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Abstract

mechanism behind S1P-induced survival signalling.

development and carcinogenesis.

Background: Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a multitude of cellular functions,
including cell proliferation, survival, migration and angiogenesis. S1P mediates its effects either by signaling through G
protein-coupled receptors (GPCRs) or through an intracellular mode of action. In this study, we have investigated the

Results: We found that STP protected cells from FaslL-induced cell death in an NF-kB dependent manner. NF-kB was
activated by extracellular S1P via S1P, receptors and G, protein signaling. Our study also demonstrates that extracellular

S1P stimulates cells to rapidly produce and secrete additional S1P, which can further amplify the NF-kB activation.

Conclusions: We propose a self-amplifying loop of autocrine S1P with capacity to enhance cell survival. The
mechanism provides increased understanding of the multifaceted roles of STP in regulating cell fate during normal

Background

Sphingolipids regulate cellular processes such as migra-
tion, survival and differentiation [1,2]. Sphingosine-1-
phosphate (S1P), the most extensively studied of the bio-
active sphingolipids, acts as a high affinity agonist at five
known G protein-coupled receptors named S1P;-S1P.
[3]. The S1P-receptors are important for regulating cell
migration [4-6], proliferation and survival [7]. In addi-
tion, it has been shown that S1P can act intracellularly as
a calcium releasing second messenger [8,9] and as a regu-
lator of histone acetylation and transcription [10]. It is
likely that some effects attributed to intracellular S1P can
also be explained by signaling through internalized G
protein-coupled receptors [11,12].

S1P is synthesized through sphingosine kinase (SphK) -
catalyzed phosphorylation of sphingosine. Type 1 sphin-
gosine kinase (SphK1) is generally associated with cell
survival, and several mechanisms for regulating its func-
tion have been identified. Growth factors [13,14], cytok-
ines [15,16], and even S1P itself [17,18] have been shown
to stimulate SphK-activity and S1P-production. ERK1/2
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mediated phosphorylation on Ser225 directly activates
SphK1, and this is also a prerequisite for the translocation
of SphK1 to the plasma membrane [19]. Furthermore,
binding to Ca2*-calmodulin has been shown to be crucial
for translocation of SphK1 to the plasma membrane
[20,21]. SphK1 may also be regulated by lipids such as
phosphatidylserine [22] or phosphatidic acid [23].

An increase in SphKl-activity often correlates with
enhanced survival and proliferation. Several studies have
shown that intracellular S1P is exported and acts on G
protein coupled S1P-receptors to induce survival signal-
ing [24-26]. SphK1 itself may also be exported from cells
and retain its catalytic function in the extracellular space
[27,28], thus synthesizing S1P that has access to S1P-
receptors in the plasma membrane.

In this study, we have investigated the signaling mecha-
nisms activated by exogenous S1P, and in particular the
effects of the subsequent increase in cellular S1P-produc-
tion. We found that S1P mediated protection from death
receptor-induced apoptosis in an NF-kB dependent man-
ner. Intriguingly, exogenously added S1P induced several
cell types to synthesize and secrete additional S1P. The
S1P that is secreted from cells can further enhance NF-«xB
activation through G protein coupled S1P-receptors. We
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Figure 1 S1P confers NF-kB dependent protection from death receptor induced apoptosis. Figure A shows representative phase contrast pic-
tures of Hela cells treated +5 pM Bay 11-7082 (NF-kB inhibitor) for 6 h, followed by addition of vehicle or 3 uM S1P for 8 hours. Apoptosis was then
induced by addition of 50 ng/ml superfas ligand (Fas) for 16 hours. B. Hel a cells were treated as in A, and were fixed, stained for active caspase-3, and
were analysed by FACS. The bars denote the mean + SEM of at least three independent experiments (*, p < 0.05). C. Western blot showing Bcl-x, Bcl-
2 and Bax expression in cells pre-treated with 5 uM Bay 11-7082 or vehicle for 6 h, followed by stimulation with vehicle or 3 uM S1P for 12 hours. Hsc70
was used as a loading control. The results are representative of three independent experiments.
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demonstrate here that a G protein coupled receptor ago-
nist can induce its own production and secretion at phys-
iologically relevant levels.

