
BioMed CentralBMC Cell Biology
BMC Cell Biology 2001, 2 :23Research article
The linkage between β1 integrin and the actin cytoskeleton is 
differentially regulated by tyrosine and serine/threonine 
phosphorylation of β1 integrin in normal and cancerous human 
breast cells
Kazuhide Takahashi

Address: Laboratory of Biochemistry, Kanagawa Cancer Center Research Institute 1-1-2 Nakao, Asahi-ku, Yokohama 241-0815, Japan

E-mail: ktaka@gancen.asahi.yokohama.jp

Abstract
Background: Structural requirements for the β1 integrin functions in cell adhesion, spreading and
signaling have been well documented mainly for fibroblasts. In this study, we examined the reason
for the reduced surface expression of β1 integrin in human breast cancer MCF-7 cells compared
to normal human breast epithelial (HBE) cells, both of which adhered to collagen type IV.

Results: The β1 integrin immunoprecipitates from either HBE or MCF-7 cells involved α-actinin
while actin coprecipitated with β1 integrin from HBE cells but not from MCF-7 cells.
Immunoblotting using the anti-phosphotyrosine (PY) antibody indicated the phosphorylation of β1
integrin at least at tyrosine in both cells. Dephosphorylation of β1 integrin from HBE cells by
protein tyrosine phosphatase (PTP), but not by protein serine/threonine phosphatase (PP), caused
dissociation of actin from β1 integrin, although dephosphorylation of it from MCF-7 cells by either
PTP or PP caused association of the two proteins. In MCF-7 cells β1 integrin coprecipitated doublet
of proteins having the Ca2+/calmodulin-dependent protein kinase (CaMK) II activity that was
susceptible to KN-62, a specific inhibitor of CaMKII.

Conclusion: The results suggest that β1 integrin is tyrosine phosphorylated and links with actin
via α-actinin in HBE cells but prevented from linking with actin in MCF-7 cells by phosphorylation
at both tyrosine and serine/threonine of β1 integrin which forms a complex with α-actinin and
CaMKII. Thus the linkage formation of β1 integrin with actin may be differentially regulated by its
tyrosine and serine/threonine phosphorylation in normal HBE cells and breast cancer MCF-7 cells.

Background
The integrin family of surface receptors play a critical

role in many cellular processes that include cell adhe-

sion, cell spreading, and growth signaling [1–6]. In-

tegrins interact extracellularly with the substratum such

as collagens at specific sites called focal adhesions and

intracellularly with many actin-binding proteins such as

α-actinin, talin, and vinculin, thereby linking these pro-
teins with the actin cytoskeleton. Links between cell sur-

face receptor β integrins and the actin cytoskeleton are
though to be established in more than one way. Integrin

binds to talin [7], which also binds to vinculin [8–10],

which in turn binds to α-actinin [11,12], which then binds
to actin. This constitutes a three-protein link between in-
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tegrin and actin. In addition, talin can also bind actin di-

rectly [13,14], so that talin may form a direct one-protein

link between integrin and actin. Similarly, the actin-

binding protein α-actinin binds to the β1 integrin subu-
nit [15]. While many isoforms of β1 integrin have been
reported [16,17], a short cytoplasmic domain of 47 amino

acids of β1 integrin isoform A contains the three putative

domains with the highest affinity for α-actinin [18]. In
addition, several amino acids and motifs within the cyto-

plasmic domain of the β subunit, which are potential
phosphorylation sites, have been implicated in the in-

tegrin function. The β1 subunit contains a Val-Thr-Thr
sequence and these two threonines appear to be impor-

tant for adhesion of fibroblast cells [19], and adhesion

and invasion of lymphoid cells [20]. However, the rele-

vance of phosphorylation of these amino acids within the

cytoplasmic domain of β1 integrin in its function remains

largely unclear.

