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Abstract

Background: Polycomb Group (PcG) proteins are chromatin modifiers involved in early embryonic development as
well as in proliferation of adult stem cells and cancer cells. PcG proteins form large repressive complexes termed
Polycomb Repressive Complexes (PRCs) of which PRCT and PRC2 are well studied. Differentiation of human Embryonic
Stem (hES) cells into insulin producing cells has been achieved to limited extent, but several aspects of differentiation
remain unexplored. The PcG protein dynamics in human embryonic stem (hES) cells during differentiation into
pancreatic lineage has not yet been reported. In the present study, the expression of RINGTA, RING1B, BMI1, CBX2,
SUZ12, EZH2, EED and JARID2 during differentiation of hES cells towards pancreatic lineage was examined.

Results: /n-house derived hES cell line KIND1 was used to study expression of PcG protein upon spontaneous and
directed differentiation towards pancreatic lineage. gRT-PCR analysis showed expression of gene transcripts for various
lineages in spontaneously differentiated KIND1 cells, but no differentiation into pancreatic lineage was observed.
Directed differentiation induced KIND1 cells grown under feeder-free conditions to transition from definitive
endoderm (Day 4), primitive gut tube stage (Day 8) and pancreatic progenitors (Day 12-Day 16) as evident from
expression of SOX17, PDX1 and SOX9 by gRT-PCR and Western blotting. In spontaneously differentiating KIND1
cells, RINGTA and SUZ12 were upregulated at day 15, while other PcG transcripts were downregulated. gRT-PCR
analysis showed transcripts of RING1B, BMI1, SUZ12, EZH2 and EED were upregulated, while RINGTA and CBX2
expression remained low and JARID2 was downregulated during directed differentiation of KIND1 cells. Upregulation of
BMI1, EZH2 and SUZ12 during differentiation into pancreatic lineage was also confirmed by Western blotting. Histone
modifications such as H3K27 trimethylation and monoubiquitinylation of H2AK119 increased during differentiation into
pancreatic lineage as seen by Western blotting.

Conclusion: Our study shows expression of PcG proteins was distinct during spontaneous and directed differentiation.
Differentiation into pancreatic lineage was achieved by directed differentiation approach and was associated with
increased expression of PcG proteins RING1B, BMI1, EZH2 and SUZ12 accompanied by increase in monoubiquitinylation
of H2AK119 and trimethylation of H3K27.
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Background

Differentiation of hES cells requires precise orchestra-
tion of modifications at chromatin levels, mitochondrial
level and changes in cell architecture. Chromatin remod-
eling is an essential step towards differentiation in the
case of pluripotent hES cells [1,2]. Embryonic stem cells
have open chromatin structure which enables them to
differentiate into any lineage [3,4]. Two most widely
studied chromatin modifications in ES cells are (i)
DNA methylation catalyzed by enzymes like DNMT3a,
DNMT3b, DNMT1 [5] and (ii) histone modifications
[6,7] carried out by Polycomb group (PcG) proteins
and Trithorax group proteins (TxG). The histone mod-
ifications by PcG proteins prevent precocious differen-
tiation of ES cells [8]. PcG proteins may play an
important role in the early development, while DNA
methylation is involved in gene silencing in differenti-
ated cells [1].

PcG proteins modify histones by methylation (mono,
di, tri methylation) and ubiquitinylation, to bring about
repression of genes [9-12]. PcG form multiprotein com-
plexes called Polycomb Repressive Complexes (PRC) such
as PRC1 and PRC2 [8,13,14]. The PRC1 complex com-
prises of CBX, BMI1, RING1A, RING1B, PHC, which
catalyze monoubiquitinylation of lysine 119 on histone
H2A(H2AK119ubl) [15,16]. Loss of PRC1 protein RING1B
is embryo lethal, knockout animals for other PRC1 protein
are not embryonically lethal but have several developmental
defects [17-19]. The core PRC2 comprises of SUZ12, EED
and EZH2 which catalyze the addition of di-methyl or
tri-methyl groups to lysine 27 on histone H3 (H3K27me3).
PRC2 is essential for embryonic development as evident
from knockout mice studies, which show that loss of PRC2
proteins like SUZ12, EZH2 and EED results in embryonic
lethality [20-23].

Apart from their requirement for overall development,
PcG proteins are involved in proliferation and develop-
ment of specific cell types like skeletal muscles, neural
stem cells, hematopoietic cells [20,24-26]. PcG proteins
such as BMI1 and EZH2 are often found to be overex-
pressed in cancer cells [27-29].