Methods

Materials

Fluo-3 AM and BAPTA AM were purchased from
Molecular Probes (Eugene, OR, U.S.A.). D-erythro-sphin-
gosine-1-phosphate, D-erythro-N,N-dimethylsphin-
gosine, dihydro-sphingosine-1-phosphate, and
GF109203x were from Biomol (Plymouth meeting, PA,
U.S.A.) and D-erythro-sphingosine from Sigma (St. Louis,
MO, U.S.A.). Phorbol 12-myristate 13-acetate (PMA), the
sphingosine kinase inhibitor 2-(p-Hydroxyanilino)-4-(p-

chlorophenyl)thiazole (SKi), PD98059, Bay 11-7082, and
Wortmannin were from Calbiochem (Darmstadt, Ger-
many). [3H]-sphingosine was from NEN Life Science
Products (Boston, MA, U.S.A.). U73122 and Pertussis
toxin were purchased from Sigma (St Louis, MO, U.S.A.).
VPC 23019 was from Avanti (Alabaster AL, US.A.).
FLAG-tagged TRAIL and SuperFasLigand were from
Alexis (San Diego, CA, U.S.A.). TRAIL was crosslinked
with M2 anti-FLAG antibody (Sigma, St. Louis, MO,
U.S.A.) prior to stimulating cells. The S1P, , ; antibodies
were from Santa Cruz Biotechnology (Santa Cruz, CA,
US.A)), and the S1P, ; antibodies were from both Santa
Cruz and Cayman Chemicals (Ann Arbor, MI, U.S.A.).
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Figure 2 S1P activates NF-kB through G protein coupled receptors. A. The upper panel shows the presence of mRNAs encoding G protein cou-
pled S1P receptors in Hela cells. + and - denote whether the extracted RNA was reverse transcribed or not. The lower panel shows Western blots of
the S1P receptors in Hela cells stimulated + 3 uM S1P for 30 minutes. B. Concentration-response curve for S1P-induced activation of NF-kB (p65). HeLa
cells were stimulated with varying concentrations of STP for 30 minutes. Protein extracts were analyzed by NF-kB (p65) ELISA. 5 ug of protein was used
from each extract. C. Hela cells were preincubated with 50 ng/ml PTX for 16 h, 10 uM VPC23019 for 30 minutes or 10 uM JTEO13 for 30 minutes prior
to stimulation with 3 uM S1P for 30 minutes (left panel), or treated with S1P, or S1P5 SiRNA for 48 h prior to STP stimulation. Proteins were then ex-
tracted and NF-kB (p65)-activation was assayed by ELISA. D. Hela cells were stimulated with either vehicle, 3 uM S1P or 3 uM dihydro-S1P for 30 min-
utes. 5 ug of protein from each extract was used for the NF-kB (p65) ELISA. E. Hela cells were pre-incubated with either vehicle, 10 uM DMS or 10 uM
SKifor 5 minutes. The cells were then stimulated with 3 uM S1P for 10 minutes in the presence of [3H]sphingosine. The bars show synthesized cellular
[3H]S1P as percent of the unstimulated control. F. The cells were pre-incubated either with vehicle, 10 uM sphingosine, 10 uM DMS or 10 uM SKi for 5
minutes. Following a 30-minute stimulation with 3 uM S1P, the cells were harvested, lyzed and the DNA-binding activity of p65 was measured from
5 ug of protein extract. The data points and bars in panels B-F denote the mean + SEM of at least three independent experiments (*, p < 0.05).
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Figure 3 S1P induces cellular S1P-production and -secretion through Gi protein coupled receptors. A. Hela cells were exposed to either vehi-
cle or 3 uM S1P for the indicated period of times in the presence of [3H]sphingosine. The amount of produced [3H]S1P is expressed as percent of that
in vehicle-treated cells. B. Secreted [3H]S1P was extracted from the cell culture medium following a 10 minute stimulation with vehicle or 3 uM S1P,
and was analyzed using thin layer chromatography and scintillation counting. C. The cells were treated with 50 ng/ml pertussis toxin or vehicle for 16
h. Cellular lipids were extracted following a 10 minute stimulation with 3 uM S1P or vehicle in the presence of [3H]sphingosine. The formed [3H]S1P
was assayed using thin layer chromatography and scintillation counting. D. Concentration-response curve for S1P-induced S1P production. HeLa cells
were stimulated with varying concentrations of S1P or vehicle together with [3H]sphingosine for 10 minutes. Cellular lipids were extracted and sepa-
rated by HPTLC. The results are expressed as percent increased [3H]S1P production in STP stimulated cells compared with control. The data points and
bars in panels A-D denote the mean + SEM of at least three independent experiments (¥, p < 0.05).

