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Abstract
Background: Following cleavage by caspase 8, the C-terminus of Bid translocates from the cytosol
to the mitochondria that is dependent upon structures formed by the mitochondrial-specific lipid
cardiolipin. Once associated with mitochondria, truncated Bid (tBid) causes the potent release of
cytochrome c, endonuclease G, and smac.

Results: We investigated whether tBid localizes specifically to the contact sites of mitochondria
purported to be rich in cardiolipin. A point mutation changing the glycine at position 94 to glutamic
acid in the BH3 domain of tBid (tBidG94E) was principally used because mitochondria treated with
this mutant tBid displayed better preservation of the outer membrane than those treated with wild
type tBid. Additionally, tBidG94E lowers the cytochrome c releasing activity of tBid without affecting
its targeting to mitochondria. Electron microscope tomography coupled with immunogold labeling
was used as a new hybrid technique to investigate the three-dimensional distributions of tBid and
tBidG94E around the mitochondrial periphery. The statistics of spatial point patterns was used to
analyze the association of these proteins with contact sites.

Conclusions: Immunoelectron tomography with statistical analysis confirmed the preferential
association of tBid with mitochondrial contact sites. These findings link these sites with cardiolipin
in tBid targeting and suggest a role for Bcl-2 family members in regulating the activity of contact
sites in relation to apoptosis. We propose a mechanism whereby Bcl-2 proteins alter mitochondrial
function by disrupting cardiolipin containing contact site membranes.

Background
Recent work has shown that the Bcl-2 family regulates

mitochondrial homeostasis during apoptosis [1]. Pro-ap-

optotic members, including Bax, Bak, Bid, and Bim, pro-

mote the release of death-inducing proteins, such as

cytochrome c [2,3], smac [4], and endonuclease G [5],

from mitochondria while anti-apoptotic members, such

as Bcl-2 and Bcl-XL, inhibit this release. Following re-
lease into the cytosol, these death-inducing proteins pro-

mote apoptotic cell destruction through multiple

pathways including caspase activation and nuclear DNA

fragmentation.
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In addition to controlling the release of pro-death pro-

teins, the Bcl-2 family also alters the function of mito-

chondria undergoing apoptosis. Dysfunction of voltage

dependent anion channel opening, ADP/ATP exchange,
the electron transport chain, oxidative phosphorylation,

and calcium buffering through the action of this family of

proteins have been reported [6–8]. While early defects in

the electron transport chain can be reversed by addition

of exogenous cytochrome c, the damage eventually be-

comes refractory to cytochrome c addition [8]. This find-

ing suggests that pro-death Bcl-2 proteins can damage

mitochondrial function independent of cytochrome c

loss.

Recently, we demonstrated that the targeting of the pro-

apoptotic protein tBid to mitochondria depends upon

the presence of the mitochondria-specific lipid cardioli-

pin in a possibly unique structure [9]. Cardiolipin has a

defined distribution pattern within mitochondria [10]. It

is found in high concentrations throughout the inner

membrane, including at contact sites where the inner

membrane and outer membrane interact. Cardiolipin is

present at much lower concentrations elsewhere in the

outer membrane. This distinction suggests that tBid

might localize to contact sites because of the arrange-

ment of cardiolipin there. To test this hypothesis, we de-

termined the submitochondrial localization of tBid using

a new hybrid technique – immunoelectron tomography,

which couples conventional immunoelectron microsco-
py with tomography to add the third dimension. Tomo-

graphic analysis was chosen because it enables

quantitative three-dimensional examination of fine

structure within the relevant mitochondrial domains in

semi-thick sections and thereby facilitates accurate rep-

resentation of the sometimes complex membrane topol-

ogy of this organelle [11,12]. Immunoelectron

tomography is ideal for testing the independence of two

types of labels, or label and structural component (as

employed in this study), and their deviation from inde-

pendence – colocalization or mutual inhibition – be-

cause it allows true 3-D distances to be measured. We

report here an analysis of the 3-D distances of immuno-

gold-labeled tBid from contact sites on the periphery of

liver mitochondria that strongly supports the colocaliza-

tion of the two.

