PP5, Ppt1p
functions in chaperone complexes. Thus, S. cerevisiae
Ppt1p is likely to be a valuable model for probing the cel-
lular role of PP5.

Methods
Materials
Restriction enzymes and DNA modifying enzymes were
purchased from New England Biolabs, Promega or Gibco
BRL. Reagents for bacterial and yeast culture were pur-
chased from Difco. All other materials were from Sigma
unless otherwise noted. The yeast centromeric plasmid
encoding the Spc42p-EGFP fusion protein was a kind gift
from Younghoon Oh and Dr. Harry Charbonneau (De-
partment of Biochemistry, Purdue University).

Cloning and expression of recombinant Ppt1p, Ppt1p (1–
504), and PP5 in E. coli
PP5 was expressed and purified as described previously
[18]. To generate the expression plasmid pET-GST-PPT1,
Saccharomyces cerevisiae genomic DNA was used as tem-
plate in a polymerase chain reaction (PCR) with PPT1-
specific oligonucleotide primers, (5' primer, 5'-ATGt-
caacacccacagcagcagat; 3' primer, 5'-CTAtaaaccaaaaccac-
cattagaa) that contained initiation and stop codons,
respectively. A PCR product containing the full-length
PPT1 coding region was then cloned into the EcoRV re-
striction site of pBII KS – (Stratagene) and sequenced. A
fragment containing the PPT1 ORF was excised from the
pBII-PPT1 using EcoRI and XhoI restriction enzymes and
was subcloned downstream of the GST coding region into
the EcoRI and SalI sites of the bacterial expression vector
pET-21a GST [37]. To construct the pET-GST-PPT1 (1–
504) plasmid a 453 bp fragment was amplified from pET-
GST-PPT1 by PCR using a 3' primer containing a XhoI re-
striction site and a stop codon designed to truncate the
PPT1 gene product at Met504 (5'-gatcctcgagTTAcattggttt-
tatatctggg) and a 5' primer (5'-gtaatgcatggtggttta) encom-
passing the NsiI restriction site of PPT1. The PCR product
was cloned into the NsiI and XhoI restriction sites of pET-
GST-PPT1 and sequenced. Each construct was trans-
formed into E. coli strain BL21 (DE3) (Novagen), and pro-
tein was expressed, purified by glutathione-agarose
affinity chromatography, cleaved from GST and stored in
20 mM Tris (pH 7.6 at 4°C), 50% glycerol, 1 mM EGTA,
0.1% 2-mercaptoethanol, 4 mM MnCl2 at -20°C as previ-
ously described for PP5 [18]. Recombinant Ppt1p and
Ppt1p (1–504) each contain an additional seven residues,
Gly-Ser-Gly-Ser-Glu-Phe-Asp, which are remnants of the
thrombin-cleavage site. SDS-PAGE and Coomassie
stained gels showed that full-length Ppt1p and Ppt1p (1–
504) each constituted more than 95% of the purified pro-
tein (Fig. 1A).

Phosphatase assays
32P-labeled substrates were prepared and assays per-
formed as described previously [18]. Briefly, protein phos-
phatase reactions contained 2 or 4 nM enzyme in a final
volume of 30 µl containing buffer A (50 mM Tris, pH 7.6,
1 mM EDTA, 1 mM EGTA, 0.1% 2-mercaptoethanol),
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0.4% ethanol and 10 µM radiolabeled phosphosubstrate
in the absence or presence of AA [19]. Reactions were ini-
tiated by adding substrate and lipid, and incubated at
30°C for 10 to 15 min. The phosphate released from each
substrate was less than 20% of the total present. The
amount of ethanol added to lipid-stimulated or control
samples had no effect on activity.

Limited proteolysis of Ppt1p
Recombinant protein was incubated with either trypsin
(Roche Molecular Biochemicals) or subtilisin (Roche Mo-
lecular Biochemicals) in the absence or presence of 250
µM lipid for 0 to 30 min at 30°C, as previously described
[19]. To assess phosphatase activity, an aliquot of the di-
gestion reaction was diluted in buffer A containing either
0.1 mg/ml soybean trypsin inhibitor for trypsin, or 2 mM
PMSF for subtilisin and assayed. Matched samples from
the proteolysis reaction were quenched with trichloroace-
tic acid (10%, w/v), protein was sedimented, then boiled
in (75 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.1%
2-mercaptoethanol and 0.01% bromophenol blue), sub-
jected to SDS-PAGE using 10 or 15% resolving gels, and
protein bands visualized by Coomassie staining. For zero
time points, samples were withdrawn before the addition
of protease but were otherwise identical.

