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Abstract

Background: Gene expression is affected by population density. Cell density is a potent negative
regulator of cell cycle time during exponential growth. Here, we asked whether SV40 large T
antigen (Tag) levels, driven by two different promoters, changed in a predictable and regular
manner during exponential growth in clonal astrocyte cell lines, immortalized and dependent on
Tag.

Results: Expression and cell cycle phase fractions were measured and correlated using flow
cytometry. T antigen levels did not change or increased during exponential growth as a function of
the G, fraction and increasing cell density when Tag was transcribed from the Moloney Murine
Leukemia virus (MoMuLV) long terminal repeat (LTR). When an Rb-binding mutant T antigen
transcribed from the LTR was tested, levels decreased. When transcribed from the herpes
thymidine kinase promoter, Tag levels decreased. The directions of change and the rates of change
in Tag expression were unrelated to the average T antigen levels (i.e., the expression potential).

Conclusions: These data show that Tag expression potential in these lines varies depending on
the vector and clonal variation, but that the observed level depends on cell density and cell cycle
transit time. The hypothetical terms, expression at zero cell density and expression at minimum
G, phase fraction, were introduced to simplify measures of expression potential.

Background

We have been interested in quantitative analysis of gene
expression within single cells and the distribution of that
expression within populations of cells replicating in cul-
ture (e.g.,) [1-3]. Since the level of any specific protein
within a cell is dynamic, and since it is difficult to describe
cells in tissue culture as "steady state" entities, describing
gene expression in cell populations in quantitative terms
becomes a complex problem. Here we have explored the
relationship of SV40 large T antigen (Tag) expression as a
function of cell density and cell cycle duration in clonal

populations of Tag-immortalized mouse astrocytes. These
cells depend on expression of T antigen for viability.

Expression of Tag in mouse cells under selective condi-
tions that do not require tumorigenic transformation
(e.g., transduction by retrovirus and selection for drug re-
sistance) produces immortal cell lines with limited trans-
formation phenotypes [4,5]. However, expression of Tag
has profound effects on the cell cycle, significantly reduc-
ing cell doubling time and increasing saturation density
[4-6]. These direct effects of Tag result from binding and
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inactivation of the retinoblastoma family proteins (p130,
Rb, p107) and the tumor suppressor, p53 [7-9]. Tag is
rate limiting for G, transit, and this effect (as well as satu-
ration density and growth in soft agar) is Tag-dose de-
pendent [3,10-12]. Since the cell lines in this study are
capable of entering a quiescent state at saturation density
[6], one might expect that the levels of Tag would decrease
at saturation and as cells progressively slow down as a
function of cell density.

However, we have previously noted that the Tag increased
in Tag-transformed NIH 3T3 cells as the population be-
came more dense and the cell cycle time increased during
exponential growth [11]. For some cell types, like fibrob-
lasts and lymphocytes, G cells have less cell mass than cy-
cling cells, and one might expect that Tag expression
would decrease as the G; phase of the cycle lengthened
and cells achieved confluence. Since Tag did not decrease
simultaneously with an increasing G; time, and since Tag
was one of the G; rate-limiting molecules, the activity of
Tag must have been decreasing while Tag levels increased.
Thus, negative control of the cell cycle as a function of cell
density was dominant to the activity of Tag. Though the
Tag-transformed NIH-3T3 cells could not maintain a
monolayer at confluence (did not enter Gy) during the
plateau phase of growth, it was expected that expression
would eventually plateau or decrease.

The purpose for this study was to explore further the rela-
tionship between Tag expression as a function of cell cycle
time and cell density. We asked whether Tag expression in
immortalized mouse cells always increased as a function
of G, time during exponential growth and whether levels
eventually decreased or achieved a steady state level at
high cell density. The advantage to using astrocyte lines is
that many of these lines can maintain a monolayer in cul-
ture for long periods of time [6]. Since Tag levels are sig-
nificantly determined by the strength of the transcription
promoter in this retroviral system [1,11], we examined
cell lines immortalized by Tag transcribed from two differ-
ent promoters. In the analysis of these data, we (1) ex-
plored the relationship between expression, G; phase
time, and cell density, (2) asked whether the transcrip-
tional promoter affected those relationships, (3) explored
analytical methods for describing expression within the
context of these relationships, and (4) asked whether the
"intrinsic expression potential" of Tag affected Tag expres-
sion at high cell density. The results of this study have
practical implications for the use of cell lines as standards
in quantitative assays of gene expression [e.g., [3]].