Results
Initially, we used wild type (WT) tBid that was myc-

tagged for immunogold electron microscopy in our in-

vestigation of its localization along the mitochondrial pe-

riphery. Generally, WT tBid was observed to be in close

proximity to contact sites (Fig. 1). However, the preser-

vation of the outer membrane of isolated mouse liver mi-

tochondria treated with this tBid was less than optimal
for testing the hypothesis of tBid association with contact

sites. A significant portion of the outer membrane was

absent in most mitochondria observed, which may have

been caused in part by the activity of this pro-apoptotic

protein in releasing cytochrome c from the region be-
tween the outer and inner membranes. Neither was the

gold labeling very high, most likely because a stripped

outer membrane results in considerably fewer contact

sites. Another pitfall was the use of 10-nm gold (as op-

posed to 5-nm gold) particles, which resulted in streaks

that sometimes obscured the peripheral membranes

(Fig. 1b). Even though harder to see in the microscope,

for our analysis of mutant tBid labeling, we resorted to

the smaller-sized gold, which greatly diminished the ar-

tifactual streaking.

To enhance mitochondrial membrane preservation, a

point mutation changing the glycine residue at position

94 to glutamic acid in the BH3 domain of tBid was used.

This mutation was previously shown to lower the cyto-

chrome c releasing activity of tBid without affecting its

targeting to mitochondria [3]. Mitochondria treated with

tBidG94E displayed better preservation of the outer

membrane than those treated with WT tBid. Hence, be-

cause of better preservation of contact sites, the tBidG94E

was used primarily for the tomographic analysis. For im-

munogold labeling, a three-myc tag was placed at residue

67 of BidG94E. Following cleavage by caspase 8, a version

of tBidG94E was generated with the three-myc tag at the

N-terminus of tBidG94E. Monoclonal anti-myc antibody
was used for immunogold labeling to ensure high specif-

icity of binding.

Before performing the time-expensive tomography,

analysis of thin sections with conventional electron mi-

croscopy was used to judge the immunogold labeling

quality. As expected, the number of gold particles per mi-

tochondrion varied. However, most had several particles

arrayed along the perimeter (Fig. 2). To confirm the spe-

cificity of labeling, three controls were analyzed by thin-

section microscopy. Neither the no-primary control (Fig.

2) nor the second control, consisting of replacing the pri-

mary antibody with an excess of tBidG94E (data not

shown), showed any gold particles. The third control was

the presence of a contaminant organelle, peroxisomes

(Fig. 2); no gold particles were observed attached to

them. All three controls for labeling specificity indicated

that the non-specific immunogold background was very

low. Further, on those mitochondrial surfaces where the

outer membrane was inadvertently stripped off during

the specimen processing, no gold was observed, which is

to be expected as there is no contact site where there is no

outer membrane.

Electron tomography has several advantages over con-
ventional two-dimensional immunogold electron micro-
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scopy that should be enumerated to understand the

accuracy of the measurements made in this study. First,

a more accurate localization of the 5-nm gold particles is

possible because each slice of the tomographic recon-

struction is about 2 nm in thickness compared with the

typical 50–100 nm thickness used in conventional im-

muno-electron microscopy. Second, because the dimen-

sions of contact sites (~14 nm diameter) [13,14] are

considerably smaller than 50–100 nm, they are easily

missed in conventional microscopy; this problem was re-

moved by the typically finer sampling of electron tomog-

raphy (~2 nm). Third, because tomography is inherently

a 3-D tool, the 3-D placement of gold-labeled tBidG94E
was obtained in relation to the 3-D distribution of con-

tact sites and gold beads at high resolution. Unlike two-

dimensional electron micrographs, true Euclidean dis-

tance was measured at a resolution of 4 nm (twice the

pixel size, or thickness, according to Shannon sampling

theory) in tomographic reconstructions from each gold

bead to the nearest contact site. These measurements

were then used for a statistical analysis of association.