N-terminal sequence analysis of proteolytic fragments
Proteolytic fragments separated by SDS-PAGE were trans-
ferred to ProBlott PVDF membranes (Applied Biosystems,
Inc.) as described by LeGendre et al [38]. Coomassie-
stained protein bands were then subjected to sequence
analysis using either a Model 491 or Model 470A gas
phase sequencer equipped with a Model 120A on-line
phenylthiohydantoin analyzer (Applied Biosystems, Inc).
Sequence analysis was performed in the Purdue Macro-
molecular Structure Facility.

Cloning, subcloning, and gene replacement for the expres-
sion of HA-Ppt1p in yeast cells
For expression of HA-tagged Ppt1p under control of the
GAL1 promoter, a PPT1 DNA fragment was cut from pET-
GST-PPT1 by EcoRI and NotI digestion and subcloned into
the EcoRI/NotI-digested YCpIF16 (ATCC No. 87091), a
centromeric plasmid. The resulting plasmid, YCpIF16-
PPT1, was transformed into yeast W303 cells (MATa,
can1-100, leu2-3,112, his3-11,15, trp1-1, ura3-1, ade2-1).
Transformed cells were grown in SC-Trp medium at 30°C
to OD600 nm 0.5, washed twice to remove glucose, then
grown in SG-Trp medium containing 2% galactose in-
stead of glucose for 12–16 hr at room temperature to in-
duce protein expression.

A strain expressing HA-Ppt1p was made using the two-
step gene replacement strategy [39]. First, the upstream se-
quence of PPT1 (-955 to -1) was amplified from yeast

genomic DNA by PCR using a 5' primer containing a KpnI
restriction site (5'-gatcGGTACCattagcacggtgccttaacca-3')
and a 3' primer containing a XhoI site and HA coding se-
quence (5'-
gatcCTCGAGatcgataccgtcgagctagcgtagtctgggacgtcgtatgggta
tcgactcatATTCGAGATATTTGATTATACCAAGGC-3'). In
the 3' primer, the sequence from the XhoI restriction site
to the HA coding sequence was identical to that present in
YCpIF16. The amplified DNA fragment was cloned into
pRS306 (New England Biolabs, Inc.) using KpnI and XhoI
restriction sites to generate pRS306-955HA. Then, a frag-
ment containing the PPT1 ORF was excised from
YCpIF16-PPT1 by XhoI and NotI digestion and subcloned
into this plasmid to form pRS306-955HAPPT1. The plas-
mid was linearized by BamHI digestion, transformed into
the yeast strain, W303, and the transformed cells were
plated on a SC-Ura plate. The resulting colonies were then
grown in YPAD media (1% yeast extract, 2% peptone,
0.04% adenine, and 2% glucose) and plated on 5-FOA
plates to select clones emerging by a second recombina-
tion event that eliminated the URA3 gene together with
the additional copy of PPT1. To confirm gene replace-
ment, chromosomal DNA from these clones was used for
PCR amplification of the region encoding HA-Ppt1p. Am-
plified product was then analyzed by XhoI digest, which
can only cut amplified product from the replaced gene.

Immunoblotting and immunocytochemical analysis of HA-
Ppt1p expression
Wild type (W303) cell and WHT4-1 cells were grown in
YPAD medium. The expression of HA-Ppt1p was detected
by immunoblot using the 12CA5 monoclonal anti-HA
antibody (Roche Molecular Biochemicals). The total pro-
tein was extracted from approximately 107 cells by vortex-
ing with glass beads, then resolved by SDS-PAGE on 12%
gel, and transferred to nitrocellulose at 55V in (25 mM
Tris, 250 mM glycine, 0.1% SDS, and 20% methanol) for
1 hr at room temperature. The membrane was blocked
with 3% non-fat dry milk (Bio-Rad), 0.1% tween-20 in
TBS (pH 7.4), then cut at molecular weight marker 45
kDa. The upper half was probed with anti-HA antibody (4
µg/ml), followed by HRP-conjugated anti-mouse IgG
(1:5,000, CalBiochem), and the signal was detected using
ECL reagents (Amersham Pharmacia Biotech UK Ltd.).
The lower half was probed with anti-Cdc28p antibody
(Santa Cruz Biotechnology) to ensure that an equal
amount of protein was loaded in each lane. The relative
level of HA-Ppt1p expression was determined by compar-
ing the band intensity of HA-Ppt1p to that of Cdc28p us-
ing ImageQuant software version 5.1 (Molecular
Dynamics).