Hence, it becomes important to study the dynamics of
polycomb group proteins during development of various
cell types in humans. The best model to study the PcG
expression during early development in humans is
differentiating embryonic stem cells. hES cells are
pluripotent cells with potential to differentiate into all
three lineages viz. endoderm, mesoderm and ectoderm
[30,31]. Previous reports have studied PcG proteins in
ES cells differentiating into ectoderm and mesoderm
[9,32,33]. Recently polycomb mediated histone modi-
fications (H3K27me3 and H3K4me3) at key genes
during differentiation of hES cells into pancreatic
lineage was reported [34]. One of the important area of
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research has been differentiation of hES cells into
functional islet cells for treatment of type I diabetes
[26,35-37]. Even though PcG proteins are crucial dur-
ing differentiation, there are no reports available as yet
of dynamics of PcG expression during differentiation
into pancreatic lineage.

In the present study, in-house derived hES cell line
KIND1 [30,38] was differentiated into pancreatic lineage
under feeder-free culture system by two strategies viz
spontaneous and directed differentiation. The expression
of PcG protein transcript RINGIA, RINGIB, BMII,
CBX2, SUZ12, EZH2, EED and JARID2 was examined
during differentiation of KIND1 and compared to the
pattern in adult human pancreatic RNA.

Results

Differentiation of KIND1 hES cells

Spontaneous differentiation

For spontaneous differentiation, embryoid bodies (EBs) were
generated from KIND1 cells as described earlier [38]. Three
representative genes MAP2 (ectoderm lineage), HANDI
(mesoderm lineage) and MIXL (endoderm lineage) were
studied by qRT-PCR from embryoid bodies harvested on
day 7 and day 15. Expression of MIXL and HANDI gene
transcripts was seen, but the expression of MAP2 was low
(Figure 1D). However, the embryoid bodies did not show ex-
pression of gene transcripts specific to pancreatic lineage
such as PDX1, SOX9, and NKX6.1 (data not shown).
Spontaneous differentiation did not yield cells of pan-
creatic lineage.

Directed differentiation

Feeder-free culture of KIND1 cells To avoid inter-
ference from factors secreted by feeder cells during
directed differentiation, KIND1 cells were cultured on
reduced basement matrix Geltrex. KIND1 cells growing
on human feeder fibroblast (HFF) [30] were shifted to
grow on Geltrex coated culture surface (Figure 2A {b}).
The feeder-free KIND1 colonies are circular and large
compared to colonies on HFF. Feeder-free KIND1 cells
were regularly characterized for pluripotency markers at
both protein and transcript levels at various passages.
Feeder-free KIND1 cells showed expression of OCT4A,
NANOG, SOX2, REX1 and TERT by RT-PCR (Figure 1B)
and OCT4A protein expression was seen by Western
blot (Figure 1C). These cells also showed a normal
karyotype post feeder-free culture (Figure 1A {c}). Thus
the KIND1 cells retain the pluripotency characteristics
post feeder free culture.

Differentiation of feeder-free KINDI cells into pancreatic
lineage Initiation of differentiation resulted in upregula-
tion of NANOG at Day 4 while SOX 2 gene transcript
declined (Figure 2A). KINDI cells underwent epithelial
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Figure 1 Adaptation of KIND1 cells to feeder free culture system & characterization of feeder free KIND1 cells & embryoid body (EB)
differentiation. (A) Bright field images of KIND1 cells cultured on HFF (a) and geltrex (b) Magnification 10X. (c) Cytogenetic analysis of KIND1
exhibiting normal 46, XX chromosome complement. (B) RT-PCR analysis of pluripotency specific gene transcripts (C) Western Blot analysis for
OCT4 in undifferentiated feeder free KIND1 cell lysate loaded in triplicate with 3 actin as loading control. (D) Expression of representative gene
transcripts of ectoderm (MAP2), mesoderm (HAND1) and endoderm (MIXL) in Day 7 and Day 15 EBs grown in suspension culture. The expression
is with respect to undifferentiated KIND1 cells (set as 1). Error bars represent + Standard Error of Mean (SEM).
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to mesenchymal transition evident from expression of
E-CADHERIN and N-CADHERIN transcripts (Figure 2B).
At Day 4, N-CADHERIN showed significant upregula-
tion while E-CADHERIN was downregulated; later
N-CADHERIN expression remained high as compared
to undifferentiated feeder free KIND1 cells. Activin A treat-
ment led to maximal expression of definitive endoderm
(DE) specific genes like SOX17, FOXA2, CXCR4, CER-
BERUS and EOMESODERMIN at Day 4 and as the dif-
ferentiation continued their expression declined (Figure 2C).
Western Blot results for SOX17 also confirmed definitive
endoderm formation (Figure 3C). HNF4A expression peaked
at day 8 suggesting exit from the DE (definitive endoderm)
stage and entry into primitive gut tube stage (Figure 2D).
Peak expression of pancreas specific transcripts PDX1I,
NKX6.1 and SOX9 was seen between days 12—16 indicat-
ing presence of pancreatic lineage cells (Figure 3A). PDX1
and SOX9 protein expression was seen at Day 16 by
Western blotting (Figure 3D). Expression of MAP2 (ecto-
derm specific), HANDI and MESP1 (mesoderm specific)
transcripts during directed differentiation was found to be
low at day 12 (Figure 3B) indicating cells differentiated
primarily into endoderm lineage. Thus, directed differ-
entiation resulted in the formation of cells of pancre-
atic lineage.