Human breast cancer MCF-7 cells have many cellular

properties characteristic to malignantly transformed

cells; such as an enhanced growth ability in soft agar and

poor cell adhesion to the substatum compared to their

normal counterpart HBE cells [21]. Poor cell adhesion of

MCF-7 cells to the substratum is thought to be mainly

caused by a low level of β1 integrin expression on the cell
surface [21]. This observation gave a clue to further un-

derstanding the relevance of β1 integrin function to cell
adhesion, cell spreading, and anchorage-independent
growth in cancerous cells. In this study, we examined

why only a small population of β1 integrin present in
MCF-7 cells is expressed on the cell surface compared to

HBE cells, both of which adhere to collagen type IV. Im-

munoprecipitation and Western blot analysis revealed

that intracellular linkage between β1 integrin and actin
formed in HBE cells was lost in MCF-7 cells. The rele-

vance of phosphorylation of β1 integrin to its linkage
forming ability with actin was also examined in this

study using PTP and PP.

Results
The absence of coprecipitation of actin with β1 integrin in 
MCF-7 cells
To determine whether expression of β1 integrin on the
cell surface requires its intracellular interaction with the

actin cytoskeleton, β1 integrin was immunoprecipitated

with the anti-β1 integrin antibody or control IgG from
HBE or MCF-7 cells which adhered to collagen IV. West-

ern blot analysis revealed that actin coprecipitated with

β1 integrin but not with the IgG precipitates from quies-

cent HBE cells (Fig. 1A). In contrast, actin did not copre-

cipitate with β1 integrin or the IgG precipitates from
adherent MCF-7 cells (Fig. 1A). To determine whether

the failure to coprecipitate actin with β1 integrin was due
to the absence of actin expression, whole cell lysates were

prepared from HBE or MCF-7 cells, both of which were

quiescent and adherent to collagen IV. Immunoblot

analysis indicated that total amounts of actin and β1 in-
tegrin were comparable between HBE and MCF-7 cells
(Fig. 1B).

α-Actinin-mediated interaction between β1 integrin and 
actin
Interaction between β1 integrin and the actin cytoskele-
ton is mediated by the actin-binding proteins which are

involved in the focal adhesion complex where integrin β1
through its cytoplasmic domain links with the actin cy-

toskeleton. We next determined which actin-binding

proteins mediate this linkage between β1 integrin and ac-
tin. Immunoblot analysis of the β1 integrin or control
IgG precipitates for α-actinin, talin and vinculin, re-
vealed that only α-actinin among three proteins copre-

cipitated with β1 integrin but not with the IgG

precipitates from quiescent HBE cells (Fig. 2A). Similar

to HBE cells, α-actinin, but not talin or vinculin, copre-
cipitated with β1 integrin but not with the IgG precipi-
tates from quiescent MCF-7 cells (Fig. 2A). Western

blotting for the whole cell lysates revealed that total

amounts of α-actinin and vinculin in HBE and MCF-7

cells were comparable and that the amount of talin was

slightly smaller in MCF-7 cells than that in HBE cells

(Fig. 2B). The results indicated that α-actinin coprecipi-
tated with β1 integrin in both HBE and MCF-7 cells.

Expression of the wild-type integrin β1A in both HBE and 
MCF-7 cells
The cytoplasmic domain of β1 integrin is short and has
the putative binding domains for α-actinin [18]. To de-
termine the difference in the cytoplasmic domain of β1
integrin between HBE and MCF-7 cells, total RNA was

extracted from the cells and the cDNA that covers the

full-length of the cytoplasmic domain of β1 integrin was
amplified. Reverse transcription-polymerase chain reac-

tion (RT-PCR) products from HBE or MCF-7 cells were

identical in lengh with 462-bp on agarose gels (Fig. 3A).

Sequence analysis of the cDNA fragments of HBE and

MCF-7 cells revealed that both fragments were identical

to the wild-type cytoplasmic domain of β1 integrin iso-
form A (Fig. 3B), indicating that there is no difference in

the cytoplasmic domain of β1 integrin between HBE and

MCF-7 cells.

