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Abstract

Background: Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various
cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative
stress on human adipose-derived multilineage progenitor cells (hADMPCs) in neurite outgrowth in cells of the rat
pheochromocytoma cell line (PC12).

Results: We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO),
resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein
2 (BMP2) and fibroblast growth factor 2 (FGF2) transcription in, and secretion from, hADMPCs. Addition of N-
acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation
of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38
MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by
overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK.

Conclusions: Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen
species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus,
transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the
transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.

Keywords: Human adipose-derived multilineage progenitor cells, Adult stem cells, Reactive oxygen species, p38
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Background
Mesenchymal stem cells (MSCs) are pluripotent stem
cells that can differentiate into various types of cells
[1-6]. These cells have been isolated from bone marrow
[1], umbilical cord blood [2], and adipose tissue [3-6]
and can be easily obtained and expanded ex vivo under
appropriate culture conditions. Thus, MSCs are an at-
tractive material for cell therapy and tissue engineering.
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Human adipose tissue-derived mesenchymal stem cells,
also referred to as human adipose tissue-derived multili-
neage progenitor cells (hADMPCs), are especially advan-
tageous because they can be easily and safely obtained
from lipoaspirates, and the ethical issues surrounding
other sources of stem cells can be avoided [4-6]. More-
over, hADMPCs have more pluripotent properties for re-
generative medical applications than other stem cells,
since these cells have been reported to have the ability
to migrate to the injured area and differentiate into
hepatocytes [4], cardiomyoblasts [5], pancreatic cells [7],
and neuronal cells [8-10]. In addition, it is known that
hADMPCs secrete a wide variety of cytokines and
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growth factors necessary for tissue regeneration includ-
ing nerve growth factor (NGF), brain-derived neuro-
trophic factor (BDNF), fibroblast growth factors (FGFs),
vascular endothelial growth factor (VEGF) and hepato-
cyte growth factor (HGF) [11-14].
Recently, several groups have reported that hADMPCs

facilitate neurological recovery in experimental models
of stroke [9,10,15] and Parkinson’s disease [16]. Despite
the superiority of hADMPCs over other stem cells, the
potential use of hADMPCs for the treatment of these
neurodegenerative disorders has not been fully investi-
gated. It has been reported that administration of
Figure 1 Conditioned medium from hADMPCs exposed to oxidative s
the reduced/oxidized glutathione ratios and increase in the intracellular RO
1 mM BSO for 16 h, and cellular GSH/GSSG levels (A) or ROS (H2O2) levels (
by conditioned medium from BSO-treated hADMPCs. PC12 cells were indu
alone (C), CM-BSO (−) (D), CM-BSO (+) (E), or differentiation medium with N
individual neurites were measured in each sample using Dynamic Cell Cou
length was calculated. **, P < 0.01 (Student’s t test). (H) Percentage of neur
it has a thin neurite extension that is double the length of the cell body di
P < 0.01 (Student’s t test).
hADMPCs in animal models of acute ischemic stroke
markedly decreased brain infarct size, improved neuro-
logical function by enhancing angiogenesis and neuro-
genesis, and showed anti-inflammatory and anti-
apoptotic effects [9,10]. These effects were due in part to
increased secretion levels of VEGF, HGF and bFGF
under hypoxic conditions [13], indicating the role of
hADMPCs in reducing the severity of hypoxia-ischemic
lesions.
In addition to hypoxic stress, ischemic lesions are gen-

erally subject to inflammation, which leads to the gener-
ation of reactive oxygen species (ROS) [17,18]. ROS are
tress induces neurite outgrowth in PC12 cells. (A, B) Decrease of
S levels in hADMPCs treated with BSO. hADMPCs were treated with
B) were analyzed. (C-G) Induction of neurite outgrowth in PC12 cells
ced to differentiation by changing medium to differentiation medium
GF (50 ng/mL) (F) for 2 days. Scale bars, 200 μm. (G) One hundred
nt Analyzer BZ-H1C (Keyence, Osaka, Japan) and average neurite
ite-bearing PC12 cells. A cell was scored positive for bearing neurites if
ameter. A total of 500–600 cells in each sample were counted. **,