Pre designad SMARTpool siRNA's were purchased from  RPMI 1640 supplemented with 10% fetal bovine serum, 2

Dharmacon (Lafayette, CO, U.S.A.). mM L-glutamine, 5 pg/ml insulin, and 50 U/ml penicillin
and 50 pg/ml streptomycin at 37°C in a water-saturated
Cell culture atmosphere of 5% CO, and 95% air.

HeLa cells and MEL-7 cells were cultured in Dulbecco's

modified Eagle's medium supplemented with 10% fetal PCR

bovine serum, 2 mM L-glutamine, and 50 U/ml penicillin ~ RNA was isolated using High Pure RNA Isolation Kit
and 50 pg/ml streptomycin at 37°C in a water-saturated  from Roche (Mannheim, Germany). For synthesis of
atmosphere of 5% COZ and 95% air. Cells were cultured in cDNA SuperSCript III from Invitrogen (Paisley’ Scotland)
medium with serum replaced by 0.2% fatty acid free BSA ~ was used and DynaZyme EXT from FinnZymes (Espoo,
24 h prior to experiments. WM35 cells were cultured in  Finland) was used for the PCR-reactions. All steps were
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Figure 4 NF-kB activation induced by exogenously added S1P is
enhanced by S1P produced by the cells. Cells transfected with con-
trol siRNA or SK1 siRNA were treated with the indicated concentrations
of S1P for 30 minutes and were analyzed for active NF-kB (p65) using
ELISA. The panel to the right shows representative western blots of
control and SphK1 siRNA treated cells. The bars denote the mean +
SEM of at least three independent experiments (*, p < 0.05).

done according to the instructions given by the manufac-
turers. PCR reactions were performed by first heating the
reaction mix to 94°C for 5 minutes. This was followed by
29 cycles of 30 seconds at 94°C, 60 seconds at the anneal-
ing temperature and elongation 60 seconds at 72°C. The
primers, annealing temperatures, and product lengths
were: S1P,, sense GGCTGGAACTGCATCAGTGCG,
antisense GAGCAGCGCCACATTCTCAGAGC, 60°C,
223 bp; S1P,, sense CCGAAACAGCAAGTTCCACT,
antisense CCAGGAGGCTGAAGACAGAG, 61°C, 197
bp; S1P,;, sense AAGGCTCAGTGGTTCATCGT, anti-
sense GCTATTGTTGCTGCTGCTTG, 61°C, 201 bp;
S1P,, sense CCTTCAGCCTGCTCTTCACT, antisense
AAGAGGATGTAGCGCTTGGA, 64°C, 223 bp; S1Pg,
sense AGGACTTCGCTTTTGCTCTG, antisense TCTA
GAATCCACGGGGTCTG, 59°C, 201 bp.

S1P-production assay

Cells (roughly 270 000 cells per 35-mm cell culture plate)
were incubated over night in medium with serum
replaced by 0.2% fatty acid-free BSA. Cells were then
stimulated with agonist or vehicle together with [3H]
sphingosine (~ 200,000 cpm) with fatty acid free BSA as
carrier. Lipids were extracted by aspirating the culture
medium and adding 500 pl of ice-cold methanol to the
cells. Cells were scraped from the petri dishes and trans-
ferred to eppendorf tubes. The tubes were sonicated for 5
minutes and then centrifuged at 6,000 g for 10 minutes to
remove cell debris. The supernatant was then transferred
to glass vials. S1P was added to each sample for identifi-
cation and the supernatant was evaporated. For measure-
ments of secreted S1P, [3H]S1P was extracted from the
medium as previously described previously [29]. Briefly,
2.2 ml of chloroform: methanol: HCI (50:50:1) was used
to extract S1P from 900 pl medium. The organic phase
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was collected and evaporated. After re-dissolving in
methanol the samples were spotted onto HPTLC plates
and separated with butan-1-ol: acetic acid: water (3:1:1, v/
v). SIP was stained with ninhydrin and spots were
scraped and the formed [3H]S1P was counted using liquid
scintillation. From a typical experiment the recovered
counts of intracellular and secreted [3H]S1P at basal con-
ditions were 449 + 69 cpm and 175 + 20 cpm, respectively
in HeLa cells. Under similar conditions 225 + 34 cpm was
extracted from MEL-7 cells and 557 + 61 cpm from the
medium. WM35 cells had a basal cellular [3H]S1P of 213
+ 18 cpm and secreted 288 + 55 cpm.