Results

Characterization of tkT lines

We have previously characterized clonal mouse astrocyte
cell lines, immortalized by transduction of SV40 large T
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GFAP expression in the Linker tkT cell lines. The tkT
cell lines and NIH 3T3 cells were grown in | mM dibutyryl
cAMP for 3 to 8 days. Intermediate filament extracts from |
to 6 X 105 cells were loaded in each lane and subjected to
SDS PAGE and Western blotting. The membranes were
immunostained for GFAP, which is specific for astrocytes. All
of the astrocyte cell lines expressed GFAP and the NIH 3T3
cells did not.

antigen expressed from the MoMuLV LTR [6,13]. Here, we
compare variation in Tag levels in 3 of these lines and 3
additional lines (termed tKT lines), immortalized with
Moloney Sarcoma Virus vectors expressing Tag from an in-
ternal herpes thymidine kinase (tk) promoter. The astro-
cyte lineage of the LTR lines has been published [6,13].
The astrocyte lineage of the tkT lines was confirmed by the
presence of the astrocyte-specific intermediate filament
protein, GFAP [14] (Figure 1). All of the lines contained
GFAP, whereas NIH 3T3 cells treated with dibutyryl cAMP
at the same level as the astrocyte lines did not.

Expression of Tag

To determine the Tag expression of each cell line at a sin-
gle density and validate cytometric measurements, West-
ern blotting was performed on all cell lines and compared
to purified, recombinant Tag (Figure 2A). Lysates from
equal numbers of cells were loaded on the electrophoresis
gel with the exception of P0-13D tkT#13, which expressed
the lowest levels of Tag. This lysate was loaded at a 2-fold
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Woestern blot of Tag expressing cell lines. (A) Cell
extracts of each line and a purified baculovirus lysate of
recombinant Tag were Western blotted (see Materials and
Methods). The PO-13D tkT#13 lane contained lysate from
2.5 x 103 cells; for the other lines, lysates from 1.25 x 103
cells were loaded. NIH 3T3 extract was added to the low
protein extracts and the authentic Tag so that total protein
was equal in each lane. (B) Densitometry of the Western blot
was compared to total Tag immunofluorescence determined
by cytometry for each cell line.

higher cell number. Protein levels of each sample and the
recombinant Tag were adjusted to equality by the addi-
tion of NIH 3T3 cell extract. The presence of equal protein
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levels in each lane was confirmed by staining the blotted
gel with Coomassie blue and performing densitometry.
The protein levels were not significantly different (coeffi-
cient of variation (CV) of < 9%). Tag in the cell lines mi-
grated at the correct molecular weight and cross-reacting
bands were not detected. When the Tag-specific fluores-
cence (all cell cycle phase fractions) measured by flow cy-
tometry was compared to the intensity of Western blot
bands measured by densitometry, the two measurements
showed an essentially linear relationship (Figure 2B).
Therefore, immunofluorescence flow cytometry provides
an unbiased estimate of the relative levels of Tag expres-
sion for the range of measurements presented in this pa-

per.

Effect of cell density related cell cycle control on expres-
sion of Tag

A priori, one might expect that most cell cycle related
genes will be less expressed in growth arrested, confluent,
or G cells relative to proliferating cultures due to a gener-
alized decrease in metabolic activity, cell protein content,
and cell size. However, based on unpublished observa-
tions and previous work (see Introduction,) [11], we ex-
pected that the Tag expression-cell density profiles would
look like that in Figure 3. To test this idea, we measured
Tag expression by immunofluorescence flow cytometry
(see Figure 4) in 6 Tag-immortalized mouse astrocyte
lines plated at a range of cell densities and cultured for 2-
3 days as previously described [15]. The upper densities
ensured in most cases that the cells would be in either the
"transition" or "plateau" phase for some of the measure-
ments. Since Tag accumulates throughout the cell cycle,
populations with different phase fractions will have differ-
ent average levels, therefore, we measured Tag from the G,
population to generate measurements independent of the
cell cycle phase fraction distribution as previously de-
scribed [3].