Figure 2 Erk1/2 MAPK and Smad1/5/8 are activated in PC12
cells cultured in conditioned medium from BSO-treated
hADMPCs. Western blot analysis of PC12 cells cultured in
differentiation medium alone (cont), CM-BSO (−), CM-BSO (+), or
differentiation medium with NGF (50 ng/mL) for 1 h. Proteins
extracted from each cell culture were resolved by SDS-PAGE,
transferred to a membrane, and probed with anti-phosphorylated
Erk1/2 (phospho Erk1/2), anti-Erk1/2, anti-phosphorylated p38
(phospho p38), anti-p38, anti-phosphorylated Smad1/5/8 (phospho
Smad1/5/8), anti-phosphorylated Akt (phospho Ark) and anti-Akt.
Actin was analyzed as an internal control. Numbers below blots
indicate relative band intensities as determined by the ImageJ
software.
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generated as a natural byproduct of normal aerobic me-
tabolism, and mitochondrial respiration, together with
oxidative enzymes such as plasma membrane oxidase, is
considered to be the major intracellular source of ROS
production [19]. Although appropriate levels of ROS
play an important role in several physiological processes,
oxidative damage initiated by excessive ROS causes
many pathological conditions including inflammation,
atherosclerosis, aging, and cancer. Neuronal cells are es-
pecially vulnerable to oxidative stress, and numerous
studies have examined the crucial roles of oxidative
stress in neurodegenerative disorders such as stroke
[17,18], Alzheimer’s disease [20,21], and Parkinson’s dis-
ease [22,23]. In these diseases, microglia, the macro-
phages of the central nervous system (CNS), are
activated in response to a local inflammation [24] and
generate large amounts of reactive oxygen and nitrogen
species, thereby exposing nearby neurons to stress
[18,25]. Thus, the influence of oxidative stress generated
by neurodegenerative lesion on hADMPCs needs to be
further studied.
In this study, we examined the role of oxidative stress

on hADMPCs in neurite outgrowth in cells of the rat
pheochromocytoma cell line (PC12). Upon treatment
with buthionine sulfoximine (BSO), an inhibitor of the
rate-limiting enzyme in the synthesis of glutathione,
hADMPCs accumulated ROS, which resulted in the
upregulation of expression levels of the neurotrophic
factors BMP2 and FGF2. Our present data thus provide
new insights into understanding the mechanism of how
hADMPCs exposed to oxidative stress contribute to
neurogenesis, and this may explain the effects of stem
cell transplantation therapy with hADMPCs in treating
ischemic stroke.

Results
hADMPCs exposed to oxidative stress stimulate neurite
outgrowth in PC12 cells
hADMPCs were treated with 1 mM BSO for 24 h; a group
of hADMPCs that were not given any treatment was used
as the control group. As shown in Figure 1A and B, BSO
treatment resulted in significant reduction of intracellular
reduced glutathione levels, followed by accumulation of
intracellular reactive oxygen species (ROS) in hADMPCs.
To investigate whether accumulation of ROS affects secre-
tion of cytokines from hADMPCs, conditioned medium
from BSO-treated (CM-BSO (+)) or BSO-untreated (CM-
BSO (−)) hADMPCs was added to PC12 cells. As
expected, addition of NGF significantly induced neurite
outgrowth in the PC12 cells (Figure 1F, G, H). hADMPCs,
like other mesenchymal stem cells derived from bone
marrow or adipose tissue, may secrete many cytokines in-
cluding NGF, BDNF and FGF2, and this may account for
the slight induction of neurite outgrowth seen in the CM-
BSO (−) treated cells (Figure 1D, G, H). In contrast,
the number and length of neurite outgrowth of PC12
cells in CM-BSO (+) (Figure 1E) was markedly enhanced
compared with those in CM-BSO (−) (Figure 1D, E, G, H).

