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Abstract

Background: Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In
time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory
behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent
errors regarding the selection of “representative” subsets of cells and manual determination of precise cell
positions.

Results: We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic
cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective
measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in
radar applications to develop fully automated cell identification and tracking system suitable for high throughput
screening of video sequences of unstained living cells.

Conclusion: We demonstrate that our automatic multi target tracking system identifies cell objects, follows
individual cells and computes migration rates with high precision, clearly outperforming manual procedures.

Background
The ability of individual cells to actively migrate, either
randomly or directionally, across solid surfaces is an
important biological parameter in many different con-
texts. During normal development, positioning of newly
generated neurons through active migration is vital for
the formation of a functional central and peripheral ner-
vous system [1,2]. In the developed organism, cell moti-
lity is critical in processes such as wound healing, which
requires fibroblasts and keratinocytes to migrate into
wound sites [3,4], or the immune response, which
involves extensive migratory activity of immune cells to
and from lymphoid tissues and distant sites of infection
[5-8]. In addition to these physiological roles, cell migra-
tion is also an important parameter in pathological pro-
cesses such as carcinogenesis. Indeed, the acquisition of

a distinct migratory potential is considered one of the
hallmark features of malignant transformation of epithe-
lial cells [9,10]. The molecular basis of tumor cell migra-
tion and its contribution to tumor progression, invasion
and metastasis is thus an area of intense research
[11-14].
A powerful method to directly observe and character-

ize the migratory behavior of cells is through the use of
time-lapse microscopy [15-17]. Living cells are placed in
appropriate culture media under a microscope and
images of regions of interest are taken in regular inter-
vals over extended periods of time. The positions of
individual cells are then marked in consecutive images,
thus following (tracking) positional changes of the cells
over time. To date, this tracking procedure is commonly
performed manually through “point and click” systems
[5,11,12,18,19]. In addition to being labor-intensive, this
method is highly susceptible to user-dependent errors
regarding both the selection of “representative” subsets
of cells for analysis (since rarely all cells in a given video
sequence are considered) as well as the manual
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determination of cell centroids, which serve as measur-
ing points for cell positions. In the current study, we
have for the first time objectively quantified the magni-
tude of these error sources in manual cell tracking.
Using migration of different populations of pancreatic
cancer cells as a model system, we show that the results
of manual cell tracking are highly variable and lead to
mis-calculation of migration rates by up to 410%.
In order to avoid these error sources and provide

objective measurements of cell migration rates, we have
employed multi-target tracking technologies commonly
used in military radar tracking applications [20,21] to
develop a fully automated cell identification and tracking
system suitable for high throughput screening of video
sequences of unstained living cells. Image preprocessing
and segmentation are adjusted to the high variability of
microscopy image qualities, different cell sizes, cell
shapes and general cell appearance. Tracking is per-
formed on the sets of extracted cell centroids using a
Kalman Filter implementation. Higher-level events, such
as cell divisions or migration of cells out of and into the
field of view, are automatically recognized and inte-
grated into the analysis. We demonstrate that the sys-
tem, which has been implemented as open source,
cross-platform software, produces objective and highly
reproducible measurements, clearly outperforming man-
ual tracking procedures.

Implementation and Methods
Data and image sequence acquisition
The dataset consists of five unstained Panc1 cell image
sequences (video samples). The cells were routinely kept
in DMEM medium supplemented with 10% FCS in 5%
CO2 atmosphere at 37°C. Before cytokine treatment,
cells were kept in serum-free medium for 24 h. One
sample was left untreated as a control group; the other
cells were treated with substrates or substrate combina-
tions including TGFb as a pro-migratory positive
control.
The videos contain between 58 - 63 gray scale images