The phosphorylation state of β1 integrin
The importance of β1 integrin phosphorylation to its
functions which include cell adhesion and invasion has

been suggested by many investigations [19,20,22,23]. To

determine this possibility, we examined the phosphor-

ylation state of β1 integrin in HBE and MCF-7 cells. Met-

abolic labeling of cells with [32P]orthophosphoric acid
indicated that β1 integrin (110 kDa), and not α-actinin
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(100 kDa), was phosphorylated in either HBE and MCF-

7 cells (Fig. 4A). When the β1 integrin immunoprecipi-

tates were probed with anti-phosphotyrosine (PY) anti-

body, β1 integrin, and not α-actinin, reacted with the
antibody in both HBE and MCF-7 cells (Fig. 4B). This in-

dicates that β1 integrin is phosphorylated at least at tyro-
sine in MCF-7 cells as well as in HBE cells.

Effects of dephosphorylation of β1 integrin on its link with 
actin
To determine the role of phosphorylation of β1 integrin
in the link formation between β1 integrin and actin, the
β1 integrin immunoprecipitates were dephosphorylated

by PTP or PP. Treatment of the β1 integrin immunopre-

cipitates from HBE cells with PTP resulted in tyrosine

dephosphorylation of β1 integrin as assessed by the anti-
PY antibody and concomitant dissociation of actin from

it (Fig. 5A). In contrast, tyrosine dephosphorylation of β1
integrin from MCF-7 cells by PTP did not affect the ab-

sence of coprecipitation of actin with β1 integrin but suc-
cessive incubation of the PTP-treated β1 integrin with
the supernatant of the β1 immunoprecipitates that con-

tained unbound actin or with exogenous human platelet

actin caused coprecipitation of actin with β1 integrin
(Fig. 5A). The result indicated that β1 integrin in either
cells was tyrosine phosphorylated. On the other hand,

dephosphorylation of the β1 integrin immunoprecipi-

tates from either cells by PP2A1 did not result in any al-

teration in coprecipitation of two proteins or the
reactivity of β1 integrin with the anti-PY antibody (Fig.
5B). Actin remained coprecipitated with β1 integrin from
HBE cells, while it remained dissociated from β1 integrin
from MCF-7 cells. However, incubation of the PP2A1-

treated β1 integrin from MCF-7 cells with the superna-

tant of the β1 immunoprecipitates or with exogenous hu-

man platelet actin caused coprecipitation of actin with β1
integrin (Fig. 5B). The results indicated that β1 integrin
in HBE cells is not serine/threonine phosphorylated but

in MCF-7 cells.

CaMKII binding to β1 integrin in MCF-7 cells
Loss of linkage between the cell-cell adhesion molecule

E-cadherin and the actin cytoskeleton, that is mediated

by a three-protein link of β-catenin, α-catenin and α-ac-
tinin, is induced by association of the EGF receptor hav-

ing the protein tyrosine kinase activity with β-catenin
that leads to tyrosine phosphorylation of β-catenin and
concomitant dissociation of α-catenin from it [24,25]. By

analogy with this phenomenon, the β1 integrin immuno-

precipitates were probed with the antibodies to several

serine/threonine protein kinases to determine whether

serine/threonine protein kinase associates with β1 in-
tegrin. Among these, the anti-CaMKII antibody, which

reacts broadly with all CaMKII isoforms, reacted with
doublet of proteins having molecular mass of around 56

Figure 1
Coprecipitation of actin with β1 integrin in HBE cells
and not in MCF-7 cells. (A) Integrin β1 was immunopre-
cipitated (IP) with the anti-β1 integrin antibody or control
IgG from HBE or MCF-7 cells which were quiescent and
adherent to collagen IV. The immunoprecipitates were
immunoblotted with anti-actin or anti-integrin β1 mono-
clonal antibody. Molecular size markers are indicated at right
in kDa. (B) Whole cell lysates were prepared from HBE or
MCF-7 cells which were quiescent and adherent to collagen
IV, and equal amounts (5 µ g protein) of the lysates were
resolved by SDS-PAGE and blotted. The blots were probed
with anti-actin or anti-integrin β1 monoclonal antibody.
Molecular size markers are indicated at right in kDa.
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kDa in the β1 integrin immunoprecipitates but not in the

control IgG precipitates from MCF-7 cells (Fig. 6A).