Polycomb group protein dynamics during differentiation
We first examined the expression of PcG expression in
KIND1 cultured on HFF and under feeder free system,
followed by studying PcG expression in differentiated
KIND1 cells.

KIND1 cultured on human feeder fibroblasts RING1B
expression was highest compared to RING1A, BMII and
CBX2 in the PRC1 group, while among PRC2 members
SUZ12, JARID2 and EED expression was most promin-
ent (Figure 4A and B).

Feeder-free KIND1 cells The expression of PRC1 gene
transcripts showed similar expression pattern to that
seen when KINDI1 cells were cultured on HFF. RINGIB
was significantly expressed more compared to BMII,
RINGIA, CBX2 while among the PRC2 SUZI2 was
expressed significantly more than EZH2, JARID2 and
EED (Figure 4C and D).

Spontaneous differentiation RINGIA was expressed in
high amounts during day 7 and day 15 of differentiation,
while RINGIB, BMI1 and CBX2 was significantly down
regulated as compared to undifferentiated KIND1 cells
(Figure 5A). Of the PRC2 members SUZI12 gene transcripts
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Figure 2 Characterization of KIND1 cells differentiated into pancreatic lineage. (A) Expression of pluripotency associated gene transcripts
(OCT4, NANOG, SOX2) during differentiation of KIND1 cells from Day 4 — Day 16. (B) Expression of £ CADHERIN and N CADHERIN during differentiation in
undifferentiated and Day 4 — Day 16. (C) Expression of definitive endoderm specific gene transcripts (SOX17, FOXA2, CXCR4, CERBERUS, EOMESODERMIN)
in undifferentiated and Day 4 — Day 16. (D) Expression of primitive gut tube marker HNF4A in undifferentiated and Day 4 — Day 16. The expression of
all gene transcripts is relative to undifferentiated KIND1 cells (set as 1). Error bars represent + SEM, statistical significance represented as *(p <0.05).
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Figure 3 Characterization of KIND1 cells differentiated into pancreatic lineage by directed differentiation approach. (A) Expression of
pancreas specific gene transcripts (PDX1. SOX9, NKX6.1) in undifferentiated and Day 4 — Day 16. (B) Expression of representative gene transcripts
of ectoderm (MAP2) and mesoderm (HAND1, MESP1) in undifferentiated and Day 4 — Day 16. The expression is relative to undifferentiated KIND1
cells (set as 1). Error bars represent + SEM, statistical significance represented as *(p < 0.05) and **(p < 0.02). (C) Western Blot analysis for SOX17
protein in cell lysates from undifferentiated (UD), Day 4 (D4), Day 8 (D8), and Day 12 (D12) samples, with 3 ACTIN as housekeeping protein.
(D) Western Blot analysis for PDX1 and SOX9 protein in cell lysates from undifferentiated (UD), Definitive Endoderm Day 4 (D4), Primitive
Gut Tube Day 8 (D8), and pancreatic progenitors Day 12 (D12) - Day 16 (D16) samples, with 3 ACTIN as housekeeping protein.
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Figure 4 Expression of PcG protein transcripts in KIND1 cells grown on HFF and feeder free KIND1 cells. gRT-PCR results show expression
of (A) PRC1 group members- RING1A, RING1B, BMIT and CBX2 (B) PRC2 group members SUZ12, EZH2, EED and JARID2 in KIND1 cells cultured on human
feeder fibroblasts (HFF). gRT-PCR results showing expression of (C) PRC1 group members- RINGTA, RING1B, BMIT1and CBX2 (D) PRC2 group members
SUZ12, EZH2, EED and JARID2 in feeder free KIND1 cells. The expression is with respect to highest detectable (Ct 40). Error bars represent + SEM.
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Figure 5 Characterization of Embryoid Bodies (EBs) for PcG gene transcripts. (A) Expression of PRCT (RING1A, RING1B, BMITand CBX2) in Day 7
and Day 15 EBs grown in suspension culture. (B) Expression of PRC2 (EZH2, SUZ12, EED and JARID 2) gene transcripts in Day 7 and Day 15 EBs
grown in suspension culture. (C) Expression of PRCT (RINGTA, RING1B, BMITand CBX2) gene transcripts at Day 10 in EBs cultured on gelatin
coated dishes. (D) Expression of PRC2 (EZH2, SUZ12, EED and JARID 2) gene transcripts at Day 10 in EBs cultured on gelatin coated dishes. The expression is
relative to undifferentiated KIND1 cells (set as 1). Error bars represent + SEM, statistical significance represented as *(p < 0.05), **(p < 0.02) and **(p < 0.001).
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was highly expressed at day 15, while EZH2, EED and
JARID2 were significantly down regulated compared
to undifferentiated KIND1 cells (Figure 5B). To test
whether the expression of PcG observed is due to sus-
pension culture, the EBs after 7 days in suspension
were plated for 10 days. Post 10 days, the expression of
PRC2 gene transcripts SUZ12, EZH2, EED and JARID2
were down regulated compared to undifferentiated
cells (Figure 5C and D).