Conditioned medium from BSO-treated hADMPCs
activates Erk1/2 MAPK and Smad signaling in PC12 cells
To investigate which intracellular signaling pathways
were involved in the neurite outgrowth of PC12 cells in
CM-BSO (+), we used western blotting to determine the
phosphorylation levels of Erk1/2 MAPK, p38 MAPK,
Smad1/5/8 and Akt in PC12 cells in various culture con-
ditions. NGF significantly activated Erk1/2 MAPK and
Akt signaling pathway (Figure 2). In contrast, Erk1/2
MAPK was not activated in PC12 cells exposed to CM-
BSO (−), while an increase in phosphorylated Smad1/5/8
was observed. Interestingly, CM-BSO (+) treatment led
to both a significant increase in Smad1/5/8 phosphoryl-
ation levels as well as activation of the Erk1/2 MAPK
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signaling pathway in PC12 cells (Figure 2). Akt was 2-
fold activated in both CM-BSO (−) and CM-BSO (+)
treated PC12 cells, but no significant difference between
the 2 groups was observed.

FGF2 and BMP2 are upregulated through p38 MAPK
signaling in hADMPCs exposed to oxidative stress
We next examined which growth factors or cytokines
from BSO-treated hADMPCs were involved in stimulation
Figure 3 Transcription and secretion of BMP2 and FGF2 were increas
BMP2 (A) and FGF2 (B) mRNA in hADMPCs by BSO in a dose-dependent m
medium alone (cont) or with addition of 1 mM BSO (BSO) was analyzed by
and FGF2 upregulated by BSO to the control levels. Expression of BMP2 (E)
total RNA extracted from hADMPCs (cont), hADMPCs treated with 1 mM BS
The most reliable internal control gene was determined using the geNorm
alone (control), or differentiation medium supplemented with BMP2 (40 ng
2 days. (G) Representative images of neurite outgrowth in PC12 cells. Scale
each sample using Dynamic Cell Count Analyzer BZ-H1C (Keyence) and ave
PC12 cells were cultured in CM-BSO (−), CM-BSO (+), or CM-BSO (+) added
analysis of PC12 cells 1 h after CM treatment. Proteins extracted from each
probed with anti-phosphorylated Smad1/5/8 (phospho-Smad1/5/8) and an
determined by the ImageJ software. (J) Two days after CM treatment, 100
Dynamic Cell Count Analyzer BZ-H1C (Keyence) and average neurite length
of neurite outgrowth. We found that both mRNA
(Figure 3A and B) and protein (Figure 3C and D) levels
for BMP2 and FGF2 were markedly increased in
hADMPCs treated with BSO. To determine if this upregu-
lation was caused by ROS, all cells were exposed to the
antioxidant N-acetylcysteine (NAC). As we expected,
addition of NAC to BSO-treated hADMPCs reduced the
expression levels of BMP2 and FGF2 to control levels
(Figure 3E and F). As BMP2 together with FGF2 has
ed in hADMPCs exposed to oxidative stress. (A, B) Upregulation of
anner. (C, D) Secretion of BMP2 (C) and FGF2 (D) from hADMPCs in
ELISA. (E, F) NAC treatment repressed the expression levels of BMP2
and FGF2 (F) mRNA was analyzed by q-PCR. cDNA was generated from
O (BSO), 1 mM BSO+ 5 mM NAC (BSO+NAC), and 5 mM NAC (NAC).
Software. (G, H) PC12 cells were cultured in differentiation medium
/mL), FGF2 (5 ng/mL), or both BMP2 and FGF2 (BMP2+ FGF2) for
bars, 200 μm. (H) One hundred individual neurites were measured in
rage neurite length was calculated. *, P < 0.05 (Student’s t test). (I, J)
with recombinant murine Noggin (200 ng/mL). (I) Western blot
sample were resolved by SDS-PAGE, transferred to a membrane, and
ti-Actin. Numbers below blots indicate relative band intensities as
individual neurites in PC12 cells were measured in each sample using
was calculated. *, P < 0.05 (Student’s t test).
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previously been shown to induce neurite outgrowth in
PC12 cells [26,27], we examined the effect of BMP2 and
FGF2 on neurite outgrowth. We confirmed that PC12
cells did not differentiate effectively by BMP2 treatment
alone, but BMP2 significantly augmented FGF2-induced
neurite outgrowth in PC12 cells (Figure 3G and H), as
previously reported. Moreover, in order to confirm the ef-
fect of BMP2 on neurite outgrowth in PC12 cells, 200 ng/
mL of Noggin, an antagonist of BMP signaling, was added
to CM-BSO(+). Addition of Noggin significantly sup-
pressed the CM-BSO (+)-evoked phosphorylation of
Smad1/5/8 (Figure 3I) and shortened the length of neurite
outgrowth in PC12 cells (Figure 3J).
To address the question of which intracellular signal-