These proteins which were reactable with the anti-CaM-

KII antibody were not detected in the β1 integrin or con-
trol IgG precipitates from HBE cells (Fig. 6A). To

confirm the CaMKII kinase activity of the doublet of pro-

teins, in vitro kinase assay was carried out using a specif-

ic substrate peptide Autocamtide II, in the presence of

calmodulin and inhibitor peptides of cAMP-dependent

protein kinase (PKA) and protein kinase C (PKC).
Whereas the β1 integrin immunoprecipitates from HBE

cells exhibited a very low level of the kinase activity that

was slightly above that of the precipitates without anti-β1
integrin antibody, the relative kinase activity of the im-

munoprecipitates from MCF-7 cells was 17-fold (Stu-

dent's t-test, p < 0.01) above that of the β1 integrin
immunoprecipitates from HBE cells (Fig. 6B). When 10

µM KN-62, a specific inhibitor of CaMKII [26–28], was

present, the kinase activity of the β1 integrin immuno-

precipitates from HBE cells was 7-fold above (p < 0.05)

that in the absence of KN-62 (Fig. 6B). Contrary to this,

Figure 2
Coprecipitation of α-actinin, but not talin or vinculin, with β1 integrin in HBE and MCF-7 cells. (A) Integrin β1
was immunoprecipitated (IP) from HBE and MCF-7 cells using the anti-β1 integrin antibody or control IgG. The immunoprecip-
itates were probed with anti-α-actinin, anti-talin, or anti-vinculin antibody. Molecular size markers are indicated at right in kDa.
(B) Equal amounts (5 µg protein) of whole cell lysates from quiescent HBE and MCF-7 cells were probed with anti-α-actinin,
anti-talin, or anti-vinculin antibody. Molecular size markers are indicated at right in kDa.
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10 µM KN-62 significantly inhibited the kinase activity of

the β1 integrin immunoprecipitates from MCF-7 cells by

92% (p < 0.01) (Fig. 6B).

Discussion
Immunoprecipitation and Western blotting revealed

that actin coprecipitated with β1 integrin from quiescent

HBE cells but not from MCF-7 cells. Coprecipitation of

actin with β1 integrin but not with the control IgG precip-
itates from HBE cells indicates that association of β1 in-
tegrin with actin is not non-specific. Since actin
expression in MCF-7 cells adhering to collagen IV was

comparable with that in HBE cells, the result suggests

that loss of linkage between β1 integrin and the actin cy-
toskeleton in MCF-7 cells may not be due to the absence

of actin expression.

The β1 integrin subunit interacts by its cytoplasmic do-

main with many actin-binding proteins, such as α-ac-
tinin, talin, and vinculin, thereby forming a link between

β1 integrin and the actin cytoskeleton [7–12]. Immuno-

precipitation followed by Western blotting revealed that

only α-actinin, but not talin or vinculin, coprecipitated
with β1 integrin but not with the IgG precipitates from

Figure 3
Amino acid sequence of the cytoplasmic domain of β1 integrin in HBE or MCF-7 cells. (A) Agarose gel electro-
phoresis of RT-PCR products. Total RNA was extracted from HBE or MCF-7 cells which were quiescent and adherent to col-
lagen IV, and cDNA encoding the cytoplasmic domain of β1 integrin was amplified by RT-PCR. The cDNA products were
resolved in 1.6% (w/v) agarose gel electrophoresis with molecular size markers (Mr) and stained with etidium bromide. Molec-
ular size of the cDNA products are indicated at right in bp. (B) The cDNA fragments of 462-bp were extracted from agarose
gels and sequence analysis was carried out. Amino acid sequences of the three peptides with the highest affinity for α-actinin
are underlined (adapted from [18]).
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Figure 4
The phosphorylation state of β1 integrin. (A) HBE or
MCF-7 cells which were quiescent and adherent to collagen
IV were metabolically labeled with [32P]orthophosphoric acid
and β1 integrin was immunoprecipitated from the cells. After
separation on 8% SDS-PAGE, gels were dried and autoradio-
graphed. Unlabeled samples were electrophoresed and trans-
ferred onto membranes. The blots were probed with
antibodies to β1 integrin and α-actinin. Molecular size mark-
ers are indicated at right in kDa. (B) Tyrosine phosphoryla-
tion of β1 integrin in HBE and MCF-7 cells. Integrin β1 was
immunoprecipitated from HBE or MCF-7 cells and the immu-
noprecipitates were resolved by 8% SDS-PAGE before blot-
ting. The blots were then probed with anti-PY or anti-
integrin β1 monoclonal antibody. Molecular size markers are
indicated at right in kDa.