Directed differentiation With the onset of differen-
tiation the expression of PRC1 and PRC2 proteins
changed. PRC1 transcript RING1B and BMII remained
elevated over the entire duration, while RINGIA and
CBX2 maintained low level of expression (Figure 6A).
Western Blotting also showed that BMI1 expression
increased steadily over the course of differentiation
(Figure 7A). Among the PRC2 members, SUZ12 gene
transcript steadily increased as the cells differentiate into
pancreatic lineage. Western Blotting for SUZ12 shows
very low expression in undifferentiated KIND1 cells,
but as the differentiation progresses SUZ12 expression
increased (Figure 7C). EZH2, a key PRC2 member with
methytransferase activity, at mRNA level peaked at day
8 (Figure 6B). At the protein level, EZH2 unlike SUZ12
was expressed in undifferentiated cells and its expres-
sion was seen till day 16 (Figure 7B). EED expression
remained low as differentiation proceeded but was 4
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fold high on Day 16 (Figure 6B). JARID2 a member of
Jumonji family, showed steady reduction in expression
compared to undifferentiated KIND1 cells (Figure 6B).

Histone modifications Both PRC1 and PRC2 proteins
repress genes by bringing about histone modifications.
We observed increase in levels of Histone H2A monou-
biquitinylation (Figure 8A). We also observed increase
in trimethylation of H3K27 during directed differenti-
ation (Figure 8B).

Expression of p19/ARF The expression of p19 decreased
significantly at day 8 and day 16 compared to undifferenti-
ated KIND1 cells (Figure 9C). However, expression of
pl6/INK4a could not be detected in undifferentiated and
differentiated KIND1 cells (data not shown).

Polycomb group protein expression in adult human
pancreatic RNA

Of the PRC1 proteins, BMII is expressed higher than
RINGIA, RING1B and CBX2 (Figure 9A), while among
PRC2 complex, EED and SUZI2 is expressed to higher
amounts while expression to EZH2 and JARID 2 tran-
scripts is low (Figure 9B).

Discussion
PRC2 group proteins have been shown to be dispensable
for pluripotency; however they are required during
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Figure 7 Polycomb group protein expression during directed
differentiation of KIND1 cells. Western Blot analysis of (A) BMIT,
(B) EZH2 and (C) SUZ12 proteins in undifferentiated KIND1 (UD),
Day 8 (D8), Day 12 (D12) and Day 16 (D16) cell lysates during
directed differentiation with 3 ACTIN as housekeeping protein.

differentiation shown by both in vivo and in vitro studies
[32,39]. Though importance of PcG proteins during
differentiation is known, their expression during differ-
entiation of hES cells into pancreatic lineage has not yet
been evaluated. To achieve this, we differentiated KIND1
via spontaneous differentiation and directed differenti-
ation. EBs showed higher expression of endoderm and
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mesoderm gene transcript while lower expression of
ectoderm gene transcripts was seen. However gene
transcripts for PDX1, SOX9 and NKX6.1 were not
detected in differentiated EBs. Hence, KIND1 cells
were differentiated by directed differentiation which
involves sequential addition of cytokines to generate
cells of pancreatic lineage, and this necessitated cultur-
ing KIND1 cells under feeder free conditions. The PcG
gene transcripts profile of feeder-free KIND1 cells was
similar to KIND1 cells cultured on HFF cells.