Tomographic reconstruction of immunogold-labeled

semi-thick sections confirmed the preferential associa-

tion of tBid with contact sites. Figure 3 highlights fea-

tures of a tomographic reconstruction of one of the

tBidG94E-labeled liver mitochondrion used in the statis-

tical analysis. The mitochondrial volume sliced in three

perpendicular planes where gold particles can be seen in

all three faces (Fig. 3a, arrowheads) emphasizes the vast

3-D information available with tomography. Individual

2-nm slices illustrate how gold particles and contact sites

can be easily identified with this hybrid, high-resolution

technique (Fig. 3b). The insets in figure 3b show two ex-

amples of gold particles near contact sites. Graphic rep-

resentations of a segmented volume are shown in figure

3c. Segmentation is a visual tool that defines and dissects

volumes and thus aids the interpretation and measure-

ment of structural interrelationships [15]. Once seg-

mented, volumes were surface-rendered. With the

surface-rendered volume, the various components of in-

terest can be oriented to best study the proximity of gold

and contact sites in relation to the membrane topology.
A wealth of information can be quickly taken in by rotat-

Figure 1
Isolated mouse liver mitochondrion treated with wild type tBid and labeled with 10 nm immunogold particles. a) Electron
micrographs of thin sections (~50 nm thick) were examined to ascertain the quality of ultrastructural preservation and immu-
nogold labeling density. On occasion, contact sites were observed; in these situations, a gold particle appeared to be nearby.
For the most part, mitochondria treated with this tBid displayed rather poor preservation of the outer membrane, which may
be a reflection of the activity of this pro-apoptotic protein in causing cytochrome c release. Neither was the gold labeling very
high, most likely because a stripped outer membrane represents considerably fewer contact sites.b) One slice through a tom-
ographic reconstruction showing partial stripping of the outer membrane. Largely, WT tBid was observed to be in close prox-
imity to contact sites. Examples are indicated by arrows (gold particle) and arrowheads (contact site). Yellow traces indicate
regions around the periphery where the outer membrane was stripped away. This mitochondrion is more in the orthodox
state [33] than most observed. Horizontal streaks were caused by reconstructing the electron-dense gold particles and some-
times obscure features (bottom of image). Scale bars: (a), (b), 300 nm.

http://ncmir.ucsd.edu/~perkins/tBid
http://ncmir.ucsd.edu/~perkins/tBid
http://ncmir.ucsd.edu/~perkins/tBid
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ing the segmented volumes  [http://ncmir.ucsd.edu/
~perkins/tBid] . For example, it became apparent that

contact sites can be clustered (Fig. 3c, right-hand side of

mitochondrion).

We tested the association of tBid with contact sites by

employing the statistics of spatial point patterns [16]. We

measured the distances between the 3-D loci of all con-

tact sites and immunogold particles in the tomographic

reconstructions of WT tBid and tBidG94E labeled mito-

chondria. The closest contact site to each particle was

calculated in Euclidean (3-D) space. Table 1 shows a

comparison of experimental "nearest neighbors" with

nearest neighbors expected from a random distribution

of gold. The experimental mean value for nearest contact

sites was significantly less than the random mean value

for all mitochondria. We conducted a Student's t-test to

test the null hypothesis that the experimental mean val-

ues would be reasonably likely to be obtained from sam-

pling randomly. The probability of this test for "WT tBid

1" was 7.7 x 10-6 and was even lower for the other sam-

ples. Thus, at essentially any significance level, the null

hypothesis is rejected and we conclude that the associa-

tion of tBid with contact sites is not random. For an un-

derstanding of what constitutes "close association" of
gold particle with contact site, it is important to consider