Figure 5
Effects of dephosphorylation of β1 integrin on its
coprecipitation with actin. (A) The β1 integrin immuno-
precipitates from quiescent HBE or MCF-7 cells were
treated with (+) or without (-) PTP, then immunoblotted
with anti-actin, anti-β1 integrin, or anti-PY antibody. The
PTP-treated β1 integrin immunoprecipitates from MCF-7
cells were incubated for 30 min with (+) or without (-) the
supernatant of the β1 immunoprecipitates containing
unbound actin (Cell lysate), or with 5 µg/ml exogenous
human platelet actin (A). Molecular size markers are indi-
cated at right in kDa. (B) The β1 integrin immunoprecipitates
from quiescent HBE or MCF-7 cells were treated with (+) or
without (-) PP2A1, then the PP2A1-treated β1 integrin from
MCF-7 cells were incubated for 30 min with (+) or without (-
) the supernatant of the β1 immunoprecipitates (Cell lysate),
or with 5 µg/ml exogenous human platelet actin (A). The
immunoblots were probed with anti-actin, anti-β1 integrin,
or anti-PY antibody. Molecular size markers are indicated at
right in kDa.
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both HBE and MCF-7 cells. This indicates the specific as-

sociation between α-actinin and β1 integrin in both HBE

and MCF-7 cells. Whereas comparable amounts of α-ac-
tinin and vinculin are present in HBE and MCF-7 cells
and slightly reduced level of talin is seen in MCF-7 cells,

the result suggests that α-actinin, but not talin or vincu-
lin, may predominantly mediate a one-protein link be-

tween β1 integrin and actin in both HBE and MCF-7 cells

and that the loss of linkage between the two proteins in

MCF-7 cells may be due to the absence of a link between

β1 integrin-associated α-actinin and actin.

In spite of the fact that α-actinin may directly bind with

actin [15], structural requirements for the functions of

the cytoplasmic domain of β1 or β3 integrin in cell adhe-
sion and cell spreading are strongly suggested by many

investigations [19,20,22,23]. In addition, there are sev-

eral isoforms within the cytoplasmic domain of β1 in-
tegrin [16,17]. These observations prompted us to

examine which isoform of β1 integrin is expressed in
MCF-7 cells. RT-PCR, using a set of primers correspond-

ing to the sequences covering the cytoplasmic domain of

β1 integrin isoform A, demonstrated that the same cDNA

fragments in lengh were amplified from HBE and MCF-

7 cells. Sequence analysis indicated that the cDNA frag-

ments had the identical sequence and corresponded to

sequences encoding the cytoplasmic domain of the wild-

type β1A integrin. This suggests that both HBE and MCF-

7 cells express the same wild-type β1 integrin and that
the loss of linkage between β1 integrin and actin may not

be due to the structural difference in the cytoplasmic do-

main of β1 integrin in MCF-7 cells from that in HBE cells.

The relevance of phosphorylation of the β subunit of in-
tegrin at threonine [19,20] or tyrosine residue [23] to the

integrin functions that include cell adhesion and inva-

sion has been documented. Therefore we next examined

the phosphorylation state of β1 integrin and its relation
to the linkage formation with actin. Metabolic labeling of

cells with [32P]orthophosphoric acid and Western blot-

ting using the anti-PY antibody indicated that β1 in-
tegrin, but not α-actinin, in either HBE or MCF-7 cells

was phosphorylated at least on a tyrosine residue and

that there was no apparent difference in the phosphor-

ylation state of β1 integrin between two cells. Therefore,
the susceptibility of the linkage forming ability of β1 in-
tegrin with actin to PTP or PP was examined. Effects of

the PTP treatment of the β1 immunoprecipitates from

HBE and MCF-7 cells were contradictory; that is, copre-

cipitation of actin with β1 integrin from HBE cells was

lost, while that of two proteins from MCF-7 cells was in-

duced after incubation of the PTP-treated immunopre-

cipitates with the supernatant of the immunoprecipitates

or with exogenous human platelet actin. As the reactivity
of anti-PY antibody with β1 integrin from either HBE or