Upregulation of pluripotency controlling gene NANOG
on day 4 indicated that it may be required for endoderm
differentiation, in contrast to its role in maintaining
undifferentiated state. Previous reports have also shown
that these transcription factors are involved in lineage
specification and differentiation [40-42]. Gene tran-
scripts of ectodermal marker (MAP2), cardiac meso-
derm marker (MESPI) were seen at low level during
pancreatic differentiation, indicating differentiation of
KIND1 cells primarily into endoderm lineage. Pancreas
specific gene transcripts PDX1, SOX9 and NKX6.1 were
expressed during later stages of differentiation (dayl2-
dayl6) which was also confirmed by Western blotting,
indicating the differentiation of KIND1 cells into cells
of pancreatic lineage by directed differentiation.

Once the differentiation of KINDI1 into pancreatic
lineage was achieved, we studied the expression of PcG
proteins. BMI1 has been shown to be important for self
renewal and differentiation of neural stem cells and
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Figure 8 Expression of H3K27me3 and H2AK119ub1 during directed differentiation of KIND1 cells. Western Blot analysis of (A) H2AK119ub1
(B) H3K27me3 in undifferentiated KIND1 (UD) Day 4 (D4), Day 12 (D12) and Day 16 (D16) cell lysates during directed differentiation with (C) HISTONE H3
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hematopoietic stem cells. BMI1 represses the expression
of cell cycle inhibitors like p21, p19 and p16, leading to
proliferation of stem cells [25,26,43,44]. BMII was found
to be highly expressed during directed differentiation
of KIND1 cells into pancreatic lineage and this is being
reported for the first time. We found the increased
expression of BMI1 led to decrease in expression of
pl9/CDKN2D transcript. CBX2 and RINGIA gene
transcript levels remain almost unaltered during differ-
entiation, thus it suggests that CBX2 and RING1A may
not play important role during endoderm differenti-
ation. RINGI1B transcript was significantly upregulated
during differentiation compared to undifferentiated
KIND1 cells. We found the increased RINGIB and
BMI1I led to increase in H2AK119ubl levels during
differentiation. Total adult human pancreatic RNA also
showed higher expression of BMII than RINGIA,
RING1B and CBX2 thus highlighting role of BMII in
differentiated endodermal cells.

In mice EZH2, SUZ12, EED and JARID2 knockout
results in embryonic lethality [11,22,45,46]. Our data
shows that EZH2, EED and SUZI12 transcript expression
increased compared to undifferentiated KINDI1 cells
during differentiation. On the other hand, JARID 2 levels
decreased steadily during both directed and spon-
taneous differentiation, similar to results obtained by
earlier groups [7,34]. Studies carried out earlier have
shown EZH2, EED decrease upon differentiation of
mouse ES cells [6,47,48]. Also, previous reports that
studied expression of PcG proteins in differentiated

embryonic stem cells, have used spontaneous differen-
tiation approach to induce differentiation [8,9,48,49].
Van Arensbergen et al. [50] reported that pancreatic
progenitors have high levels of H3K27me3 which gives
them plasticity to differentiate either to acinar or beta
cell. PRC2 proteins EED, SUZ12 and EZH2 are actively
involved in H3K27me3 modification [6,7]. Results of
the present study show that SUZ12, EZH2 and EED
were upregulated during differentiation of KIND1 cells
into pancreatic cells along with an increase in the
H3K27me3 levels. The expression profile of PRC2 pro-
teins at the transcript level observed in adult human
pancreas is similar to that seen in KINDI cells differ-
entiated into pancreatic lineage.

The expression of RINGIB, BMII, EZH2, EED, and
SUZ12 gene transcripts during spontaneous and directed
differentiated hES cells indicates that changes in PcG
expression is not a generalized phenomenon observed
during differentiation. The increase in expression of PcG
proteins correlated with increase in trimethylation of
histone H3K27 and monoubiquitinylation at H2AK119.
Understanding the dynamics of polycomb group pro-
teins during hES cell differentiation may help to design
better differentiation strategies in future.

Conclusions

We show that directed differentiation resulted in gener-
ation of cells of pancreatic lineage. Our data shows that
expression of PRC1 and PRC2 members had distinct
expression profile depending on whether KIND1 cells
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were subjected to directed or spontaneous differenti-
ation. Expression of PRC1 transcripts RINGIB and BMII;
PRC2 transcripts SUZ12, EZH2 and EED, increased
during pancreatic differentiation, which resulted in in-
crease in H2AK119ubl and H3K27me3 modification.
PRC1 group protein RING1B and BMI1 and PRC2
group protein EZH2 and SUZ12 are expressed during
differentiation into pancreatic lineage. This study will
initiate more research on PcG proteins and their role in
cell differentiation.