that the finite size of immunoglobulin molecules is about

8–10 nm in the most extended state. Two immunoglob-

ulin molecules were used for the labeling (primary and

secondary antibodies). tBid and the myc-tag have molec-

ular weights of ~22 kD and ~67 kD, respectively. Hence,

myc-tagged tBid has a size of ~5 nm. The maximal size of

the tBid-immunogold complex is thus about 30 nm for 5-

nm gold (10+10+5+5 nm). Hence the distance between

gold and contact site is not expected to be much less than

this value. With this understanding, one can see that ex-

perimental means of 23–31 nm, shown in table 1, are rea-

sonable values for specific association of tBid with

contact sites. This is especially true upon comparing with

the mean distances of 70–129 nm from the random

placement of gold. Thus, this nearest neighbor statistic

provides strong evidence that tBid associates with mito-

chondrial contact sites.

Discussion
Mitochondria are compartmentalized into three spaces

by their inner and outer membranes [17]. The outer

membrane surrounds the mitochondria and separates it

Figure 2
Conventional electron micrographs of thin sections of liver mitochondria assayed the quality of tBidG94E labelling. a) Section of
pelleted mitochondria decorated with immunogold tBidG94E. Most of the mitochondria are in the condensed state [33]. No dif-
ference in the general number of gold particles between condensed and orthodox mitochondria was observed. Peroxisome
contamination indicated by asterisks in (a) and (c) had no immunogold background labeling.b) Mitochondrion boxed in (a) mag-
nified 3x in order to visualize the 5-nm gold particles (arrowheads). c) No-primary control section showing little, if any, non-
specific immunogold labeling on mitochondria treated with gold-conjugated secondary antibody.d) Mitochondrion boxed in (c)
magnified 3x in order to show that there is no gold around the perimeter. Scale bars: (a), (c), 1000 nm.

http://ncmir.ucsd.edu/~perkins/tBid
http://ncmir.ucsd.edu/~perkins/tBid
http://ncmir.ucsd.edu/~perkins/tBid
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Figure 3
Elements of a tomographic reconstruction of a tBidG94E-labeled mitochondrion highlight the association of tBid with contact
sites. a) Portion of the tomographic volume sliced in three perpendicular planes. Thick sections were examined by intermedi-
ate voltage electron microscopy and were used to generate reconstructions of the immunogold-labeled outer membrane. The
visualization tool ANALYZE allows the tomographic volume to be rotated and resectioned along any axis, thereby revealing
both internal and surface structures along with the gold labels; it also provides the ability to correlate 2-D and 3-D views of the
same region or substructure. Three-dimensional perspectives allowed us to track features, such as gold particles (arrowheads),
along perpendicular faces.b) Slice through the volume. Several gold particles are visible (arrowheads) in this 2 nm slice, includ-
ing two closely associated with contact sites (insets; 3x magnification) The scale bar = 500 nm and applies to all panels. c) Per-
pendicular views of the surface-rendered volume with selected components segmented. The visualization tool SYNU allows
the surface-rendered volume to be viewed in any orientation. For clarity in visualizing the contact sites (white spheres) and
gold particles (yellow spheres), the outer membrane is not shown. The inner boundary membrane (IBM) is shown in dark blue
and was segmented separately from individual cristae (light blue). Only four cristae are shown to demonstrate the lamellar
architecture common in liver mitochondria. Where gold particles were aggregated, only one particle is shown. The IBM was
made translucent in order to visualize the cristae.
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from the cytosol. The inner and outer membranes unite

to form mitochondrial contact sites with protein compo-

sition that is still being defined [18]. It is important to

test association of tBid with contact sites using electron

microscopy because whereas purification schemes are

based on assumptions about what contact sites should

contain (and sometimes arrived at close to 100 proteins),

these sites have always been defined structurally. As pre-

viously noted, contact sites are purported to have a

unique lipid environment that is rich in cardiolipin. The

presence of cardiolipin has been implicated in the func-

tion of numerous mitochondrial proteins including, sites

I and III of the electron transport chain, the adenine nu-

cleotide transporter, the protein translocation machin-

ery, and the localization of mitochondrial creatine kinase

[19–22].