Construction of a viral vector containing human SphK1 and
transduction of Hela cells

Human SphK cDNA was cloned and FLAG -tagged at the
3" end according to Pitson et al [30]. The SphK-FLAG
fragment was PCR amplified by using primers with 5'
Mlul and 3' Sall sites and cloned into the WPT-GFP len-
tiviral vector which had been digested with MIul and Sall
to remove the GFP gene. Lentiviral vectors expressing the
SphK-FLAG construct were produced by transient three
plasmid cotransfection into HEK 293T cells by using cal-
cium phosphate precipitation. The three plasmid mixture
consisted of 14.5 pg WPT-SphKFLAG, 8.3 pg
pCMVARS8.91 and 2.1 pg MD.G (all plasmids were a kind
gift from Dr. D. Trono, Lausanne, Switzerland). The
virus-containing media were harvested 48 hours later by
filtering the media through 0.45 pm pore size filter and
centrifuging at 16 000 g for 2.5 h at +4°C. The resulting
pellets were resuspended in 200 pl serum free DMEM.
For transduction HeLa cells were plated on 6-well plates
(1 x 105 per well) and 24 hours later virus together with 8
pg/ml Polybrene was added at multiplicity of infection 10
and incubated for 6 hours after which time the medium
was replaced with fresh medium.

siRNA mediated knock down

The cells were grown to 90% confluency, and transfection
was done with N-TER transfection reagent according to
the manufacturer's protocol for serum-free transfection
with slight modifications. The siRNA was added to the
cells at a final concentration of 100 nM. Following a 24
hour incubation with the siRNA reagent, the medium
was changed to fresh medium containing 0.2% Fatty acid
free BSA. Following another 24 h incubation the cells
were used for experiments.

NF-kB activation assay

Cells grown on 60 mm petri dishes were harvested and
pelleted in ice cold PBS. The cell pellet was quick-freezed
and resuspended in 150 pl buffer containing 25% glycerol,
0.42 M NaCl, 1.5 mM MgCl,, 0.2 mM EDTA, 20 mM
Hepes (pH 7.9), 0.5 mM DTT, and 0.5 mM PMSE. The
extract was then centrifuged at 15,000 x g for 20 minutes
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Figure 5 Effect of prolonged overexpression of SphK on NF-kB activation and S1P synthesis. A. Control cells and cells overexpressing SphK

(hSK) were pretreated + 50 ng/ml pertussis toxin for 16 h before stimulation with vehicle or 3 uM S1P for 30 minutes. Proteins were extracted and NF-
KB (p65)-activation was assayed by ELISA. The inset shows Western blots of 10 ug of protein from mock transduced or SphK1 overexpressing Hela

cells. The cell extracts were probed for sphingosine kinase and S1P,. B. [2H]S1P was extracted from the mock- or SphK transduced cells following a 10-
minute incubation with [3H]sphingosine, and was analyzed using thin layer chromatography and scintillation counting. C. The SphK overexpressing
cells were treated with 50 ng/ml pertussis toxin or vehicle for 16 h. Secreted [3H]S1P was extracted from the medium following a 10-minute incubation
with [3H]sphingosine. The formed [3H]S1P was assayed using thin layer chromatography and scintillation counting. The bars in panels A-C denote the

at +4°C. The supernatant was collected and protein con-
centrations were determined. Two methods for assaying
NF-kB (p65) DNA-binding activity were used. NFxB
transactivation capacity was measured from the extracts
either by using a Trans-AM NF-kB (p65) transcription
factor assay kit (Active Motif, Carlsbad, CA) according to
the manufacturers' instructions, or by electrophoretic