(1024 × 1344 pixels, illumination intensity normalized
between zero and one) and were recorded with a tem-
poral resolution of t = 15 minutes and a magnification
factor of 100. Each image pixel has a squared compass
of 1.5 × 1.5 μm. Recording device was a Hamamatsu
Orca camera. Acquisition technique was Differential
Interference Contrast (DIC) microscopy.
Manual cell tracking was performed by experts for all

cells that stayed within the region of analysis during the
entire recording time (420 tracks) with ImageJ [22]
using the AviReader Plugin (M. Schmid and D. Marsh)
and the Manual Tracking plugin (F. Cordelieres) (see
project website at http://rsbweb.nih.gov/ij/). All experi-
ments were performed on an Intel Core 2 Duo, 2.4 GHz

PC with 2 Gb RAM. Statistical analysis was performed
with R http://www.r-project.org.

Implementation
Our automatic tracking and analysis software was imple-
mented using MatLab (v. 7.2) and consists of a graphi-
cal, cross platform open source application, adjustable
to various types of microscopic images and video files.
A modular architecture allows to expand image proces-
sing and tracking independently. The image processing
unit provides miscellaneous image processing and seg-
mentation functions freely combinable in a stack-like
manner. For more complex configurations i.e. referen-
cing previously processed images some additional func-
tions are available. New MatLab image processing
functions as well as program files written in C, C++ or
Fortran, can be included into the program. We are con-
stantly augmenting the functionality of the TimeLapseA-
nalyzer by adding new routines like wound healing assay
analysis, cell counting, cell area measurements or image
enhancement functions.
For more detailed information we refer to the Addi-

tional files 1 and 2.

Results
Variability of cell speed estimation caused by manual
centroid selection
The migration rate of cells is commonly measured via
the mean displacement (MD, i.e. the mean distance
(μm) traveled per minute) of the cell centroid. The
migratory potential of cell populations can then be
expressed as the average mean displacement (AMD) of
all cells in the analysis (see section “Cell migration
rates” in the Additional File 1). In order to determine
how the manual selection of the centroid positions of
cells influences the calculated migration rates of indivi-
dual cells and cell populations, we manually marked
cells using a point-and-click system (see Materials and
Methods) [22]. In a time-lapse video recording of Panc-
1 pancreatic cancer cells, we tracked one cell repeatedly
(40 times, one expert) across the sequence of 63 frames
to obtain a realistic estimate of the variance in cell cen-
troid selection introduced by manual cell tracking. For
each frame, the mean value of the set of 40 clicked
points was computed and subtracted from each point in
the set. All sets were thereafter located around a zero
mean and could be combined to a single set of 63 × 40
= 2520 points. To estimate the variance introduced by
manual cell centroid selection, we assumed a single
variability value for both the x and y coordinate (Ansari-
Bradley test, p = 0.8199, 95% CI (confidence interval) for
the ratio of the scales: 0.944 to 1.047, see e.g. Hajek and
Sidak [23]), and pooled both x and y coordinate values
to gain a single estimate for the standard deviation of
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the displacement values of ± 7.71 μm (5.14 pixels). Tak-
ing this as an upper variability value, we artificially
imposed this type of centroid selection noise on three
different manually selected tracks with low (sc 0.181 ±
0.213 μm/min), medium (mc 0.622 ± 0.411 μm/min)
and high (fc 1.781 ± 0.821 μm/min) migration rates.
The noise levels were 3, 4.5, 6, and 7.5 μm, correspond-
ing to standard deviations of 2, 3, 4, and 5 pixels (see
Table 1). We generated 200 tracks for each setting.
Comparison of the AMD values of the noisy tracks with
the MD of the original tracks revealed that the noisy
tracks led to an overestimation of cell speeds averaging
between 2% (fastest cell, 3 μm deviation) and 410%
(slowest cell, 7.5 μm deviation) (see Table 1). Testing
several filtering procedures for their ability to suppress
the influence of the superimposed noise and to restore
the original AMD measurements, we determined that
smoothing of the noisy tracks prior to AMD calculation
by a centered moving average filter (window size 5) pro-
duced AMD values that tended to slightly underestimate
the original cell speeds, but were generally much closer
to the “true” AMD values (Table 1).