Figure 5A shows the relationship of final cell number to
initial cell number for two combined experiments from
one cell line. Plots like this were used to determine the
samples that represented the exponential portion of a
growth curve. The slope of a straight line was calculated
and samples were chosen for inclusion when the slope
was either maximal or > 2.0 when sufficient data could
not be obtained by maximization. The %G, curves (5B)
were used as a secondary guide to selecting the exponen-
tial data. Figure 5B shows that the G, fraction increased as
a function of final cell density but that more dense cells ar-
rested with a significant fraction of S, G,, and M cells. The
increase in the G; fraction was expected as we have dem-
onstrated in several cell systems that the G; cell cycle
phase increases in length and frequency during exponen-
tial growth as a function of cell density [11,15,16]. This
change in G; can be demonstrated either by successive
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Expected density-related changes in Tag and G,
phase fraction. Tag increases during exponential growth
and then levels off and declines as %G, stabilizes in the pla-
teau phase of cell growth.

harvests from cells plated at a single density or by plating
cells at different densities and harvesting simultaneously
(as in this study). The presence of S phase at confluence is
typical of transformed cells. Figure 5 (C, D) shows the ex-
pression profiles for Tag versus %G; (C) and final cell
density (D). The exponential region defines the data used
for regression measurements. Tag expression at terminal
cell density, "Final Tag", was determined by the average of
the final two samples (arrow).

To evaluate expression, Tag measurements for samples in
exponential growth (see above criteria) were subjected to
linear regression on final cell density to generate an inter-
cept representing the Tag level at a hypothetical zero cell
density. This value for each experiment was used to nor-
malize data for each data set to a zero cell density value of
100 and thus correct for differences in fluorescence meas-
urements obtained in multiple experiments, and addi-
tionally, scale the data to be independent of cell line
specific expression levels. The normalized data were then
combined for replicate or triplicate experiments and sub-
jected to linear regression on the fraction of G, cells and
final cell densities. Data for two cell lines are shown in Fig-
ure 6. For all cell lines, the slope and SE of the slope were
calculated and plotted in Figure 7. In one of the cell lines,
the slopes for Tag versus both G; and cell density were not
significantly different from zero. For another line, the
slopes had significant positive values, and in the remain-
ing 4 lines both slopes were negative and significant. Fig-
ure 6 shows data for the cell line that did not differ from
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Flow cytometry measurements of Tag and DNA. This
is an example of the cytometric data collected for this study.
PO-3D tkT#5 cells were immunofluorescently labeled with
PAB 416 (anti-Tag) or IgG2a (isotype control) and FITC-con-
jugated goat anti-mouse secondary antibody. DNA was
stained with propidium diiodide. Mean linear immunofluores-
cence of the G| sub-population for the isotype control (Fb)
was subtracted from that of the Tag-stained sample (Ft) to
generate the measurement of Tag expression (Fs).

zero and a representative line with negative slopes. The
two cell lines that did not display a decrease in Tag during
exponential growth were transformed with retroviruses
utilizing the retroviral LTR. Three of the cell lines that
showed a significant decrease in Tag during exponential
growth utilized retroviruses encoding transcription of Tag
from the htk promoter, which can be a weak promoter in
mouse cells [1,11] but subject to cell line specific effects
(see discussion). One of the cell lines showing a signifi-
cant decrease in Tag expression was K1-30 which encoded
an Rb-binding defective mutant Tag transcribed from the
retroviral LTR [6].

Serum levels do not affect Tag expression

It is possible that Tag expression could be regulated by fac-
tors in serum, and that these factors could be progressively
depleted at increasing cell numbers. To test this, the cell
line in which Tag control was most sensitive to density,
P0-3D tkT#5, was grown for 3 days starting at an interme-
diate density of 10° cells per 10 cm plate with varying con-
centrations of serum ranging from 2.5-10%. Tag level as
well as %G, was equivalent at all serum levels (Table 2).
Since, there is significantly less serum/cell in 2.5% serum
samples, we conclude that factors in serum, at concentra-
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Representative cell cycle and cell density-related changes in Tag. Panel A shows the final cell density versus the initial
plating density. Data representing cells in exponential growth are expected to fit an approximate straight line. Data that fall
below an extrapolation of that line are at or are approaching density arrest. Panel B shows that the fraction of cells in G,
increases as a function of density during exponential growth and plateaus as cells arrest. Panels C and D show the G, Tag
expression as a function of the fraction of G, cells (C) or cell density (D). The regions of data used to calculate the rate of
change in expression by linear regression are delineated (brackets) and the data used to determine the terminal expression lev-

els are marked (arrows).

tions that maintain exponential growth, do not regulate
Tag levels in these cell lines.