Cells were prepared for immunocytochemistry as de-
scribed by Harlow and Lane [40]. Briefly, WHT4-1 cells
were grown to early log-phase (OD600 nm 1.0–1.5), fixed
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by 4% para-formaldehyde, and the cell wall was removed
by treatment with β-glucuronidase and zymolase. The re-
sulting spheroplasts were attached to poly-L-lysine coated
coverslips and treated with cold methanol, then acetone.
After blocking non-specific binding sites with 3% BSA,
0.1% tween-20 in PBS, the coverslips were incubated with
anti-HA (40 µg/ml) or anti-GFP antibody (40 µg/ml), rab-
bit anti-mouse IgG (Pierce, 1:200), biotin-conjugated
anti-rabbit IgG (Vector Laboratories, 1:200), and strepta-
vidin conjugated with either Alexa 488 or Alexa 594 (Mo-
lecular Probes, 1:200). After staining nuclei with 4'6-
diamidino-2-phenylindole (DAPI), the coverslips were
mounted on slides using ProLong anti-fade reagent (Mo-
lecular Probes). The specimens were examined with a
BX60 fluorescence microscope (Olympus) and images
captured using a RT220 color digital camera (Diagnostic
Instruments, Inc.). W303 cells treated in the same manner
were used as a negative control.

Northern blot analysis of PPT1 mRNA
Total RNA was prepared from W303 and WHT4-1 yeast
cells using hot acid phenol extraction [41]. For electro-
phoresis, 20 µg of RNA per sample was resolved on a 1%
agarose gel containing 2.2 M formaldehyde at 5V/cm until
the bromophenol blue migrated 8 cm. The gel was rinsed
with diethylpyrocarbonate-treated H2O and the RNA was
transferred to a Hybond N+ membrane (Amersham Bio-
sciences) by capillary transfer in alkaline solution (0.01 N
NaOH, 3 M NaCl) for overnight. The membrane was pre-
hybridized with PERFECTHYB PLUS solution (Sigma) at
68°C for 1 hr, and a cDNA probe for PPT1 was added and
incubated at 42°C for overnight. The cDNA probe was
prepared by restriction digestion of pET-GST-PPT1 with
BsmI and NcoI. The 879 bp DNA fragment generated, cor-
responding to 544–1422 of PPT1 coding sequence, was
gel-purified and labeled with 0.67 µM [α-32P] CTP (3000
Ci/mmol) using the DECAprimeII random priming kit
(Ambion) according to the user manual. After washing
with 1 × SSC, 0.1% SDS for 20 min at room temperature
and 0.2 × SSC, 0.1% SDS for 20 min three times at 68°C,
the membrane was exposed to a storage phosphor screen
GP (Kodak) or x-ray film (BMS 1, Kodak). The membrane
was stripped in 50% formamide, 0.1 × SSC, 0.1% SDS for
2 hr at 68°C, and reprobed with a cDNA for ACT1 (yeast
actin gene). The DNA fragment corresponding 214–694
of actin coding sequence was amplified by PCR using
yeast genomic DNA as template and ACT1-specific oligo-
nucleotide primers (5' primer, 5'-gaacacggtattgtcaccaact-
gggacgatatgg; 3' primer, 5'-
gagcagcggtttgcatttcttgttcgaagtcc). The 481 bp DNA frag-
ment was labeled and used essentially as described for the
PPT1 probe. The storage phosphor screen was scanned us-
ing Typhoon scanner (Molecular Dynamics), and the rel-
ative level of PPT1 message was determined by comparing
the band intensity of PPT1 mRNA to that of actin mRNA

using ImageQuant software version 5.1 (Molecular
Dynamics).