ing pathways are affected by oxidative stress in
Figure 4 BMP2 and FGF2 were upregulated through activation of p38
and FGF2 transcripts upregulated by BSO treatment in hADMPCs. hADMPC
of JNK inhibitor II for 2 h followed by 1 mM BSO treatment for 16 h. The m
cultured for another 2 days. (A) Western blot analysis of p38 MAPK activati
activation in hADMPCs. (C, D) Transcription levels of BMP2 (C) and FGF2 (D
determined using the geNorm Software.
hADMPCs, we focused on MAPK signaling since previ-
ous studies had suggested that accumulation of ROS in
cells led to the activation of Erk1/2, p38, and JNK
MAPK [28,29]. Western blotting revealed that BSO
treatment markedly activated the p38 MAPK pathway;
SB203580 could inhibit the activation, and U0126 treat-
ment stimulated the activation (Figure 4A). ERK1/2
MAPK was significantly phosphorylated by BSO treat-
ment, and ERK1/2 activation was reduced to the control
level by treatment with U0126 (Figure 4B). In contrast,
JNK activation was not observed in BSO-treated
hADMPCs (Figure 4B). Therefore, we further investi-
gated the relationship between increases in BMP2 and
FGF2 expression and activation of the p38 and ERK1/2
MAPK signaling pathways by oxidative stress. Treatment
MAPK. Inhibiton of p38 MAPK resulted in the supression of BMP2
s were pre-treated with 10 μM of SB203580, 10 μM of U0126 or 10 μM
edium was replaced with fresh culture medium and the cells were
on in hADMPCs. (B) Western blot analysis of ERK1/2 MAPK, JNK SAPK
) were analyzed by q-PCR. The most reliable internal control gene was
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with the p38 MAPK inhibitor SB203580 dramatically
downregulated the expression levels of BMP2 and FGF2
to control levels (Figure 4C and D). In contrast, the
Erk1/2 MAPK inhibitor U0126 had no effect on FGF2
expression levels and led to a slight increase in BMP2
expression (Figure 4C and D).

MKK6-mediated activation of p38 MAPK increases BMP2
and FGF2 expression in hADMPCs
To further confirm the involvement of p38 MAPK in
the regulation of BMP2 and FGF2, hADMPCs were
transduced with a lentiviral vector expressing constitu-
tively active MKK6 (MKK6 (glu)) [30] from an EF1α
Figure 5 Activation of p38 MAPK by a constitutively active form of M
lentiviral vector expressing Flag-tagged MKK6 (glu) was transfected into hA
MAPK and p38 MAPK was analyzed by western blotting. A CSII-EF-EGFP len
internal control. (B, C) Transcriptional levels of BMP2 (B) and FGF2 (C) were
determined using the geNorm Software. (D, E) BMP2 (D) and FGF2 (E) secr
promoter. As shown in Figure 5A, lentiviral transduction
of MKK6 (glu) led to expression of Flag-tagged MKK6
(glu) in hADMPCs. Moreover, the expression of MKK6
(glu) resulted in activation of p38 MAPK as expected
[30] (Figure 5A), and upregulation of BMP2 and FGF2
expression (Figure 5B-E).

NF-κB is not activated in hADMPCs exposed to oxidative
stress
It has been reported that NF-κB directly binds to the
BMP2 promoter to induce its expression [31], and
MSK1, a downstream molecule of p38 MAPK, is
involved in NF-κB transactivation [32]. Therefore, we
KK6 resulted in elevated expression of BMP2 and FGF2. (A) A
DMPCs. Expression of Flag-tagged MKK6 (glu), phosphorylated p38
tiviral vector was infected as a control (GFP). Actin was detected as an
analyzed by q-PCR. The most reliable internal control gene was
etion was analyzed by ELISA.
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hypothesized that p38 MAPK-mediated activation of
NF-κB might contribute to elevated expression of BMP2
mRNA. To confirm this hypothesis, transcriptional acti-
vation of NF-κB was examined by measuring luciferase
activity driven by the synthetic NF-κB response element.
We found that transcriptional activity of NF-κB was not
stimulated by BSO treatment (Figure 6A), and immuno-
cytochemical analysis also revealed that NF-κB was not
activated (nuclear localization of NF-κB/p65 was rarely
observed) in BSO-treated hADMPCs (Figure 6B). These
results suggested that elevated expression of BMP2
mRNA is not mediated by NF-κB signaling.
Our current data thus demonstrate the crucial role of