Figure 6
CaMKII binding to β1 integrin in MCF-7 cells. (A) The
β1 integrin immunoprecipitates (IP) with the anti-β1 integrin
antibody or control IgG from HBE or MCF-7 cells were
probed with antibody to all CaMKII isoforms or anti-β1
integrin antibody. Molecular size markers are indicated at
right in kDa. (B) The β1 integrin immunoprecipitates from
HBE or MCF-7 cells were incubated with the substrate pep-
tide Autocamtide II, calmodulin, inhibitor peptides of PKA
and PKC, and [32P]ATP with (closed columns) or without
(open columns) 10 µM KN-62 at 30°C for 10 min. After sub-
traction of the background, the activity was normalized to
the amount of β1 integrin and expressed relative to that of
the β1 integrin immunoprecipitates from HBE cells without
KN-62. Results represent the mean ± S.D. (bars) of duplicate
assays of three independent experiments.
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MCF-7 cells was lost by PTP and exogenous actin copre-

cipitated with PTP-treated β1 integrin from MCF-7 cells,

alterations in coprecipitation of actin with β1 integrin
may be due to tyrosine dephosphorylation of β1 integrin
and not other proteins involved in the immunoprecipi-

tates or the supernatant of the immunoprecipitates. In

addition, the result suggests that tyrosine phosphoryla-

tion is necessary for β1 integrin to link with actin in HBE

cells but inhibitory for it in MCF-7 cells. Contrary to this,

treatment of the β1 integrin immunoprecipitates with

PP2A1 did not result in any alteration in coprecipitation

of actin with β1 integrin from HBE cells but caused co-

precipitation of the two proteins from MCF-7 cells. As

PP2A1 did not affect tyrosine phosphorylation of β1 in-
tegrin from either HBE or MCF-7 cells and exogenous ac-

tin became coprecipitated with PP2A1-treated β1
integrin from MCF-7 cells as endogenous actin in the su-

pernatant, the results suggested that PP2A1-induced co-

precipitation of β1 integrin from MCF-7 cells with actin

may be due to serine/threonine dephosphorylation of β1
integrin rather than other cellular proteins and that the

ability of β1 integrin to link with actin in MCF-7 cells may

be prevented by its serine/threonine phosphorylation.

While it appears that phosphorylation at either tyrosine

or serine/threonine is necessary for β1 integrin to link
with actin and phosphorylation at both tyrosine and ser-

ine/threonine prevents β1 integrin from linking with ac-

tin, the linkage formation of β1 integrin with the actin
cytoskeleton may be differentially regulated in MCF-7
cells as compared to HBE cells by tyrosine or serine/

threonine phosphorylation of β1 integrin.

Finally we examined whether some protein kinases asso-

ciate with β1 integrin in MCF-7 cells, using antibodies to

several serine/threonine protein kinases. Among these,

the anti-CaMKII antibody reacted with doublet of pro-

teins with molecular mass of around 56 kDa which co-

precipitated with β1 integrin from MCF-7 cells but not

from HBE cells. As the antibody to CaMKII did not react

with any protein in the control IgG precipitates from

MCF-7 cells, association of the doublet of proteins with

β1 integrin may be specific. The results demonstrating

that the β1 integrin immunoprecipitates from MCF-7

cells had the kinase activity for a specific substrate pep-

tide, Autocamtide II, under the conditions where cal-

modulin and inhibitor peptides of PKA and PKC were

present and that this kinase activity was completely in-

hibited by 10 µM KN-62, a specific inhibitor of CaMKII

[26–28], suggest that the doublet of proteins which asso-

ciate with β1 integrin in MCF-7 cells may be CaMKII iso-

forms. Even though the reason for an elevated level of the

kinase activity of the β1 immunoprecipitates from HBE

cells by KN-62 is unknown at present, it is possible to as-

sume that some unidentified protein kinases which are
responsive to KN-62 may associate with β1 integrin in