Characterization of density and growth phase effects on
Tag

Tag expression at high cell density

For each cell line, the levels of Tag at high cell density (ei-
ther transition or plateau phase) were significantly lower
than during exponential growth. This level ranged from a
12-63% decrease compared to the hypothetical Tag level
of 100 (normalized) at 0 cell density (Table 1).

Tag expression at zero and late cell densities

Figure 8A shows the correlation plot for the objective, "ex-
pression potential” intercept measurement at zero cell
density (defined above) and Tag measured from Western
blots in Figure 2. The Western blot data represent a sam-
pling of Tag expression on growing cultures, in late expo-
nential growth, and thus might reflect the average,
qualitative experiment. The overall agreement with the in-
tercept measurement supports the use of this objective
means to determine expression potential, i.e., expression
that is independent of population growth/density effects,
in quantitative analysis. The R2 value for the regression is
79%. The single outlier represents P0-17D#8 which is the
only cell line that showed an increase in Tag during expo-
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Exponential growth related Tag expression. The density and %G, related expression profiles are show for a cell line that
does not show a significant density related change (top) and one that does (bottom). PO-2D#2 expresses Tag from the retrovi-
ral LTR and PO-3DtkT#5 expresses Tag from the htk promoter. Dashed lines represent the 95% confidence interval about the

regression line.

Table I: Tag change during exponential growth (G,) and at high cell density.!

Cell Line Tag Promoter G, Slope p D Slope p FinT N
P0O-2D#2 Wild Type LTR -0.190 0.54640 -3.80 0.5971 88 Il
PO-17D#8 Wild Type LTR 0515 0.03180 3.48 0.0059 8l 6
K1-30 Mutant LTR -1.350 0.01000 -4.67 0.0001 49 16
PO-3DtkT#5 Wild Type tk -1.520 <0.00010 -12.99 0.0006 37 I3
PO-3DtkT#3 Wild Type tk -0.476 0.00230 -2.05 0.0166 74 23
PO-13DtkT#13 Wild Type tk -1.052 0.00030 -5.058 0.0017 64 18

I This is a summary of the data graphed in Figure 7. G, Slope = slope of Tag versus G,. D Slope = slope of Tag versus cell density. FinT = the Tag
level at transition or plateau phase and normalized to a hypothetical value of 100 at O cell density. p = p value; N = number of evaluations.
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Density related rate of change in Tag expression.
Slopes and SE for each cell line determined as shown in Fig-
ures 4 and 5 are plotted. All data are significantly different
from zero except 2D#2. See Table I. Cell line names have
been abbreviated: #3 = 3DtkT#3, #13 = 13DtkT#I3, #5 =
I 3DtkT#S5.

Table 2: Effect of serum on Tag and %G, !.

Serum (%) Cells2 (x106) T Antigen %G,
2.5 3.99 60.4 71.1

5 4.02 57.6 73.7

10 3.62 57.1 71.8

I The PO-3DtkT#5 cell line was inoculated at 10 per 10 cm plate in
DMEM containing the indicated amount of serum. Cells were har-
vested after 3 days and analysed for Tag level and %G, by cytometry.
2Cell number = final cell number per 10 cm dish.

nential growth and so would not be expected to fit the re-
gression as well. If P0-17D#8 is removed, the R? is 97%.
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Relationship of Tag expression as a function of cell density and G,
phase time

An increase in the fraction of G, cells as a linear function
of cell density is a common observation in this laboratory
[e.g., Figure 4B, [11,15,16]]. Figure 8B shows that there is
a correlated relationship between the slopes, i.e., changes
in Tag concentration as a function of G, phase time is cor-
related with changes in Tag as a function of cell density.

Relationship between final Tag and the expression profile for G,
Figure 8C shows that there is a significant correlation be-
tween the rate of change of T antigen as a function of cell
cycle time and the end-point expression level determined
at or near a plateau phase in these experiments. Therefore,
the levels at confluence or plateau can be predicted by the
direction and rate of change during exponential growth.
Figure 8D shows that the same relationship holds true for
cell density, as would be expected from Figure 8B.