ROS, via activation of the p38 MAPK signaling pathway,
in regulating expression levels of the neurotrophic fac-
tors BMP2 and FGF2 in hADMPCs. The overall model
that we propose, based upon our findings, is shown in
Figure 7.
Figure 6 Transcriptional activity of NF-κB was not stimulated
by oxidative stress. hADMPCs were transfected with pNF-κB-Luc
and were treated with 10 μM of SB203580 or 0.1% DMSO for 2 h
followed by addition of 1 mM of BSO. After 24 h, the medium was
changed to fresh medium and cells were cultured for an additional
2 days. (A) The activity of NF-κB was measured by the intensity of
luciferase activity driven from a minimal promoter containing
tandem repeats of the NFκB transcriptional response element. Data
shown represent the average of 3 independent experiments. (B)
Immunocytochemical analysis against NF-κB/p65 (green). Blue
staining represents nuclear staining by DAPI. Note that nuclear
localization of NF-κB/p65 (white arrowhead) is only observed in
hADMPCs treated with 20 ng/mL of TNF-α.

Figure 7 Model of this study. A schematic illustration of the
results of this study is shown. Oxidative stress by BSO treatment in
hADMPCs results in p38 MAPK activation, which then leads to BMP2
and FGF2 expression and secretion. The secreted factors then bind
to the receptors on PC12 cells, facilitating neural differentiation in
these cells.
Discussion
In this study, we investigated the effect of oxidative
stress in hADMPCs on the induction of neuronal differ-
entiation. Such mechanisms may explain how adminis-
tration of hADMPCs to neurodegenerative lesions
enhances endogenous repair mechanisms via neurogen-
esis of endogenous neural progenitor and stem cells.
Damaged tissues, such as the brain tissue of patients
who have suffered from ischemic stroke, are subject to
inflammation and the generation of reactive oxygen spe-
cies (ROS) [17,18]. Our data demonstrated that
hADMPCs, when exposed to oxidative stress, facilitate
neuronal differentiation in rat pheochromocytoma cell
line PC12 cells by upregulation of fibroblast growth fac-
tor 2 (FGF2) and bone morphogenetic protein 2 (BMP2)
secretion through p38 MAPK activation.
Our results show that BMP2 and FGF2 were upregu-

lated in hADMPCs when exposed to buthionine sulfoxi-
mine (BSO), a glutathione-synthesis inhibitor that leads
to oxidative stress. These findings may have therapeutic
implications in neurodegenerative diseases. We con-
cluded that BMP2 and FGF2 secreted from hADMPCs
that had been exposed to oxidative stress were the main
inducers of neurite outgrowth in PC12 cells. Erk1/2 and
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Smad1/5/8 were significantly activated in these cells
(Figure 2), while other growth factors known to induce
neurite outgrowth in PC12 cells such as nerve growth
factor (NGF) and vascular endothelial growth factor
(VEGF) were not observed to be upregulated by BSO
treatment (data not shown). We confirmed that BMP2
enhanced the effect that FGF2 had on the differentiation
of PC12 cells (Figure 3), supporting our idea that
hADMPCs under oxidative stress conditions secrete
BMP2 and FGF2 and that this contributes to neuronal
differentiation. Consistent with our conclusions, it has
been reported that BMP2, via activation of a Smad sig-
naling pathway, facilitated FGF2-induced neuronal dif-
ferentiation in PC12 cells [26,27]. However, since
hADMPCs have been reported to secrete many growth
factor including NGF, VEGF, HGF, and IGF [11,15,33],
we cannot exclude the possibility that BMP2 and FGF2
are acting cooperatively with these growth factors to fa-
cilitate neurite outgrowth in PC12 cells. Thus, the pre-
cise molecular mechanisms of induction of PC12
differentiation and the precise expression profiles in
BSO-treated hADMPCs need to be further investigated.
Recently, BMP signaling through Smad1/5/8 has been