mobility shift assay (EMSA). The results from the Trans-
AM NF-kB (p65) transcription factor assay kit are pre-
sented as percent activation with the stimulated control
set to 100% and the unstimulated control as 0%. This was
made to compensate for between-experiment differences
in NF-«kB activation. For the EMSA experiments, the con-
sensus NF-kB binding site (5-AGCTTCAGAGGG-
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Figure 6 Signaling cascades regulating S1P-induced S1P-production and S1P-induced activation of NF-kB. A. NF-kB-activation induced after
stimulating Hela cells for 30 minutes with 3 uM S1P. The cells were pre-treated with 10 uM BAPTA-AM for 30 minutes, 50 uM PD98059 for 30 min, 1
UM GF109203x% for 5 min or 30 nM Wortmannin for 5 minutes. B. The cells were treated with inhibitors the same way as in A. Following a 10-minute
stimulation with 3 uM S1P or vehicle together with [3H]sphingosine, lipids were extracted and the produced [3H]S1P was measured by thin layer chro-
matography and scintillation counting. The bars in A and B denote the mean + SEM of at least three independent experiments (¥, p < 0.05).
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GACTTTCCGAGAGG-3') was 32P-labeled. Protein-
DNA complexes were separated on a native 4% polyacryl-
amide gel. The gel was dried and exposed to autoradiog-
raphy film over night. Both methods measure NF-«xB
activity by detecting it binding to its consensus binding
sequence.

Apoptosis assay

Cells were assayed using an active caspase-3 detection kit
from BD Pharmingen according to the manufacturers'
instructions. In brief, cells were collected in eppendorf
tubes, spun down and washed twice in 1 ml PBS. The
cells were resuspended in 150 pl Cytofix/Cytoperm™
Solution. Following a 20 minute incubation on ice the
cells were washed twice with 0.5 ml Perm/Wash™ Buffer.
The cells were then incubated with the phycoerythrin-
labelled antibody against active caspase-3 (1:20 in 100 pl
Perm/Wash™ Buffer). The cells were washed once in 1 ml
Perm/Wash™ Buffer. The cells were resuspended in 0.5 ml
Perm/Wash™ Buffer and were then analyzed by flowcy-
tometry using a BD FACScan and Cell Quest software.

Western blotting

35 mm-petri dishes were washed once with cold HBSS,
and scraped in 70 pl lysis buffer (10 mM Tris/HCl (pH
7.7), 150 mM NaCl, 7 mM EDTA, 0.5% NP-40, 0.2 mM
PMSE, and 0.5 pg/ml leupeptin). Lysates were kept on ice
for 15 minutes and were then centrifuged at 10,000 g for
15 minutes. 3 x Laemmli's buffer was mixed with the
supernatant and the solution was heated to 95°C for 3
minutes. Proteins were separated by 10% SDS-PAGE and
transferred onto a nitrocellulose membrane. The primary
antibodies used were anti-Bcl-x; from Santa Cruz (CA,
U.S.A.) and anti-Hsc70 from Stressgen (Victoria, Can-
ada). HRP conjugated secondary antibodies were used,
and bands were exposed on film by chemiluminescence.

Statistics

Results are expressed as means + SEM from a minimum
of three independent experiments. Statistical analysis was
made using Student's ¢ test for paired observations. When
three or more means were tested, one way ANOVA was
performed followed by Dunnett's test for multiple com-
parisons against a single control. Statistical significance
(p < 0.05) is denoted with *.

Results

S1P stimulates NF-kB dependent cell survival

It has been firmly established that S1P is a cytoprotective
agent. However, the downstream mechanisms are pleio-
tropic and have only been partially identified. To study
the S1P-induced survival signaling pathways we first
needed to identify a reproducible and quantifiable end-
point. NF-kB is a well-defined survival factor, and there
are reports showing that S1P activates NF-kB by signaling
through G-protein coupled S1P receptors [31-33]. NF-kB
activation was therefore ideal to use as an endpoint for
addressing S1P signaling pathways leading to survival. In
our initial experiments, we could confirm the importance
of NF-«B in S1P mediated survival signaling. S1P pro-
tected HeLa cells from Fas ligand-induced apoptosis in an
NF-kB dependent manner (Figure 1A, B). S1P also
induced an upregulation of the anti-apoptotic protein
Bcl-xL which was blocked by the NF-kB inhibitor Bay 11-
7082 (Figure 1C).