Control of Tag expression during exponential growth is independent
of the intrinsic expression potential

Figures 8E and 8F show the regression of average Tag ex-
pression (Western blot in Figure 2) on the G; and cell den-
sity slopes. Regression of data for the intercept
calculations (e.g., as in Figure 8A) gave a similar plot.
There appears to be no relationship between the intrinsic
expression "strength" or potential and change in Tag ex-
pression as a function of G; phase fraction (time) or cell
density, i.e., growth related control of Tag expression.

Discussion

There is good evidence that quantitative changes in gene
expression are important for some regulatory genes. For
example, periodic quantitative changes in the levels of cy-
clin proteins that activate cyclin dependent serine/threo-
nine kinases (cdk's) appear to be the "core" cell cycle
machinery in mammalian cells. In this case, cyclin molec-
ular concentration is directly related to cdk activity and ac-
tivity is directly related to cell cycle transition rates [17].
When regulatory proteins affect cell processes involved in
disease, measurement of molecular concentration takes
on added importance. For example, the expression of a
number of oncogenes, proto-oncogenes, and reduced or
absence of expression of recessive oncogenes has been
postulated to provide diagnostic and/or prognostic infor-
mation in human cancers [e.g., [18-20]]. Currently, can-
cer gene expression research is seldom done in a
rigorously quantitative manner, which may contribute to
the sometimes conflicting results [21]. Much evidence
leads to the conclusion that the tumorigenic phenotype of
mammalian cells is markedly affected by quantitative
changes in expression of regulatory genes. In experimental
systems, small shifts in expression can have profound
consequences. For instance, in NIH 3T3 cells, expression
of SV40 large T antigen (Tag) at high levels (~2 x 10¢ mol-
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ecules per G, cell) decreases the G; phase time by ~18%
[3,11]. However, ~43% of this effect can be accounted for
with the initial expression of ~ 6000-14,000 molecules
per G, cell and ~87% can be accounted for by expression
of ~ 103,000-133,000 molecules [3,11].

Previously, we measured the relative dose response for G,
transit for SV40 Large T antigen expressed in NIH 3T3
cells. In this work, the levels of Tag in G increased 18%
during exponential population growth as the length of G,
was increasing [11]. Since Tag is rate-limiting for G; tran-
sit in these cells, the increase in transit time as a function
of G, Tag concentration represented an apparent paradox
that is resolved (in the simplest and obvious manner) by
stating that additional rate-limiting entities operate to set
the G; transit time. One easily measured and pervasive en-
tity that regulates G; phase time is cell density, which is
taken as a surrogate for cell-cell contact. This effect can be
separated analytically from growth factor concentration
[15,16] and therefore, appears to measure independent
cell cycle regulatory mechanisms. Our work [6,11] and
most other work indicates that the cell density dependent
mechanisms that negatively regulate cell proliferation are
dominant to Tag. Indeed this may be universal for onco-
genes, since we are not aware of instances when anchorage
dependent cells fail to enter a plateau phase in tissue cul-
ture.

The study presented in this paper represents further inves-
tigation into the effect of cell density on gene expression.
Cell lines were created by incorporation of retroviral vec-
tors into the genome and expression of Tag from either
the retroviral LTR (considered to be a strong promoter) or
the herpes virus thymidine kinase promoter, internal to
the viral LTR [1]. In our established NIH 3T3 cell line, Tag
is expressed from the htk promoter at considerably lower
levels than from the LTR for a considerable time after
transduction [unpublished observations, and [11]]. How-
ever, when a large number of htk-Tag astrocyte clones
were checked 100 days after creation, the expression levels
displayed a very large range, and thus we expect that this
weak promoter is subject to positional effects on tran-
scription or mutational events that affect gene expression
(unpublished data). Polyclonal populations produced by
transduction of htk-Tag vectors that were passaged with-
out selection, displayed expression levels equivalent to or
higher than LTR-Tag cell lines (Frisa and Jacobberger, un-
published data). This selection for increased Tag expres-
sion makes sense given the low growth rate of primary
mouse astrocytes and the ability of Tag to decrease the cell
cycle time [11] and increase saturation density [e.g.,
[4,6]]. In this study, the expression potential of cell lines
was not related to proliferation related changes in expres-
sion of Tag, emphasizing that clonal variation for whatev-
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er reason (which includes promoter strength) accounts for
the large range of htk related expression.