HBE cells. Coprecipitation of CaMKII with β1 integrin in
MCF-7 cells does not imply their direct association. As

direct association between CaMKII and α-actinin has
been reported by yeast two-hybrid and biochemical as-
says [29], CaMKII in MCF-7 cells may bind to α-actinin,
which may also bind to β1 integrin, forming a ternary

complex with α-actinin and β1 integrin. Whether serine/

threonine phosphorylation of β1 integrin in MCF-7 cells

is regulated by the β1 integrin-associated CaMKII, or

whether loss of intracellular linkage between β1 integrin
and the actin cytoskeleton causes the reduced cell sur-

face expression of β1 integrin, are areas for further inves-
tigation.

Conclusion
Intracellular linkage of β1 integrin with the actin cy-
toskeleton via α-actinin was formed in HBE cells which

adhered to type IV collagen. However, this linkage was

lost in adherent MCF-7 cells. The present results suggest

that tyrosine phosphorylation may be required for β1 in-
tegrin to link with actin in HBE cells, but phosphoryla-

tion of β1 integrin at both tyrosine and serine/threonine
residues in MCF-7 cells may cause dissociation of actin

from it. Thus the linkage formation of β1 integrin with
the actin cytoskeleton may be differentially regulated by

its tyrosine and serine/threonine phosphorylation in

normal HBE cells and breast cancer MCF-7 cells.

Materials and methods
Cell culture and replating on collagen type IV
HBE cells obtained form Clonetics were maintained in

serum-free defined medium MCDB 170 [30] supple-

mented with 10 ng/ml EGF, 1.4 µM hydrocortisone, 5

µg/ml insulin, 0.1 mM ethanolamine, 0.1 mM phos-

phoethanolamine, and 25 µM prostaglandin E2 [24] at

37° C in a humidified atmosphere of 95% air and 5% CO2.

MCF-7 cells were maintained in 5% fetal bovine serum

(FBS)-containing RPMI 1640 medium. Subconfluent

culture of HBE or MCF-7 cells were harvested with

0.25% (w/v) trypsin-2.65 mM EDTA solution and the

cells were replated on 60-mm collagen IV-coated dishes

(Becton-Dickinson). HBE or MCF-7 cells were then

growth arrested by incubation in an EGF-deprived medi-

um for 3 days or in 0.1% FBS-containing medium for 2

days, respectively.

Immunoprecipitation and Western blot analysis
Cells adherent to collagen type IV were lysed in RIPA

buffer (10 mM Tris-HCl, pH 7.4, 0.15 M NaCl, 1% sodium

deoxycholate, 1% Triton X-100, 0.1% SDS, 1 mM phenyl-

methylsulfonyl fluoride (PMSF), and 1 mM sodium or-

thovanadate) [25] and sonicated briefly using an

ultrasonic cell disruptor (Misonix Inc.). The cell lysates

were incubated with the anti-integrin β1 monoclonal an-
tibody (Life Technologies) or control IgG followed by
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Protein A-Sepharose (Amersham Pharmacia). The im-

munoprecipitates were washed three times with PB buff-

er (20 mM phosphate buffer, pH 8.6, 0.5% Nonidet P-

40, and 0.1% SDS) and boiled for 2 min in lysis buffer
(0.0625 M Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, and

5% 2-mercaptoethanol). Whole cell lysates were pre-

pared by homogenizing cells in 1% SDS in 20 mM Tris-

HCl, pH 7.4, 1 mM PMSF and 1 mM sodium orthovanad-

ate, and then boiling for 2 min, before sonicating briefly.

The protein content was determined using a protein rea-

gent kit (Pierce) with bovine serum albumin (BSA) as the

standards. The immunoprecipitates or whole cell lysates

were dissolved in SDS-polyacrylamide gel electrophore-

sis (PAGE) and after electrophoresis the samples were

transferred onto membranes (Millipore). The blots were

probed with anti-actin (ICN), anti-β1 integrin, anti-α-ac-
tinin (Upstate Biotechnology), anti-talin (Chemicon),

anti-vinculin (Sigma), anti-phosphotyrosine (PY) (Up-

state Biotechnology), or anti-CaMKII antibody (Santa

Cruz Biotechnology). After incubation of the membrane

with horseradish peroxidase-conjugated secondary anti-

bodies (Amersham Pharmacia), the reactivity was visual-

ized using an ECL kit (Amersham Pharmacia) and X-ray

films (Fuji-film).