Variations induced by cell subset selection
A common practice in manual cell tracking is to select
only a subset of cells from each time-lapse video for
analysis, which is then assumed to represent the whole
cell population. We were interested in determining how
closely manually selected subpopulations approximate
the whole cell population in a typical experimental

setting. To this end, we analyzed five video sequences of
Panc-1 pancreatic cancer cells differentially treated with
stimulatory and inhibitory substances. One expert
manually tracked the cells in each of the five sample
videos. Only tracks, which did not leave the field of view
between the first and the last frame, were considered,
resulting in a total of 420 valid tracks. AMD values were
calculated for “raw” tracks as well as smoothened tracks
(centered moving average filter, window size 5). The five
video samples show well-distinguishable differences in
migration rates regardless if “raw” or smoothened cell
tracks were used for AMD computation (Figure 1). In
order to isolate a possible bias resulting from subjective
selection of cells from other error sources, we exclu-
sively used smoothed tracks for AMD calculations,
thereby excluding errors resulting from imprecise cell
centroid selection as highlighted above. Ten participants
were asked to choose a subset of 20 cells from each
video, which they found to be good representatives of
the cell population. The participants could observe the
movement of the cells prior to their selection. They
were however not informed about the treatment of the
cells to avoid biasing the choice of cells due to a priori
knowledge about expected effects of the inhibitory or
stimulatory substances. The subsets chosen by each test
person were used to compute the AMD for every video
sample, revealing highly individual cell choices for the
ten participants. In general, the selected subsets tended
to substantially overestimate the average migration rates
of the populations (Figure 1). The variance of the ten
participants’ choices was especially high for the samples
with faster cells (i.e. the TGFb- and SPC-treated cells;
see Figure 1). To evaluate the degree of “agreement”
between participants in selecting cells, we computed for
any combination of two participants the number of
commonly selected cells. The results demonstrate that
across all 5 video sequences, on average 6.17 cells out of
the 20 (max. 12; min. 1) were commonly chosen
between any two participants (Table 2).
In order to estimate the total range of AMD values that

can potentially result from selection of different 20-cell-
subsets in each sample video, we performed repeated
random sampling of 20 tracks (2 × 105 iterations per
sample file). As shown in Figure 1 (orange boxplots), the
range of possible values was extremely broad, reflecting a
considerable range of migration rates among individual
cells of a given population. Interestingly, the manually
selected subset results were statistically significantly dif-
ferent from the random resampling results for four of the
five sample files (Wilcoxon test with Bonferroni p-value
adjustment: puntreated = 0.023, pspc = 0.011, ptgfb =
0.00098, ptgfb & U0126 = 0.893, pU0126 & spc = 0.0067), con-
firming that manual cell subset selection introduces sig-
nificant bias in the data analysis.

Table 1 Cell speed variability caused by imprecise
centroid selection

Cell
type

s in
μm

original
MD

AMD in μm/
min

% AMD
(smoothed)

%

sc 3 0.181 0.423 234 0.125 69

sc 4.5 0.578 320 0.151 84

sc 6 0.747 414 0.181 100

sc 7.5 0.921 510 0.218 121

mc 3 0.622 0.723 116 0.465 75

mc 4.5 0.829 133 0.473 76

mc 6 0.956 154 0.484 78

mc 7.5 1.099 177 0.499 80

fc 3 1.787 1.821 102 1.589 89

fc 4.5 1.860 104 1.591 89

fc 6 1.923 108 1.597 89

fc 7.5 1.985 111 1.598 89

Three cell types where tested (slow cell (sc), medium fast cell (mc), fast cell
(fc)). The centroid positions where artificially varied within a standard
deviation (s, both axes) of 3 to 7.5 μm around the real centroid and the
average mean displacement (AMD) computed for each set of varied tracks
(200 tracks per setting). Variation of centroid positions resulted in
overestimation of cell speeds, which was most pronounced for the slowest
cell. Smoothing of “noisy” cell tracks by a centered moving average filter
(window size 5) tended to underestimate MD values to varying degrees.
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Automated cell tracking
In order to overcome the limitations of manual cell
tracking, we have developed a fully automated image
processing and tracking system comprising three stages:
(a) cell centroid extraction on individual images, (b)
tracking of individual cells centroids, and (c) track
monitoring.
Identification of individual cells and extraction of geo-