reported to contribute to neurite outgrowth in dorsal
root ganglion neurons both in vitro and in vivo [34,35].
Moreover, BMP2 has been shown to have neurotrophic
effects on midbrain dopaminergic neurons [36], ventral
mesencephalic neurons [37], mouse embryonic striatal
neurons [38], and nitrergic and catecholaminergic en-
teric neurons [39]. Moreover, FGF2 is trophic for neu-
rons, glias, and endothelial cells in the central nervous
system. FGF2 also prevents downregulation of the anti-
apoptotic protein Bcl-2 in ischemic brain tissue and lim-
its excitotoxic damage to the brain through an activin-
dependent mechanism [40]. These findings are consist-
ent with our hypothesis that hADMPCs secret BMP2
and FGF2 to induce neurogenesis in neurodegenerative
lesions in response to oxidative stress.
As it has been shown that ROS activate ERKs, JNKs,

and p38 MAPKs [28,29], we examined the MAPK signal-
ing pathway in hADMPCs exposed to oxidative stress and
found that BSO treatment resulted in significant activation
of ERK1/2 and p38 MAPK. Intriguingly, addition of
SB203580, a specific inhibitor of p38 MAPK, but not the
ERK inhibitor U0126, suppressed BMP2 and FGF2 expres-
sion in BSO-treated hADMPCs to control levels (Figure 4),
suggesting that p38 MAPK was contributing to upregula-
tion of BMP2 and FGF2 in hADMPCs when exposed to
oxidative stress. Moreover, lentiviral transduction of the
constitutively active form of MKK6, a MAPKK that select-
ively activates p38 MAPK isoforms [30], resulted in upre-
gulation of BMP2 and FGF2 and this also demonstrated
the crucial role of the p38 MAPK cascade in the regula-
tion of BMP2 and FGF2. In primary human endothelial
cells, p38-dependent regulation of BMP2 expression was
reported previously. Viemann et al. [41] investigated the
genes that were induced by inflammatory stimulation with
tumor necrosis factor α (TNF-α) and classified these genes
into 2 categories based on whether they were regulated in
an NF-κB-dependent or p38 MAPK-dependent manner.
Consistent with our findings, they found that significant
induction of BMP2 expression by TNF-α was markedly
suppressed by SB202190, an inhibitor of p38 MAPK.
These results support the hypothesis that activation of the
p38 MAPK pathway in hADMPCs in response to inflam-
mation surrounding neurodegenerative lesions leads to in-
duction of BMP2 and FGF2, which in turn support
regeneration of neuronal cells.
It has been known that NF-κB directly binds to the

BMP2 promoter to induce its expression [31], and
MSK1, a downstream molecule of p38 MAPK, is
involved in NF-κB transactivation [32]. However, we did
not observe an elevation of NF-κB transcriptional activ-
ity in hADMPCs when they were exposed to oxidative
stress (Figure 6). The mechanism of p38-dependent
regulation of gene expression is not completely under-
stood, and the precise mechanism by which p38 MAPK
regulates the expression of BMP2 and FGF2 remains to
be determined.
In this study, we also found that suppression of ERK1/2

MAPK by U0126 in BSO-treated hADMPCs resulted in
slight activation of p38 MAPK (Figure 4A). Consistent
with this, the expression level of BMP2 mRNA was also
upregulated when cells exposed to oxidative stress were
pretreated with U0126 (Figure 4C). Previously, “seesaw
cross-talk” between ERK and p38 MAPK signaling has
been reported; i.e., the MEK inhibitor caused a decrease in
the phosphorylation level of ERK and an increase in that
of p38, whereas the p38 inhibitor had the opposite effect
[42-44]. We did not investigate the phosphorylation of
ERK1/2 in SB203580-treated hADMPCs, but it may be
possible that seesaw cross-talk also occurs in our system.

Conclusions
In summary, the results obtained in this study have
demonstrated the potential use of hADMPCs for the
treatment of neurodegenerative diseases such as ische-
mic stroke, Parkinson’s disease, Alzheimer’s disease, and
spinal cord injury, in which the transplanted hADMPCs
might be exposed to oxidative stress. Moreover, the p38-
dependent modulation of BMP2 and FGF2 expression
observed in this study is expected to be a new thera-
peutic target for neurodegenerative disorders.