Making sense of a quantitative description of the role of
Tag and other regulatory proteins in cell cycle regulation
and cell transformation requires either that all the param-
eters affecting expression are measured at the same time
so that differences can be accounted for, or an ability to
compute some base line or "expression potential" statistic
with which to evaluate differences (e.g., between cell
lines). A practical application of this knowledge is the
ability to create biological standards from cell lines that
express varying levels of a given protein and then use these
in quantitative and/or longitudinal experiments. Clearly,
in cases where gene expression varies significantly with
cell density (e.g., P0-3DtkT#5), use of these cells as a
standard in a longitudinal study would require that the
standard was measured at the same cell density for each
experimental sampling, or that a derived statistic (Expres-
sion/Density or Expression/G; intercepts) is used to nor-
malize the data. In this regard, the good agreement
between the intercepts and non-density corrected Western
blot data for cell lines varying over a 20-fold range is sup-
portive.

Originally, we pursued a strategy of reduced Tag expres-
sion from the htk promoter as a means of producing im-
mortalized, differentiated cells that may have a reduced
transformation phenotype. We noticed however, that ini-
tially slow growing cell lines produced with htk driven
gene expression needed to be cloned early to prevent over-
growth of more rapidly growing cells that expressed high
levels of Tag. This was not true for clonal or polyclonal
transductants that expressed Tag from the MoMuLV LTR,
which supports a high level of expression (unpublished
observations). In the context of this study, we wished to
explore density dependent expression as a function of
these two types of transformants. The data presented here
show that LTR driven Tag expressing cell lines either in-
crease Tag during exponential growth despite a progres-
sively increasing G; phase and contact inhibition
(density) or the levels to not change significantly, whereas
those created with the htk promoter show varying degrees
of reduced expression, that is consistent in magnitude be-
tween experiments, as the cell cycle lengthens. This sug-
gests that the LTR is less density regulated than the htk
promoter, which is subject to down regulation as the cell
cycle lengthens during contact inhibition of growth. The
single exception is the pattern of expression observed for
an LTR driven line expressing a form of Tag that is mutant
in binding the Rb family proteins [e.g., [22]]. This density-
dependent reduction inTag expression was somewhat sur-
prising. We do not know the half life of this mutant T an-
tigen (K1). Since it is expressed at levels that are 1-2 fold
that of wild-type Tag in NIH 3T3 cells [23], we would not
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expect that the half life was significantly lower than that of
wild type. Alternatively, the cell line used here is a low ex-
pressing cell line (<2 fold above the lowest expressing cell
line). Thus, in this cell line, for unknown reasons the pro-
tein could be less stable. If the idea that transcription
strength mainly drives Tag expression is kept as the work-
ing hypothesis, then there are at least three possibilities to
explain the K1 data: 1) the K1 protein has a mildly shorter
half-life and the small difference results in a different phe-
notype vis-a-vis the density related expression; 2) failure
to bind Rb family members significantly affects the half-
life during exponential growth; 3) the LTR vectors can oc-
casionally display integration position effects that in this
special case was subject to density dependent control that
is different from most LTR driven cell populations.

Both the promoters as well as the protein investigated
here are viral. The cells are dependent on Tag expression,
and so there is significant selective pressure against extinc-
tion of Tag expression. Effects of viral promoters may re-
flect the evolution of the viruses and their hosts. We have
additional evidence that the same type of density effects
(i.e., changes in gene expression detected continuously
during exponential growth) may operate on native pro-
teins. Tag immortalized human tracheal epithelial (HTE)
cells grown at different densities and assayed for cytok-
eratins 6 and 18 showed a density dependent decrease in
cytokeratin immunoreactivity and a concomitant increase
in %G, both in normal growth medium and in differenti-
ation medium (Frisa & Jacobberger, unpublished). Addi-
tionally, the expression levels of cyclin B1 are lower in
replicating Hela cells at high cell density (Soni & Jacob-
berger, unpublished results). It is conceivable that other
proteins that are at high levels in density-arrested cells
may be positively regulated by density during exponential
growth. There are many papers that describe genes that are
up or down regulated at confluence. Several recent papers
identify genes that are up-regulated by cell density. These
include TEM1/endosialin, IGF-1, IGF-1R, IGFBP-2, Bak,
drp, SP1, p27KiP1[24-28]. However, cell context differ-
ences are apparent [e.g. IGFR, [29]], and one study used
several cell lines and demonstrated distinct effects of the
cell genetic background [25]. Down-regulated genes in-
clude bFGF, FGF-2, Topoisomerase II-o, EGFR,, human
HDACI, as well as cell cycle regulatory genes among oth-
ers [30-37]. Regions in the bFGF promoter have been
identified as associated with density-dependent down-
regulation of bFGF [31]. The IGF-II P3 promoter is down-
regulated as a function of cell density, and a 7-base pair se-
quence has been identified that plays a critical role in this
down-regulation [32]. Neither the MoMuLV LTR or the
htk promoters encode this sequence, although both en-
code a 10-base pair sequence that is identical to the P3 se-
quence with an insertion of 3 base pairs at position -1081.
Most studies focus on transcription and/or protein levels.