Methods

Human ES cells culture on HFF

All chemicals for cell culture were obtained from Invi-
trogen (Carlsbad, CA, USA), unless otherwise indicated.
The culture and passaging was done as described earlier
[30]. KIND1 colonies were passaged manually in 1:3 ra-
tio once every week.

Adapting KIND1 cells to feeder-free culture conditions
KINDL1 cells were adapted to grow on Geltrex by gradually
reducing the HFF density while maintaining recommended
concentration of Geltrex. For feeder-free culture, KIND1
cells were grown on 60 mm dish coated with Geltrex as
per manufacturer’s instructions in StemPro hESC SEM
media supplemented with 10 ng/mL of bFGF (R & D
Systems, MN, USA) at 37°C in a humidified atmosphere
with 5% CO,. Passaging was done mechanically using
Cell Lifter (Sigma Aldrich, MO, USA) in 1:3 ratio.

RT-PCR for evaluating expression of pluripotent markers
Total RNA was extracted using TRIzol reagent (Invitrogen)
as per manufacturer’s instructions. DNase 1 (Invitrogen)
treatment was done at 37°C for 30 minutes and spectro-
photometric quantification of the extracted RNA was done
using Ultrospec 3100 pro (GE Healthcare, PA, USA). The
cDNA was synthesized using iScript cDNA Synthesis
Kit (Bio-Rad Laboratories, CA, USA) in a 20 pL reaction
volume according to the manufacturer’s instructions using
GSTORM thermal cycler (Gene Technologies, Braintree,
UK). For all the genes, the cycling parameters for PCR
comprised of initial denaturation at 94°C for 3 min,
followed by 35 cycles of denaturation at 94°C for 30 sec,
primer annealing at 62°C for 30 sec and extension at
72°C for 1 min using Dream Taq Polymerase as per
manufacturer’s instructions (Thermo Scientific, IL,
USA). The primers used for RT-PCR are as described
earlier [38]. The PCR products were visualized by
electrophoresis on 2% agarose gel, containing 0.5 pug/ml
ethidium bromide (Bangalore Genei, Bangalore, India)
and the product size was approximated using 100-bp
DNA ladder (Bangalore Genei).
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Karyotyping of feeder-free hES cells

KIND1 colonies were treated with 0.2 pg/mL colchicine
(Sigma Aldrich) for 3 hrs and harvested using 1x accu-
tase (Invitrogen) followed by treatment with hypotonic
solution of 0.075 M KCl (Sigma Aldrich) for 20 min at
37°C. After treatment, cells were pelleted by centrifuga-
tion and fixed by addition of cold fixative made of
methanol and acetic acid in ratio of 3:1(Qualigens Fine
Chemicals, Mumbai, India),followed by G-banding for
metaphase analysis. More than 20 metaphases were
analyzed to prepare the karyogram.

Differentiation of KIND1 hES cells

Spontaneous differentiation by embryoid body (EB) formation
Embryoid bodies were prepared and cultured as de-
scribed earlier [38] and EBs were harvested at Day 7
and Day 15. For plating, the EBs (7 days post suspension
culture) were plated on gelatin coated dishes for 10 days
in same media as used for EBs in suspension culture
and later harvested for RNA extraction.

Directed differentiation of feeder free KIND1 cells into
pancreatic lineage

The protocol published earlier by Kroon et al. [51] was
used to differentiate hES cells into pancreatic endoderm
with slight modifications. KIND1 feeder free cells show-
ing 80% confluency were cultured using RPMI 1640
media containing 100 ng/mL activin A (R & D Systems),
1 mM sodium butyrate (Sigma Aldrich), and 25 ng/mL
wnt-3a (R & D Systems). After 24 hours, 0.2% fetal bo-
vine serum (FBS) was added to RPMI media along with
100 ng/mL activin A, 0.5 mM sodium butyrate. On days
3 & 4 the RPMI media was supplemented with 2% FBS
and 100 ng/mL activin A. From day 4 onwards, the basal
medium used was DMEM F12 supplemented with 1x
B27, 2 uM retinoic acid (Sigma Aldrich), 50 ng/mL
noggin (R & D Systems), 0.25 puM cyclopamine (Sigma
Aldrich) for 4 days. During the last stage of differenti-
ation, the differentiating cells were cultured in DMEM
along with 1x B27 supplement, 2 pM retinoic acid,
50 ng/mL noggin, 1 mM nicotinamide (Sigma Aldrich),
1x non-essential amino acids and 25 pg/mL FGF-10 (R &
D Systems).