tBidG94E was used predominantly for testing the hypoth-
esis of localization of tBid to contact sites. Although this

mutant translocates to mitochondria as efficiently as

does the WT with diminished disruptive effect on the

outer membrane, it seems conceivable that tBid harbors

two distinct signals, one for translocation to mitochon-

dria, and the other for interaction with proteins or lipids

to exert its pro-apoptotic function. Disruption of this lat-

ter signal via mutation might alter tBid's submitochon-

drial localization, while preserving the outer membrane.

We showed that WT tBid was not randomly localized

with respect to contact sites. The mean experimental dis-

tance between gold particles and contact sites (53 nm;

see table 1), though, was significantly higher than those

values for tBidG94E (23–31 nm; table 1). This increased

distance for WT tBid is likely due to two factors that af-

fect the visualization of contact sites. First, tBid may have

degraded the outer membrane, so that the nearest con-

tact site is not always recognized as such. Second, the

streaking caused by reconstructing the 10-nm gold parti-

cles used for WT tBid labeling may have obscured the

nearest contact site in a few instances. Hence, whereas

our analysis cannot disprove the hypothesis that by mu-

tating tBid its submitochondrial localization was

changed, it seems more likely that the greater value for

WT tBid is caused by the factors mentioned above. Thus,

it appears that the conclusion of tBid localization to con-

tact sites can be applied more generally than the narrow

interpretation of tBidG94E localization only.

Truncated Bid, as other BH3-only proteins, requires an-

other protein such as Bax or Bak to exert its pro-apoptot-

ic function [23,24]. Interestingly, tBid was found

associated with mitochondrial contact sites (Figs. 1 and

2) and was shown to destabilize lipid membranes in vitro

(along with Bax) by increasing the permeabilization of

artificial liposomes [25,26]. Therefore it is possible that

tBid can bind to the cardiolipin rich contact site mem-

branes and destabilize them by inducing Bax or Bak to
oligomerize. The membrane destabilization may cause a

secondary effect of inhibiting the action of the proteins

located there. This hypothesis would account for how

tBid affects the function of many different processes

without binding directly to several proteins. Indeed it

was found that the targeting of tBid to mitochondria-like

membranes occurs in the absence of proteins, yet de-

pends upon cardiolipin being in a possibly unique struc-

ture as opposed to free cardiolipin [9]. The requirement

for a specific cardiolipin structure that is likely defined

by the contact site is consistent with our observation that

no gold particles were found in regions stripped of the

outer membrane exposing the cardiolipin-rich inner

membrane.

After the induction of apoptosis, mitochondria display

two distinct phases of damage. Early in the process the

outer membrane becomes permeable, without rupture

(Although this is controversial [27].), to several proteins

found in the mitochondrial inner membrane space in-

Table 1: Distance from immunogold particles to the nearest contact site in tomographic reconstructions of liver mitochondria

Labeling type on Mitochondrion Mean distance experimental (nm)a Mean distance random (nm)a,b Number of 
contact sites

Number of immunogold 
particles

WT tBid 1 53 ± 27 122 ± 56 39 23
GE tBid 1c 30 ± 14 70 ± 28 62 37
GE tBid 2 29 ± 12 129 ± 76 13 5
GE tBid 3 31 ± 6 77 ± 25 17 7
GE tBid 4 23 ± 9 104 ± 48 19 7

aMean ± standard deviation. Number of nearest neighbor measurements = number of immunogold particles. bPositions corresponding to gold parti-
cles were randomly placed around the outer membrane for each mitochondrial tomographic reconstruction according to the number of immuno-
gold particles found in each mitochondrion (last column) and the Euclidean distance from these loci to the nearest empirical contact site was 
measured. cNote that "WT tBid 1" and "GE tBid 1" have larger number of contact sites and gold particles because more of the mitochondrial volume 
was found in these particular thick sections. The other three mitochondria had smaller portions sliced in their respective sections.
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cluding cytochrome c, in which contact sites have a prob-

able role [28]. During this early phase, though, the inner

membrane remains intact and mitochondria still retain

their protein import machinery [29]. Later in the process
there is swelling and herniation of the matrix leading to

a distension of the cristae [8,30].