List of abbreviations
PP, protein phosphatase; MBP, myelin basic protein; TPR,
tetratricopeptide repeat; AA, arachidonic acid; HA,
hemagglutinin.

Competing interests
None declared.

Authors' contributions
JYJ cloned, expressed, and performed initial characteriza-
tion studies of recombinant Ppt1p, performed gene re-
placement, immunoblot and immunolocalization
studies, and prepared the manuscript. JJ and CS character-
ized PPT1 activity following truncation or limited proteol-
ysis and identified proteolysis sites. JYJ and JMP carried
out Northern blot analyses. SR helped design, supervise
and interpret studies and with manuscript preparation. All
authors read and approved the final manuscript.

Acknowledgements
This work was supported by Research Grant R-01 NS31221 from the Na-
tional Institutes of Health (to SR). This is journal paper no. 16975 from the 
Purdue University Agricultural Experimental Station. The authors thank Dr. 
Adam Zabell (Department of Biological Sciences, Purdue University) for 
generating a homology model of the catalytic domain of Ppt1p.

References
1. Becker W, Kentrup H, Klumpp S, Schultz JE and Joost HG Molecular

cloning of a protein serine/threonine phosphatase containing
a putative regulatory tetratricopeptide repeat domain J Biol
Chem 1994, 269:22586-22592

2. Chen MX, McPartlin AE, Brown L, Chen YH, Barker HM and Cohen
PT A novel human protein serine/threonine phosphatase,
which possesses four tetratricopeptide repeat motifs and lo-
calizes to the nucleus Embo J 1994, 13:4278-4290

3. Chinkers M Targeting of a distinctive protein-serine phos-
phatase to the protein kinase-like domain of the atrial
natriuretic peptide receptor Proc Natl Acad Sci U S A 1994,
91:11075-11079

4. Ollendorff V and Donoghue DJ The serine/threonine phos-
phatase PP5 interacts with CDC16 and CDC27, two tetratr-
icopeptide repeat-containing subunits of the anaphase-
promoting complex J Biol Chem 1997, 272:32011-32018

5. Yatzkan E and Yarden O ppt-1, a Neurospora crassa PPT/PP5
subfamily serine/threonine protein phosphatase Biochim Bio-
phys Acta 1997, 1353:18-22

6. Brown L, Borthwick EB and Cohen PT Drosophila protein phos-
phatase 5 is encoded by a single gene that is most highly ex-
pressed during embryonic development Biochim Biophys Acta
2000, 1492:470-476

7. Chaudhuri M Cloning and characterization of a novel serine/
threonine protein phosphatase type 5 from Trypanosoma
brucei Gene 2001, 266:1-13

8. Dobson S, Kar B, Kumar R, Adams B and Barik S A novel tetratr-
icopeptide repeat (TPR) containing PP5 serine/threonine
protein phosphatase in the malaria parasite, Plasmodium
falciparum BMC Microbiol 2001, 1:31

9. Lindenthal C and Klinkert MQ Identification and biochemical
characterisation of a protein phosphatase 5 homologue from
Plasmodium falciparum Mol Biochem Parasitol 2002, 120:257-268

10. Meek S, Morrice N and MacKintosh C Microcystin affinity purifi-
cation of plant protein phosphatases: PP1C, PP5 and a regu-
latory A-subunit of PP2A FEBS Lett 1999, 457:494-498
Page 12 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8077208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8077208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8077208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7925273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7925273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7925273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=45169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=45169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=45169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7972012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9405394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9405394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9405394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.272.51.32011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9256060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9256060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0167-4781(97)00076-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0167-4781(00)00105-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11290414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11290414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11290414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0378-1119(01)00367-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11737864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11737864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11737864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2180-1-31
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=60990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11897131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11897131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11897131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0166-6851(02)00007-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0014-5793(99)01093-5


BMC Cell Biology 2003, 4 http://www.biomedcentral.com/1471-2121/4/3
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

11. Zuo Z, Dean NM and Honkanen RE Serine/threonine protein
phosphatase type 5 acts upstream of p53 to regulate the in-
duction of p21(WAF1/Cip1) and mediate growth arrest J Biol
Chem 1998, 273:12250-12258