gRT-PCR analysis to monitor differentiation of hES cells
and PcG expression pattern

RNA extraction for qRT-PCR from differentiated and
undifferentiated KIND1 cells followed by cDNA synthe-
sis was done as described in RT-PCR section. Quantita-
tive RT-PCR was performed using CFX96 Real Time
Machine (Bio-Rad) and iQ SYBRGreen SuperMix (Bio-
Rad). The threshold values (Ct) were obtained from CFX
96 manager software (Bio-Rad) and normalized using
housekeeping gene 18S Ct values (Comparing 18S Ct
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Table 1 List of all the primer sequences used for qRT-PCR
analysis

Gene Primer sequence 5- 3’ Size

F- GGAGAGGGAGCCTGAGAAAC

R - CCTCCAATGGATCCTCGTTA

F - ACGATGCCCAGCAGCAATGACT

BMIT 172 bp
R- AAGTGGACCATTCCTTCTCCAGGT

F- GAGTACCTGGTCAAGTGGCG

18S rRNA 171 bp

CBX2 215 bp
R- TCGGGTTCCTTGAGCTTGGA
F - GTGCCCTTCAGCCAGACTATAACC

CERBERUS 107 bp
R - TGCGCGGCTCCAGGAAAATG
F - GGCAGCAGGTAGCAAAGTGACGC

CXCR4 334 bp
R - AGAGGAGGTCGGCCACTGACA
F- CACTGGGCTGGACCGAGAGAGTT

£ CADHERIN 236 bp

R- ACGCTGGGGTATTGGGGGCA
F - TGCCATTGTGTGCTGGAAACCTGG

EED 163 bp
R - GCCCAATGCAAGCATCTTTTGCC

F - TTCTGGCTTCCGTGCCCACG

EOMESODERMIN 103 bp
R - CATGCGCCTGCCCTGTTTCGTA
F- ACACGGGGATAGAGAATGTGGGTT

EZH2 455 bp
R -TCCGCTTATAAGTGTTGGGTGTTGC
F - AGGAGGAAAACGGGAAAGAA

FOXA2 134 bp
R - CAACAACAGCAATGGAGGAG
F- TGCCTGAGAAAGAGAACCAG

HAND1 273 bp
R- ATGGCAGGATGAACAAACAC
F - CCCAGCCCCCTAAGAGAGCAC

HNF4A 245 bp
R - CCCAGCCCCCTAAGAGAGCAC
F - TGCACAAGCCGCAGGACTCG

JARID2 356 bp
R - ACAGCCCCCTATGAGCGGGAG
F- GCATGAGCTCTTGGCAGG

MAP2 192 bp

R - CCAATTGAACCCATGTAAAGCC
F - AGTCCAGGATCCAGGTATGGTTCC

MIXL 192 bp
R- CAACCCCGTTTGGTTCGGGC

F - AACTGGGCCAGGAGCTGACCA

N CADHERIN 122 bp
R- GTGCCCTCAAATGAAACCGGGCT
F - AGTCCCAAAGGCAAACAACCCACTTC

NANOG 164 bp
R- TGCTGGAGGCTGAGGTATTTCTGTCTC
F- CAGAGAGTCAGGTCAAGGTCTGGT

NKX6.1 260 bp
R- CTCGGACGCGTGCAGTAGGA
F - AGCCCTCATTTCACCAGGCC

OCT4A 448 bp

R- TGGGACTCCTCCGGG G
F- TTGCAGGCCGCCAGTG
P19 289 bp
R- GGGTGTCCAGGAATCCAGTG
F- GAAAGGCCAGTGGGCAGGCGG
R- GGCGCGGCCGTGAGATGTAC

REX1 F- GGCAAACCCACCCCACTCACC

PDX1 137 bp

146 bp
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Table 1 List of all the primer sequences used for qRT-PCR
analysis (Continued)