Materials and methods
Adipose tissue samples
Subcutaneous adipose tissue samples (10–50 g, each)
were resected during plastic surgery in 5 females (age,
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20–60 years) as excess discards. The study protocol
was approved by the Review Board for Human Research of
Kobe University Graduate School of Medicine, Foundation
for Biomedical Research and Innovation and Kinki
University Pharmaceutical Research and Technology
Institute (reference number: 10–005). Each subject
provided a signed informed consent.

Cell culture
PC12 cells were obtained from the Health Science Re-
search Resources Bank (Osaka, Japan) and maintained in
RPMI1640 media supplemented with 10% heat-inactivated
horse serum and 5% fetal bovine serum. For differenti-
ation, the cells were plated in 6-well culture plates coated
with collagen type I (Nitta Gelatin, Osaka, Japan) and the
medium was replaced with differentiation medium
(RPMI1640 supplemented with 1% horse serum and 0.5%
fetal bovine serum) or conditioned medium from
hADMPCs. NGF (50 ng/mL), BMP2 (40 ng/mL) or FGF2
(5 ng/mL) were added to the differentiation medium. Re-
combinant murine Noggin (200 ng/mL: PeproTech, NJ,
USA) was added to conditioned medium from BSO-
treated hADMPCs. hADMPCs were isolated as previously
reported [4-6,45,46] and maintained in a medium contain-
ing 60% DMEM-low glucose, 40% MCDB-201 medium
(Sigma Aldrich, St. Louis, MO, USA), 1× insulin-
transferrin-selenium (Gibco Invitrogen, NY, USA), 1 nM
dexamethasone (Sigma Aldrich), 100 mM ascorbic acid 2-
phosphate (Wako, Osaka, Japan), 10 ng/mL epidermal
growth factor (PeproTech), and 5% fetal bovine serum.
The cells were plated to a density of 5 × 103 cells/cm2 on
fibronectin-coated dishes, and the medium was replaced
every 2 days.

Preparation of conditioned medium from hADMPCs
Two days after plating, hADMPCs were treated with
BSO (concentrations used were varied in each experi-
ment and are indicated in the results and figure legends)
for 16 h. The medium was replaced with fresh culture
medium for 2 days followed by replacement with PC12
cell differentiation medium. After 2 more days, the
medium was removed for use as conditioned medium.
For preparation of the conditioned medium from
hADMPCs in which one of the three, p38, Erk1/2, or
JNK MAPK, was inhibited, hADMPCs were pretreated
with 10 μM SB203580 (Promega, WI, USA), 10 μM
U0126 (Promega), or 10 μM JNK inhibitor II (EMD4
Bioscience, CA, USA), respectively, for 2 h and subse-
quently treated with 1 mM BSO.

Measurement of GSH/GSSG ratio
Ratios of reduced glutathione (GSH) to oxidized glutathi-
one (GSSG) were measured using the GSH/GSSG-Glo
assay kit (Promega) following the manufacturer’s protocol.
Measurement of reactive oxygen species production
Cells were harvested and incubated with 10 μM 5-(and-
6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diace-
tate, acetyl ester (CM-H2DCFDA). The amount of intra-
cellular ROS production was proportional to green
fluorescence, as analyzed with a Guava easyCyte 8HT
flow cytometer (Millipore) using an argon laser at
488 nm and a 525/30 nm band pass filter, and dead cells
were excluded with the LIVE/DEAD fixable far red dead
cell stain kit (Invitrogen).