12. Urban G, Golden T, Aragon IV, Scammell JG, Dean NM and
Honkanen RE Identification of an estrogen-inducible phos-
phatase (PP5) that converts MCF-7 human breast carcino-
ma cells into an estrogen-independent phenotype when
expressed constitutively J Biol Chem 2001, 276:27638-27646

13. Morita K, Saitoh M, Tobiume K, Matsuura H, Enomoto S, Nishitoh H
and Ichijo H Negative feedback regulation of ASK1 by protein
phosphatase 5 (PP5) in response to oxidative stress Embo J
2001, 20:6028-6036

14. Chen MS, Silverstein AM, Pratt WB and Chinkers M The tetratr-
icopeptide repeat domain of protein phosphatase 5 medi-
ates binding to glucocorticoid receptor heterocomplexes
and acts as a dominant negative mutant J Biol Chem 1996,
271:32315-32320

15. Dean DA, Urban G, Aragon IV, Swingle M, Miller B, Rusconi S, Bueno
M, Dean NM and Honkanen RE Serine / threonine protein phos-
phatase 5 (PP5) participates in the regulation of glucocorti-
coid receptor nucleocytoplasmic shuttling BMC Cell Biol 2001,
2:6

16. Ramsey AJ, Russell LC, Whitt SR and Chinkers M Overlapping sites
of tetratricopeptide repeat protein binding and chaperone
activity in heat shock protein 90 J Biol Chem 2000, 275:17857-
17862

17. Shao J, Hartson SD and Matts RL Evidence that protein phos-
phatase 5 functions to negatively modulate the maturation
of the Hsp90-dependent heme-regulated eIF2alpha kinase Bi-
ochemistry 2002, 41:6770-6779

18. Skinner J, Sinclair C, Romeo C, Armstrong D, Charbonneau H and
Rossie S Purification of a fatty acid-stimulated protein-serine/
threonine phosphatase from bovine brain and its identifica-
tion as a homolog of protein phosphatase 5 J Biol Chem 1997,
272:22464-22471

19. Sinclair C, Borchers C, Parker C, Tomer K, Charbonneau H and
Rossie S The tetratricopeptide repeat domain and a C-termi-
nal region control the activity of Ser/Thr protein phos-
phatase 5 J Biol Chem 1999, 274:23666-23672

20. Chen MX and Cohen PT Activation of protein phosphatase 5 by
limited proteolysis or the binding of polyunsaturated fatty
acids to the TPR domain FEBS Lett 1997, 400:136-140

21. Ramsey AJ and Chinkers M Identification of potential physiolog-
ical activators of protein phosphatase 5 Biochemistry 2002,
41:5625-5632

22. Zhao S and Sancar A Human blue-light photoreceptor hCRY2
specifically interacts with protein serine/threonine phos-
phatase 5 and modulates its activity Photochem Photobiol 1997,
66:727-731

23. Sakumoto N, Matsuoka I, Mukai Y, Ogawa N, Kaneko Y and Harashi-
ma S A series of double disruptants for protein phosphatase
genes in Saccharomyces cerevisiae and their phenotypic
analysis Yeast 2002, 19:587-599

24. Das AK, Cohen PW and Barford D The structure of the tetratr-
icopeptide repeats of protein phosphatase 5: implications for
TPR-mediated protein-protein interactions Embo J 1998,
17:1192-1199

25. Egloff MP, Cohen PT, Reinemer P and Barford D Crystal structure
of the catalytic subunit of human protein phosphatase 1 and
its complex with tungstate J Mol Biol 1995, 254:942-959

26. Sali A and Blundell TL Comparative protein modelling by satis-
faction of spatial restraints J Mol Biol 1993, 234:779-815

27. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN and Bourne PE The Protein Data Bank Nucleic Acids
Res 2000, 28:235-242

28. Goldberg J, Huang HB, Kwon YG, Greengard P, Nairn AC and Kuri-
yan J Three-dimensional structure of the catalytic subunit of
protein serine/threonine phosphatase-1 Nature 1995, 376:745-
753

29. Kita A, Matsunaga S, Takai A, Kataiwa H, Wakimoto T, Fusetani N,
Isobe M and Miki K Crystal structure of the complex between
calyculin A and the catalytic subunit of protein phosphatase
1 Structure (Camb) 2002, 10:715-724