S1P activates NF-kB through G protein coupled receptors

S1P induces most of its functions by activating G protein
coupled SI1P receptors, but an intracellular mode of
action has been proposed to take place in some cases. We
therefore addressed the site of action for S1P-induced
NF-«B activation in HeLa cells. The receptors S1P; 5and

S1P; were detectable by PCR and Western blot in HeLa



Blom et al. BMC Cell Biology 2010, 11:45 Page 8 of 11
http://www.biomedcentral.com/1471-2121/11/45
MEL-7
A WM35 B
” 200 ”
200 _ )
= x °©
[ £ 150 4 r
c 150 - Q
e} (&}
& 5 T
s} ® 100 -
® 100 - = <
i o
= »
=
%) = 501
e 907 . ;
2
0 4 0 -
Control S1P SKi Control S1P SKi
Cc MEL-7 D MEL-7
50 60
<%
*
40 - 50 :
R T ) 40
7] 7]
oS 30 - g_
[}
o o 30
o Q.
o 20 - ©
PSS X 20
. 1 O , O O | |
’ : JTE
Control  SKi  TRAL  SKi Eantrol 4 Balk. St
+
+TRAIL +TRAIL
Figure 7 S1P-induced secretion of S1P in the malignant tumor cell lines MEL-7 and WM35. WM35 (A.) or MEL-7 (B.) cells were exposed to either
vehicle, 3 uM S1P or 10 uM SKi for 10 minutes in the presence of [3H]sphingosine. Secreted [H]S1P was then extracted from the cell culture medium
and analysed by HPTLC. C. MEL-7 cells were treated with 10 pM SKi or vehicle for 4 h. Apoptosis was then induced by addition of 100 ng/ml Tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) for 4 h. D. MEL-7 cells were treated with vehicle or 10 uM JTE013 and VPC23019 for 4 h. Apop-
tosis was induced by addition of TRAIL for 4 h, and cells positive for cleaved caspase-3 was measured using FACS. The bars in panels A-D denote the
mean + SEM of three independent experiments (¥, p < 0.05).

cells (Figure 2A). S1P induced NF-kB activation with an
EC;, of 88 nM, which is consistent with a G protein cou-
pled receptor -mediated effect (Figure 2B). Furthermore,
the S1P-induced NF-«B activation was attenuated by the
G; inhibitor pertussis toxin, by the S1P, antagonist
JTEO013, and in S1P, siRNA treated cells (Figure 2C). The
S1P,,; antagonist VPC 23019 did not inhibit the S1P
induced NFkB activation indicating that the effect is not
dependent on S1P; or S1P, (Figure 2C). In addition,
dihydro-S1P potently activated NF-kB (Figure 2D).
Dihydro-S1P binds and activates G protein coupled S1P
receptors and has often been used as a negative control
for intracellular effects of S1P [34,35]. Taken together,
these results show that the S1P induced activation of NF-
KB is mediated through an extracellular mode of action. It