RT-PCR and direct sequencing
Total RNA was extracted from unstimulated cells which

adhered to collagen IV, using TRIzol reagent and then di-

gested with DNase I (Life Technologies). A one-step RT-
PCR was carried out using an RT-PCR kit (CLONTECH)

at the anealing temperature of 55°C. The primer set for

the cytoplasmic domain of β1A integrin was 5'-TC-
CTATTTTAACATTACCAA-3' and 5'-ACTGTGACTAT-

GGAAATTGC-3' [16]. The PCR products were

electrophoresed on 1.6% (w/v) agarose gels and the

cDNA was extracted from the gel bands. The DNA se-

quence was confirmed for both forward and reverse

strands of cDNA fragments using the set of PCR primers

on an automated DNA sequencer (ABI PRISM 3100, Ap-

plied Biosystems).

Metabolic labeling of cells
Adherent cells to collagen IV-coated dish were labeled

with 100 µCi/ml of [32P]orthophosphoric acid (Amer-

sham Pharmacia) in phosphate-free medium for the last

24 h during incubation to arrest the cells. Immunopre-

cipitation of β1 integrin and SDS-PAGE of the immuno-

precipitates were carried out as described above. After

electrophoresis, gels were dried under vacuum and auto-

radiographed using X-ray films at -70°C for a weak.

Phosphatase treatment
Immunoprecipitation of β1 integrin was carried out as
described above and the supernatant obtained by cen-
trifugation of the immunoprecipitates with the Protein

A-Sepharose beads was retained at room temperature.

The β1 integrin immunoprecipitates were washed twice

with PB buffer and once with phosphatase buffer (50

mM Tris-HCl, pH 7.0, 150 mM NaCl, and 0.1 mM ED-
TA). Then the immunoprecipitates were treated with or

without 1.0 unit of PTP (LAR, Calbiochem) [31–33] for

10 min or 0.1 units of serine/threonine-specific PP

(PP2A1, Calbiochem) [34–36] for 15 min in 100 µl of
phosphatase buffer at 30°C. In some experiments, the

phosphatase-treated immunoprecipitates were washed

with RIPA buffer and incubated with the retained super-

natant of the β1 immunoprecipitates that contained un-

bound actin or with 5 µg/ml human platelet actin

(Cytoskeleton, Inc.) in RIPA buffer containing 0.2 mM

CaCl2 for 30 min at room temperature.

CaMKII assay
Immunoprecipitation of β1 integrin was carried out as
described above, and the β1 integrin immunoprecipitates

were washed twice with PB buffer and once with 20 mM

phosphate-buffered saline, pH 7.2. In vitro kinase assay

for β1 integrin-associated CaMKII was carried out at

30°C for 10 min using [γ-32P]ATP (NEN Life Science

Products) and a CaMKII assay kit (Upstate Biotechnolo-

gy) that included specific substrate peptide Autocamtide

II, calmodulin, and inhibitor peptides of PKA and PKC.

In some experiments, the kinase assay was done in the

presence of KN-62 (1-[N,O-Bis(5-isoquinolinesulfo-

nyl)]-N-methyl-L-tyrosyl-4-phenylpiperazine) (Sigma),
a specific inhibitor of CaMKII [26–28] at the indicated

concentrations. The background kinase assay was car-

ried out using the precipitates with the Protein A-Sepha-

rose beads but without the antibody to β1 integrin.
Radioactivity incorporated into the substrate peptide

was determined with a liquid schintillation counter. Af-

ter subtraction of the background, the activity was nor-

malized to the amount of β1 integrin that was quantified
by measurement of the band intensity of β1 integrin on
SDS-PAGE gels using an image analyzer equipped with a

digital camera (EDAS 290, Kodak).
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