http://www.biomedcentral.com/1471-2121/3/10

Fewer studies have addressed translation, however, iso-
forms of c-myc and FGF-2 are translationally regulated by
cell density [34]. For many of these genes, down regula-
tion at confluence is not surprising (e.g., cell proliferation
associated genes), and upregulation of differentiation spe-
cific genes at confluence is equally unsurprising. However,
a glance at the literature does not suggest that any quick
classification or generalizations should be made.

Regulation of protein levels is multi-factorial. Transcrip-
tion, translation, protein stability and degradation are in-
volved. Tag levels in rapidly growing polyclonal cell lines
appear to be set primarily by transcription [11,12]. How-
ever, as discussed above, Tag levels in clonal cell lines pro-
duced with the weak htk promoter and generated from
slowly growing primary cells are related to clonality. SV40
Tag is a long-lived protein with a half-life variously meas-
ured at 48-90 hrs. The long half-life of Tag would not nor-
mally implicate protein stability, however, the magnitude
of changes that we discuss here, although biologically rel-
evant, are within two fold and might be affected by small
differences in protein stability. Given this line of reason-
ing, the data presented here can be interpreted as evidence
for a cell contact (density) / cell cycle length related effect
on transcription that does not affect the retroviral LTR to
the extent that it does the htk promoter. This effect is pre-
dictive of the plateau growth phase levels of Tag and thus,
ultimately should affect, in the case of Tag or similar on-
cogenes, the fate of clones in polyclonal populations. For
example if an LTR Tag line and htk Tag line with equal ex-
pression potential were co-cultured, over time, one would
expect the LTR driven line to dominate.

Finally, the htk lines here varied significantly in terms of
Tag expression potential, and in terms of the rate at which
expression decreased as a function of cell density. There
was no correlation in the rate of change in density related
expression and the density independent expression (here
referred to as intrinsic expression potential). This supports
the idea that the density independent expression in the
htk lines is set by the clone specific effects (e.g., integra-
tion position) and the density/cell cycle related expression
is set in these cases by the promoter.

Conclusions

These data show quantitatively that the Tag expression po-
tential of introduced Tag varies over a wide range depend-
ing on the vector used and clonal variation. The
expression level is a complex measurement that can be
partially simplified by accounting for the cell cycle transit
time and cell density.

The hypothetical terms, expression at zero cell density and
expression at minimum G; phase fraction, were intro-
duced to simplify measures of expression potential.
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Accounting for both cell cycle transit time and cell density
should increase the precision and accuracy with which
gene expression can be measured. This is important for
the use of cell lines as quantitative standards for gene ex-
pression studies, for relating expression to phenotype, and
for an understanding of gene expression in general, and
affects ideas on cell engineering.

Materials and Methods

Generation of astrocyte cell lines

Cortical astrocytes were harvested from neonatal C57BL/
6 mice and infected with a replication-defective retrovirus
encoding Tag and neomycin resistance as previously de-
scribed [13]. The transferred viruses were SV40-6 [5], in
which wild type Tag is expressed from the M-MuLV LTR
promoter; SV(X)TXK1, which is constructed the same as
SV40-6 except that the Tag is mutant [38] and defective for
binding the retinoblastoma protein family [39]; Linker-
tkT, in which the cDNA for Tag is expressed from the her-
pes simplex 1 tk promoter [11]. The differentiation and
transformation phenotypes of the cell lines utilizing the
M-MuLV LTR promoter have been described [6,13]. The
Linker-tkT lines (tkT) were either isolated as clones after
G418 selection (as previously described) [6] or frozen im-
mediately after selection (pooled clones) and clonally se-
lected at a later time. Typically, it took 40 days after
infection to obtain colonies and 60 more days to generate
a rapidly growing line that could be serially cultured (split
1:80 at weekly intervals). The lines termed early passage in
this paper were 140-200 days post infection, and all oth-
ers were 340-860 days post infection. The names of the
cell lines designate the number of days the primary neo-
natal astrocytes were cultured prior to infection. For exam-
ple, P0-17D#8 is the eighth clone derived from cortical
astrocytes isolated on the day of birth and infected 17 days
later. Immortalized cells were maintained in Dulbecco's
modified Eagle medium (DMEM, Sigma, St. Louis, MO)
with 5% fetal bovine serum (FBS) and 5% calf serum in
5% CO, at 37°C.