Many factors could contribute to the structural changes

observed in mitochondria. tBid and other pro-death pro-

teins such as Bax or Bak could destabilize the membrane

leading to the observed changes. Additionally loss of con-

tact site and inner membrane integrity could indirectly

cause alterations in ion exchange and lead to the flow of

water into the matrix. The loss of cytochrome c causes a

break in the electron transfer chain resulting in the pro-

duction of reactive oxygen species [31]. Reactive oxygen

species are known to cause the oxidation and loss of

function of many lipids including cardiolipin [20]. Final-

ly, caspases activated downstream of cytochrome c re-

lease have been implicated in mitochondrial damage

[29]. It appears likely that the cumulative damage of

these agents could lead to the irreversible loss of mito-

chondrial membrane integrity and structure.

Conclusions
In conclusion, we have combined the techniques of im-

munogold microscopy and electron tomography to de-

termine visually and by statistical analysis that tBid is

preferentially concentrated at contact sites rather than
being randomly distributed along the outer membrane.

For the first time, immunogold electron tomography

permitted a quantitative demonstration of 3-D organel-

lar protein labeling with antibodies. The method de-

scribed is envisioned to broaden biological applications

of ultrastructural immunogold labeling techniques espe-

cially in investigations dealing with compartmentaliza-

tion of functional elements. For example, many

organelles, including the nucleus, endoplasmic reticu-

lum, and Golgi apparatus, have a complex organization

with a unique distribution of proteins throughout each.

Immunoelectron tomography is starting to be a useful

tool in determining how the distribution of proteins may

provide clues as to their targets or scope of action [32].

Materials and Methods
Generation of Bid and caspase 8 proteins
Full length human Bid and caspase 8 cDNA were ob-

tained as described (Luo et al 1998). A three myc-tag rec-

ognizing the sequence EQKLISEEDL was placed into

position 67 in the cDNA of full length Bid. A point muta-

tion changing glycine 94 to glutamic acid was made into

three-myc Bid using the primers 5'-GCCCAGGTCGAG-

GACAGCATG-3' and 5'-CATGCTGTCCTCGACCTGGGC-

3' using standard techniques. Both vectors were con-

firmed by DNA sequencing. Bacterially expressed pro-

teins were made as previously described [3].

Preparation of mitochondria for immunogold electron mi-
croscopy
Mouse liver mitochondria were prepared fresh and treat-

ed with 1 ng myc-tagged tBidG94E/ 100 µg of mitochon-

drial protein. Mitochondria were then washed 2X in

mitochondria isolation buffer (MIB, 250 mM mannitol, 5

mM HEPES pH 7.2, 0.5 mM EGTA, and 0.1% (w/v) bo-

vine serum albumin) and weakly fixed with fresh 1%

paraformaldehyde in MIB for 15 min on ice. Mitochon-

dria were pelleted (in all steps at 10,000 x g for 3 min at

4°C) and resuspended in blocking buffer (1% bovine se-

rum albumin, 1% normal goat serum, 1% cold water fish

gelatin, 0.04% glycine in MIB) for 15 min on ice. They

were then pelleted and resuspended in working buffer

(blocking buffer diluted 10 x in MIB) containing the pri-

mary antibody, anti-myc (1:1000) for 1 hr on ice. The no-

primary control omitted the previous step only. A second

control consisted of replacing the primary antibody with

an excess of tBidG94E and continuing as with the primary

antibody. Mitochondria were washed 4 x 4 min in work-

ing buffer and incubated with the indicated anti-mouse

secondary antibody conjugated to 10-nm (used for wild-

type tBid) or to 5-nm (used for tBidG94E) gold beads

(1:50 Amersham) for 1 hr on ice in working buffer. Sub-

sequently, they were washed 4 x 4 min with working

buffer to remove unbound secondary antibody and
rinsed 1 x in cacodylate buffer (0.1 M sodium cacodylate.