R- CAAACACCTGCTGGACTGTGAGC
F- AGCCCTACGGAGCGGGAACA

RINGTA 258 bp
R- GGTATCGGCCGCCTCACACG
F- CCATGAACAGACTGCAGCGA

RING18B 125 bp
R- ACTAGGGCCTGCTTCCTGAT
F - AAGGGCGAGTCCCGTATC

Sox17 221 bp
R- TTGTAGTTGGGGTGGTCCTG
F- GGGGGAAAGTAGTTTGCTGCCTCT

SOX2 135 bp
R- TGCCGCCGCCGATGATTGTT
F- GACGCTGGGCAAGCTCTGGAGACTT

SOX9 141 bp
R- TTICTTCACCGACTTCCTCCGCCG
F- CTGTGGAGGGGGTGGCAGTTAC

SUzi2 144 bp

R- AGGCCTGGAGGAAAAGCTCGTG

values from different time points and passages showed a
maximum standard deviation of 2.05 and coefficient of
variance < 19%, with no significant difference between
the various time points). Efficiency of all the primers
used in this study was determined by Standard curve
method using 10-fold serially diluted cDNA (mixture
of undifferentiated and differentiated KIND1 RNA)
and was found to be between 90-110%. The primer
sequences are given in Table 1. The amplification condi-
tions comprised of initial denaturation at 95°C for 5 min,
followed by 40 cycles of denaturation at 95°C for 10 sec,
annealing at 62°C for 20 sec and elongation at 72°C for
30 sec. The fluorescence emitted at each cycle was
captured and the melt curve analysis was performed at the
end of 40 cycles to determine the homogeneity of the
amplified products. The fold change in expression was
calculated by 27" method. Each reaction was carried
out in duplicate using samples from 5 biological replicates,
3 technical replicates were performed.

The expression of gene transcripts specific for defini-
tive endoderm (Day 4), pancreatic gut tube (Day 8), pan-
creatic progenitor (Days12-16), PRC1 and PRC2 gene
transcripts in differentiated cells is expressed relative to
undifferentiated KIND1 cells (set as 1).

For expression of PcG gene transcripts in adult human
pancreatic RNA (Clonetech Laboratories Inc., CA, USA)
and KIND1 cells (cultured on HFF and on feeder free
system) the PcG gene transcript, Cts were normalized
using housekeeping gene 18S Cts, expression shown is
relative to highest detectable (Ct 40). Mean ACt values
from qRT-PCR analyses were compared using the
unpaired, two-tailed Student’s t-test, p values <0.05 were
considered significant, error bars in graphs represent +
Standard Error of Mean. The Co-efficient of variance was
found to be < 27%.
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Western blotting to assess pluripotency, differentiation
and PcG expression

Undifferentiated and differentiated KIND1 feeder free
cells were harvested for protein extraction using ice cold
cell lysis buffer containing 50 mM Tris (SRL, Mumbai,
India), 1 mM EDTA (Fischer Scientific, NY, USA),150 mM
NaCl (Sigma Aldrich), 1 M NaF (Fischer Scientific), 0.1%
SDS (Fischer Scientific), 1% triton X-100 (Sigma Aldrich),
2 mM PMSF (Sigma Aldrich) and containing Protease
Inhibitor Cocktail (Roche Diagnostics GmbH, Manheim,
Germany). The cell lysate was agitated on ice for 30 -
minutes followed by centrifugation to collect the super-
natant. For extraction of histone proteins protocol
followed was as described by de Napoles et al. 2004
[16]. Protein concentration was estimated by Folin-
Lowry method using spectrophotometer (Beckman
Coulter Inc, IN, USA). The extracted protein was incu-
bated in Laemmli buffer for 10 minutes at 95°C. 10-20 pg
of protein was loaded onto 10% or 15% SDS-PAGE
followed by transfer onto PVDF membrane (Amersham
Biosciences, Bucks, UK). The blot was blocked with
5% NFDM in 1XTBST overnight at 4°C. Primary anti-
body mouse anti OCT-4 (1:500, Millipore, CA, USA),
rabbit anti SOX17 (1:2000, Millipore), rabbit anti
SOX9 (1:500, Millipore), mouse anti PDX1 (1:20000,
Sigma Aldrich), rabbit anti EZH2 (1:2500, Epitomics,
California, USA), rabbit anti SUZ12 (1:2000, Milli-
pore), rabbit anti BMI1(1:3000, Epitomics), mouse anti
H3K27me3 (1:5000, Abcam, MA, USA), Mouse Anti
H2AK119ubl (1:2000, Millipore) were incubated at
RT for 2 hours followed by incubation with goat anti
mouse/rabbit HRP conjugated secondary antibody
(1:5000, Millipore) for 2 hours at RT. Later blot was
striped using stripping buffer (62.5 mM Tris, 2%
SDS,100 mM B-mercaptoethanol) for 10 minutes at
60°C. Mouse anti p ACTIN (1:5000, Millipore) and
rabbit anti-Histone H3 (1:3000, Biolegend, CA, USA)
were used as housekeeping protein for normalization.
The blots were imaged using Super Signal West Femto
substrate (Thermo Scientific) and photographic films
(Eastman Kodak Co, USA). Densitometric analysis was
done using Image] software (http://rsbweb.nih.gov/ij/).
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