is known that extracellular S1P can cause cells to increase
their intracellular production of S1P [17,18]. To exclude
the possibility that intracellularly produced S1P was
responsible for the NF-kB response, we measured the
activation of NF-«B in cells treated with sphingosine
kinase inhibitors. The cells were stimulated with 3 puM
S1P to saturate G-protein coupled S1P receptors and to
achieve maximal NF-«B activation (see Figure 2B). Under
these conditions, the sphingosine kinase inhibitors DMS
and SKi effectively blocked both the basal and agonist-
induced S1P-production (Figure 2E). However, the NF-
KB activation induced by extracellular S1P was not signif-
icantly affected (Figure 2F). These observations are in line
with earlier studies [31-33] showing that S1P-induced
NF-«B -activation is mediated through GPCR's.
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NF-kB activation induced by exogenously added S1P is
enhanced by S1P produced and secreted by the cells
Extracellularly added S1P induced a transient increase in
cellular S1P-production (Figure 3A), accompanied by an
increased secretion of S1P (Figure 3B). The S1P-induced
S1P-production was inhibited by pertussis toxin, suggest-
ing dependence on GPCR-signaling (Figure 3C). The S1P
induced S1P-production displayed a saturable concentra-
tion response curve, with a noticeable response following
stimulation with 100 nM extracellular S1P (Figure 3D).
There are now several reports showing that intracellularly
produced S1P can be exported and act on cells in an auto-
crine or paracrine fashion [24-26]. Since extracellular S1P
stimulated the cells' own production and secretion of S1P,
we hypothesized that this could constitute a self amplify-
ing signaling mechanism. When cells are stimulated with
high concentrations of extracellular S1P, such a mecha-
nism will not be noticeable, since all S1P-receptors will be
saturated and not affected by any additional S1P that is
secreted from the cells. However, if non-saturating con-
centrations of S1P are added to the cells, endogenously
produced and secreted SIP might have an enhancing
effect. To test this hypothesis we did concentration-
response measurements for S1P-induced NF-kB activa-
tion with or without sphingosine kinase inhibition. A
higher concentration of extracellular S1P was needed to
achieve half-maximal NF-kB-activation in SphK1 siRNA
treated cells compared to control cells (Figure 4). In addi-
tional experiments we found that there was a shift in the
EC,,value from 74 nM in control cells (comparable to the
88 nM in figure 2B) to 158 nM in cells treated with 10 uyM
DMS. This shift is large enough to be significant for G-
protein signaling, i.e. at the EC,, concentration, approxi-
mately half of the activating S1P is of cellular origin.
Taken together, these results are in support of a model
where S1P signaling is amplified through an autocrine
feed-forward loop.

Effect of prolonged overexpression of SphK on NF-kB
activation and S1P synthesis

Next, we performed studies on cells overexpressing
SphK1. A lentivirus based system was utilized for overex-
pressing human SphK1 in HeLa cells. Extracellular S1P
efficiently activated NF-kB in mock-transduced cells.
This activation was blocked by G; protein inhibition, con-
firming the dependence on GPCR-signaling. Interest-
ingly, in cells overexpressing SphK1, exogenous S1P only
weakly activated NF-«B (Figure 5A). The cellular level of
the receptor S1P, was not affected by SphK1 overexpres-
sion (Figure 5A inset), suggesting that this observation is
likely explained by homologous desensitization of S1P,
receptors without subsequent receptor degradation as
shown by Jolly et al [36]. Since the NF-kB activation was
mediated through G protein coupled S1P-receptors and
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independent of an intracellular action of SIP, these
results seem to confirm that autocrine S1P modulates
NF-«B signaling. Cells overexpressing SphK had an ele-
vated basal S1P production of 650 + 130% compared to
control cells (Figure 5B). Treating the SphK overexpress-
ing cells with pertussis toxin for 16 h lead to a significant
decrease in the amount of secreted S1P (Figure 5C),
which is in line with an autocrine feed-forward loop
upholding the production and secretion of S1P.

Signaling cascades regulating S1P-induced S1P-production
and S1P-induced activation of NF-kB

PKC, phosphatidyl-inositol 3-kinase (PI3K), mitogen
activated protein kinase (MAPK) and Ca2+ are effectors
known to act downstream of S1P-receptors. We therefore
compared the roles of these signaling components in
S1P-induced activation of NF-kB and in S1P-induced
S1P-production. The intracellular Ca2+ chelator BAPTA-
AM, the PKC inhibitor GF109203x and the PI3K inhibi-
tor wortmannin attenuated the S1P-induced NF-kB-acti-
vation, whereas the MAPK-kinase (MEK) inhibitor
PD98059 was without an effect (Figure 6A). The S1P-
induced increase in cellular S1P-production was com-
pletely blocked by PD98059, slightly reduced by Ca?*
chelation, and not significantly affected by neither
GF109203x nor wortmannin, (Figure 6B). These results
are in accordance with previous findings that ERK1/2 and
Ca?* are important factors for activating and translocat-
ing SphK to the plasma membrane respectively [19,20].
These results illustrate that S1P utilizes different signal-
ing pathways to induce activation of NF-«B and to stimu-
late S1P-production.