Electron Microscopy Sciences, Ft. Washington, PA).

Mitochondria were centrifuged and the pellet was kept

intact for all remaining steps. The mitochondrial pellets

were fixed in 2% glutaraldehyde in cacodylate buffer for

one hour on ice and rinsed 3 x 4 min in cacodylate buffer.

The mitochondrial pellets were incubated with 1% os-

mium tetroxide (Electron Microscopy Sciences) in ca-

codylate buffer for one hour on ice, followed by rinsing 3

x 4 min in ice-cold double-distilled water. The pellets

were dehydrated using a successive ethanol series of 20,

50, 70, and 90% in double distilled water for 10 min each

on ice. The pellets were further dehydrated at room tem-

perature 2 x in 100% ethanol for 5 min and 2 x in 100%

acetone for 5 min each.

Pellets were transferred to glass scintillation vials for res-

in (Durcupan ACM, EMS) infiltration. The pellets were

first incubated in a sequence of 70% ethanol/30% resin,

50% ethanol/50% resin, and 30% ethanol/70% resin for

30 min each at room temperature. Pellets were then in-

filtrated 3 x 1 hr in 3 ml of 100% resin. After the final in-

cubation, the resin-infiltrated pellet plus excess resin

were poured into aluminum dishes and polymerized at
60°C for 36 hr.
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Electron microscopy and tomographic reconstructions
Tomographic reconstructions were performed as de-

scribed previously [13]. Briefly, thin-sectioned material

(~80-nm thick) was examined using a JEOL 1200FX
electron microscope. Thick-sectioned material was ex-

amined with a JEOL 4000EX microscope operating at

400 keV. The 0.75 µm thick sections were tilted through

120° of rotation, and electron micrographs were taken in

2° increments. Using the SUPRIM software package,

Four tilt series from different sections consisting of 61 tilt

images each were then digitized, aligned, and back pro-

jected using R weighting to generate the volume infor-

mation. Volume segmentation of the reconstructed

mitochondria using Xvoxtrace software was used to de-

lineate the inner boundary membrane, cristae, outer

membrane, contact sites, and gold particles. This infor-

mation was used to construct surface-rendered compu-

ter graphic representations using the SYNU software

package. Gold particles were represented by gold spheres

in the surface-rendered volume.

Statistical analysis
To determine whether immunogold-labeled tBid is spa-

tially clustered or randomly located about contact sites, a

spatial point pattern statistics was used, namely, the

nearest neighbor statistic [16]. The Euclidean distances

from each immunogold particle to all of the contact sites

in the reconstruction was calculated for all the particles

using a similar approach to that described by Perkins
and coworkers [13]. The nearest neighbor statistic was

calculated for the reconstruction using the closest ob-

served contact site to each gold particle and then calcu-

lating the mean and standard deviation for all such

measurements in a reconstructed mitochondrion. These

values were compared with those derived from simula-

tions in which the same number of gold particles deter-

mined empirically were randomly placed on the

mitochondrial surface.

Abbreviations
MIB – Mitochondrial Isolation Buffer

SDS – PAGE-Sodium Dodecylsulfate-Polyacrylamide

Gel Electrophoresis

tBid – Truncated Bid, the C-terminal portion of Bid after

cleavage by caspase-8.

tBidG94E – A point mutation changing glycine 94 to

glutamic acid in three-myc Bid.
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