30. Holmes CF, Maynes JT, Perreault KR, Dawson JF and James MN Mo-
lecular enzymology underlying regulation of protein phos-
phatase-1 by natural toxins Curr Med Chem 2002, 9:1981-1989

31. Borthwick EB, Zeke T, Prescott AR and Cohen PT Nuclear locali-
zation of protein phosphatase 5 is dependent on the car-
boxy-terminal region FEBS Lett 2001, 491:279-284

32. Bahl R, Bradley KC, Thompson KJ, Swain RA, Rossie S and Meisel RL
Localization of protein Ser/Thr phosphatase 5 in rat brain
Brain Res Mol Brain Res 2001, 90:101-109

33. Russell LC, Whitt SR, Chen MS and Chinkers M Identification of
conserved residues required for the binding of a tetratr-
icopeptide repeat domain to heat shock protein 90 J Biol Chem
1999, 274:20060-20063

34. Cohen PT Novel protein serine/threonine phosphatases: vari-
ety is the spice of life Trends Biochem Sci 1997, 22:245-251

35. Reece RJ Molecular basis of nutrient-controlled gene expres-
sion in Saccharomyces cerevisiae Cell Mol Life Sci 2000, 57:1161-
1171

36. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A,
Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C,
Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M,
Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein
C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V,
Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B,
Neubauer G and Superti-Furga G Functional organization of the
yeast proteome by systematic analysis of protein complexes
Nature 2002, 415:141-147

37. Taylor GS, Liu Y, Baskerville C and Charbonneau H The activity of
Cdc14p, an oligomeric dual specificity protein phosphatase
from Saccharomyces cerevisiae, is required for cell cycle
progression J Biol Chem 1997, 272:24054-24063

38. LeGendre N, Mansfield M, Weiss A and Matsudaira P  A Practical Guide
to Protein Purification for Microsequencing (Edited by: Matsudaira P) San
Diego, Academic Press 1993, 75-80

39. Adams A, Gottschling DE, Kaiser CA and Stearns T  Methods in Yeast
Genetics Plainview, Cold Spring Harbor Laboratory Press 1997, 80-84

40. Harlow E and Lane D  Antibodies- A Laboratory Manual Plainview, Cold
Spring Harbor Laboratory Press 1988, 374-376

41. Collart MA and Oliviero S  Short Protocols in Molecular Biology (Edited
by: Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J
A and Struhl K) New York, John Wiley & Sons 1995, 13-46-47
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9575175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9575175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9575175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.273.20.12250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.M103512200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11689443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11689443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/emboj/20.21.6028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=125685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.271.50.32315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11389770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11389770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11389770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2121-2-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10751404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10751404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10751404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.M001625200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12022881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12022881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12022881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1021/bi025737a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.272.36.22464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10438550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10438550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10438550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.274.33.23666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9000529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9000529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9000529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0014-5793(96)01427-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11969423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11969423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1021/bi016090h
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9383998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9383998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9383998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/yea.860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9482716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9482716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9482716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/emboj/17.5.1192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7500362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7500362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7500362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.1995.0667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8254673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8254673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.1993.1626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=102472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7651533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7651533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12015153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12015153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12015153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0969-2126(02)00764-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12369866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12369866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12369866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11240142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11240142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11240142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0014-5793(01)02177-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11406288
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11406288
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0169-328X(01)00089-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10400612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10400612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10400612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.274.29.20060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9255065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9255065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0968-0004(97)01060-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11028909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11028909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/415141a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9295359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9295359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9295359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.272.38.24054
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Comparison of Ppt1p and PP5 activity and response to li pid treatment
	Table 1

	Limited proteolysis of Ppt1p
	The effect of C-terminal truncation on Ppt1p activity
	Expression and localization of HA-Ppt1p in yeast cells

	Discussion
	Conclusions
	Methods
	Materials
	Cloning and expression of recombinant Ppt1p, Ppt1p (1- 504), and PP5 in E. coli
	Phosphatase assays
	Limited proteolysis of Ppt1p
	N-terminal sequence analysis of proteolytic fragments
	Cloning, subcloning, and gene replacement for the expres sion of HA-Ppt1p in yeast cells
	Immunoblotting and immunocytochemical analysis of HA- Ppt1p expression
	Northern blot analysis of PPT1 mRNA

	List of abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Acknowledgements

	References