Cell density experiments

To test density effects, cells were plated in duplicate at in-
itial numbers of 1, 2, 5, 10, 20 and 40 x 105 per 100 mm
cell culture dish with DMEM containing 5% FBS and 5%
calf serum. After 2 to 3 days of culture, cells were harvested
with trypsin and counted on a Coulter Counter (Coulter
Electronics, Hialeah, FL), then fixed for cytometry in 0.5%
formaldehyde at 37°C followed by 95% methanol at -
20°C.

Cytometry

Fixed samples were immunostained with anti-Tag,
PAb416 (Ab2, Oncogene Sciences, Mineola, NY), and flu-
orescein isothiocyanate (FITC) conjugated secondary an-
tibody followed by RNase treatment and propidium
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staining at 50 pg/ml, as previously described [13]. Cells
were excited with the 488 nm line of the argon laser of a
Coulter ESP Elite Cytometer (Coulter Electronics, Miami,
FL). Final filters were 525 nm bandpass (FITC) and 640
nm long pass (propidium). A sample from a large batch of
fixed cells was used to standardize assays in time. This
sample was stained concurrently in each experiment and
used to adjust the PMT's to the same FITC and PI fluores-
cences in all experiments. This corrected for differences in
staining and cytometer set up.

Analysis

Mean FITC-fluorescence of the G, cell cycle phase popula-
tion was measured by gating to generate a statistic that
would be independent of changes in cell cycle fractions.
Mean G; fluorescence of samples stained with the anti-
Tag isotype, 1gG2a, and FITC-conjugated secondary anti-
body served as a control for non-specific fluorescence and
was subtracted from the G; fluorescence of corresponding
Tag-stained samples (Figure 4). The result of the subtrac-
tion is the Tag specific fluorescence and corresponds to
the amount of Tag in the average G, cell for a specific pop-
ulation. Forward and right angle light scatter were used to
gate debris. Modeling software (ModFit, Verity Software
House, Topsham, ME) was used to determine the phase
fractions from analysis of single parameter DNA data. Lin-
ear regression, using GraphPad Prism version 3.00 for
Windows (GraphPad Software, San Diego California USA,
[www.graphpad.com] ), was used to determine the slope,
standard error (SE), and p-value for Tag expression as a
function of cell density or the frequency of G, cells.

Electrophoresis and western blotting

Cell extracts were prepared in 10% SDS lysis buffer (0.137
M NaCl, 2% Nonidet P-40, 10% SDS, 1% sodium deoxy-
cholate, 20 mM Tris, pH 8.0, 2 mM PMSF, 10 pl/ml pro-
tease inhibitor cocktail), which solubilizes cytoskeletal
and nuclear matrices. Samples of known numbers of cells
from the cell lines and recombinant, purified Tag pre-
pared from a baculovirus lysate [40] were loaded on 10%
polyacrylamide discontinuous mini-gels (Bio-Rad, Her-
cules, CA) and electrophoresed conventionally [41]. Gels
were then electrophoretically blotted [42]onto PVDEF
membrane (Bio-Rad) without methanol for 15 min at 100
V. Tag was visualized by immunostaining with PAb416
and alkaline phosphatase conjugated secondary antibody
(Sigma) using chemiluminescent detection with CDP-Star
substrate according to the manufacturers directions
(Tropix, Bedford, MA). Images were developed on X-ray
film (Kodak, X-Omat, Rochester, NY). Quantification was
performed by densitometry on the Sci Scan 5000 auto-
mated scanning system (US Biochemicals, Cleveland,
OH).
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To test for astrocyte lineage, early passage cells were grown
in dibutyryl cAMP (Sigma) to enhance GFAP expression.
Intermediate filament extracts of the cell lines [43,44]
were electrophoretically blotted and detected with poly-
clonal anti GFAP (DAKO, Carpenteria, CA) and secondary
reagents as above.
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