S1P-induced secretion of S1P in the malignant tumor cell
lines MEL-7 and WM35

We used the two malignant melanoma cell lines MEL-7
and WM35 to test whether our proposed self-amplifying
autocrine loop is also present in other than HeLa cells. In
both cell lines, the secretion of S1P was enhanced by the
addition of exogenous S1P (Figure 7A, B). This suggests
that the described self-amplifying autocrine signaling is
common also in other types of tumor cells. Since the
MEL-7 cells displayed a higher basal secretion of S1P
(results not shown), we tested whether sphingosine
kinase was involved in survival signaling in this cell line.
We found that inhibition of sphingosine kinase per se did
not render the tumor cells apoptotic, but sensitized them
to apoptosis induced by TRAIL (Figure 7C), a selective
inducer of death in many transformed cells but not in
most normal cells. To address whether this effect was due
to secreted S1P, we repeated the experiment in cells
treated with JTE013 and VPC23019 to block signaling via
S1P, 5 (Figure 7D). Similar to what was observed in cells
treated with SKi, the receptor antagonists alone did not
affect apoptosis, but increased the potency of TRAIL to
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induce cell death. This indicates that the observed effect
is due to S1P secretion rather than an intracellular mode
of action. Down-regulation of the self-amplifying S1P sig-
naling in combination with TRAIL treatment is therefore
potentially useful in cancer therapy.

Discussion

Our knowledge regarding how sphingolipids regulate cell
survival or death has been rapidly increasing since the
concept of a sphingolipid "rheostat" was first introduced.
S1P has emerged as a central bio-active lipid with both
intracellular and extracellular actions. There is some con-
troversy surrounding sphingolipids and their sites of
action in survival signaling. Since one type of sphingo-
lipid may be rapidly converted into another sphingolipid
with opposite effects on survival, it has proven difficult to
determine to which extent each lipid-type is responsible
for the outcome of the signaling. In the present report we
show that S1P antagonizes death receptor-induced apop-
tosis in HeLa cells by acting through G protein-coupled
S1P receptors and activating the transcription factor NF-
kB. S1P, was at least in part responsible for activating NF-
KB, but it seems likely that S1P promotes survival through
simultaneous activation of several signaling cascades. It
has previously been shown that S1P may activate NF-xB
through S1P, and S1P;in a PLC/PKC-dependent manner
[32]. We could confirm that the activation was dependent
on PKC and on S1P, in HeLa cells. The PI3K inhibitor
wortmannin also attenuated the S1P-induced activation
of NF-«kB, in accordance with what has been shown in
vascular smooth muscle cells [37].

It was first shown by Meyer zu Heringdorf et al [17],
and later by us [18] that S1P may stimulate its own intrac-
ellular synthesis, but whether this also leads to an
increase in S1P-secretion has not been previously investi-
gated. We show here that S1P not only stimulates the pro-
duction of intracellular S1P, but also its secretion. Based
on concentration response curves for the S1P-induced
NF-xB activation in figure 4, we conclude that the
secreted S1P is an important contributing factor in S1P
signaling. The S1P-induced S1P-synthesis was sensitive
to MEK-inhibition, but not to inhibition of PKC or PI3K.
The opposite was true for S1P-induced NF-kB-activation,
which suggests that these two mechanisms can be regu-
lated independently of each other. This was further illus-
trated by the fact that the S1P, antagonist JTE013, and
S1P, knockdown attenuated the S1P-induced activation
of NF-kB, while the S1P-induced S1P-production was
unaffected. In conclusion, the results we present here
lend support to a novel feed-forward mechanism, with
S1P stimulating its own synthesis and secretion. The
secreted S1P may then protect the tumor cells from death
receptor-induced apoptosis by contributing to NF-«xB
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activation. An important consequence of the autocrine
feed-forward signaling is that an initially small increase in
the cells' S1P-production can be considerably amplified.
The secreted S1P provides protection for the tumor cell
itself, and may also activate a similar feed-forward mech-
anism in surrounding cells. In addition to stimulating cell
survival, SIP also induces cell proliferation [38] and
angiogenesis [39]. These factors are crucial for tumor
development and metastasis.

Conclusions

S1P protects HeLa cells from FasL-evoked apoptosis in
an NF-kB-dependent manner. We propose that this effect
is mediated by a cytoprotective mechanism involving an
amplification loop where S1P stimulates its own produc-
tion and secretion by activating G protein coupled S1P-
receptors. It is likely that the mechanism presented here
is important for tumor progression.
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