Western blot analysis
Cells were washed with ice-cold phosphate-buffered sa-
line and lysed with M-PER Mammalian Protein Extraction
Reagent (Thermo Scientific Pierce, IL, USA) follow-
ing the manufacturer’s instructions. Equal amounts
of proteins were separated by sodium dodecylsulfate
polyacrylamide gel electrophoresis (SDS-PAGE), trans-
ferred to polyvinylidene fluoride (PVDF) membranes
(Immobilon-P; Millipore, MA, USA), and probed with
antibodies against phospho-Erk1/2 (#4370), Erk1/2
(#4695), phospho-38 (#9215), p38 (#9212), phospho-
Smad1/5/8 (#9511), phospho-Akt (#4060), Akt (#4691),
phospho-JNK (#9251), JNK (#9258) (all from Cell Signaling
Technology, MA, USA) and actin (Millipore). Horseradish
peroxidase (HRP)-conjugated anti-rabbit and anti-mouse
secondary antibodies (Cell Signaling Technology, Danvers,
MA, USA) were used as probes and immunoreactive
bands were visualized with the Immobilon Western
Chemiluminescent HRP substrate (Millipore). The band
intensity was measured using ImageJ software.

RNA extraction, cDNA generation, and quantitative
polymerase chain reaction (q-PCR)
Total RNA was extracted using the RNeasy Mini Kit
(Qiagen, Hilden, Germany) following the manufacturer’s
instructions. cDNA was generated from 1 μg of total
RNA using the Verso cDNA Synthesis Kit (Thermo
Scientific) and purified with the MinElute PCR Purification
Kit (Qiagen). Q-PCR analysis was carried out using
the SsoFast EvaGreen supermix (Bio-Rad, CA, USA)
according to the manufacturer’s protocols. The rela-
tive expression value of each gene was calculated
using a ΔΔCt method and the most reliable internal
control gene was determined using the geNorm Software
(http://medgen.ugent.be/~jvdesomp/genorm/). Details of
the primers used in these experiments are available
on request.

Enzyme-linked immunosorbent assay
Enzyme-linked immunosorbent assay (ELISA) was per-
formed using the Quantikine BMP-2 Immunoassay Sys-
tem and Quantikine FGF-2 Immunoassay System (R&D

http://medgen.ugent.be/~jvdesomp/genorm/
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Systems, MN, USA) following the manufacturer’s
protocols.

Plasmid construction and lentivirus production
Flag-tagged MKK6 (glu) [30] was provided by Addgene
(pcDNA3-Flag MKK6 (glu); Addgene plasmid 13518).
Flag-tagged MKK6 (glu) was cloned into a pENTR11
vector (Invitrogen). An iresGFP fragment was subse-
quently cloned into the plasmid to produce the entry
vector pENTR11-MKK6 (glu)-iresGFP. The entry vector
and CSII-EF-RfA (kindly provided by Dr. Miyoshi,
RIKEN BioResource Center, Tsukuba, Japan) were incu-
bated with LR clonase II enzyme mix (Invitrogen) to
generate CSII-EF-MKK6 (glu)-iresGFP. The resultant
plasmid was mixed with packaging plasmids (pCAG-
HIVg/p and pCMV-VSVG-RSV-Rev, kindly provided by
Dr. Miyoshi) and transfected into 293 T cells. The super-
natant medium, which contained lentiviral vectors, was
collected 2 days after transduction and concentrated by
centrifugation (6000 G, 15 h, 4°C).

Luciferase assay
hADMPCs were transfected with pGL4.74 (Promega)
and either pTAL-Luc or pNF-κB-Luc by TransIT-2020
(TaKaRa-Bio). The cells were then treated with 10 μM of
SB203580 or 0.1% DMSO for 2 h followed by addition
of 1 mM of BSO. After 24 h, the medium was changed
to fresh medium and cells were cultured for an add-
itional 2 days. The activity of NF-κB was measured using
the Dual Luciferases Assay System (Promega) according
to the manufacturer’s protocol.

Immunocytochemistry
hADMPCs were fixed with 4% paraformaldehyde in PBS
for 10 min at 4°C and then washed 3 times in PBS.
Blocking was performed with PBSMT (PBS containing
0.1% Triton X-100, 2% Skim Milk) for 1 h at room
temperature. The cells were then incubated with rabbit
monoclonal antibody against NF-κB p65 (Cell Signaling;
#8242; 1/100 dilution) overnight at 4°C. After washing
with PBS, cells were incubated with Alexa 488 conju-
gated anti-rabbit IgG (Invitrogen; 1/1000 dilution) for
1 h. The cells were counterstained with 4′-6-diamidino-
2-phenylindole (DAPI) (Invitrogen) to identify cellular
nuclei.
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