metrical cell centroids was performed by combining
independent cell-background and cell-detail segmenta-
tion to maximize cell detection sensitivity and
specificity.
For coarse cell region segmentation, we took advan-

tage of structural discrepancies between cell tissue and
image background. By computing the local image
entropy, which measures the heterogeneity of intensity
values in the neighborhood of each pixel, even strongly
spread-out cells, which are most challenging to detect

due to the low contrast they produce, are very efficiently
detected. For detection of individual cell structures, we
used local intensity thresholding, which is robust against
illumination gradients across images. The subsequent
combination of coarse cell region and cell detail images
provides high cell detection sensitivity while noise in the
media is successfully omitted. The entire image proces-
sing workflow is outlined in Figure 2.
As demonstrated in Table 3, the precision of auto-

mated cell identification and centroid placement was
very high, resulting in cell detection rates ranging from
96 to 99%.
For the subsequent tracking of individual cell cen-

troids through image sequences, Kalman filtering
[24,25], commonly employed in multi-target tracking
systems in military radar surveillance applications
[20,21], was utilized. Kalman filters are a set of math-
ematical equations allowing “state ahead” predictions
of object positions (cell centroids) as well as the esti-
mation of optimized object states in noisy environ-
ments (e.g. resulting from variations in cell
segmentation).
The applied discrete KF algorithm consists of two

alternating steps, which are repeated in each iteration
(for each new frame): prediction and correction. In the
prediction step, the filter makes an assumption (a priori)
about the future state of the observed object. In the cor-
rection step, an optimized (a posteriori) state estimate is
computed using a weighted difference between the a
priori state and an actual (noisy) measurement. The

Figure 1 Dependency of average mean displacement on track selection. Variability of track set selection for average mean displacement
calculation is shown for image sequences of five Panc1 cell lines treated with different compounds (spc: Sphingosylphosphorylcholine, TGFb,
U0126). All cells were tracked manually by one expert (overall track number n = 420; for cell numbers per video see Table 3). Ten subjects
selected 20 of these tracks for average mean displacement calculation (yellow, boxplots showing median, interquartiles and range). Results of
randomly sampling 20 of the tracks repeatedly for 2 × 105 times are shown as orange boxplots. Average mean displacement values, utilizing all
available manually tracked cells are shown in blue (for raw not smoothed tracks in green). Results of automated tracking are given in red.

Table 2 Levels of agreement between any two
participants in selecting “representative” subsets of 20
cells from cell populations

Image
sequence no.

Average number of common selected tracks for
any 2 participants (out of 20 possible)

1, untreated 6.62 ± 2.29

2, spc 5.09 ± 1.90

3, tgfb 7.82 ± 2.25

4, tgfb & U0126 6.49 ± 2.05

5, U0126 & spc 4.84 ± 2.14
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weighting term (K) is updated iteratively according to
the quality of the previously a priori prediction: If the
prediction was good, the weighting term will suppress
the influence of the measurement in the next iteration
and show more “trust” in the state ahead prediction
than in the measurement. If the prediction was poor, K

weights the measurement more heavily in the next itera-
tion while suppressing the influence of the a priori esti-
mate. An example of this “denoising” effect of Kalman
filtering on cell tracks is shown in Figure 3. In our sys-
tem, a constant velocity model was applied in the KF to
predict future states of the objects. The model and the

Figure 2 Cell centroid segmentation. Schematic workflow and examples of intermediary steps of cell centroid extraction from microscopic
images. Each new frame (A) will be processed in two distinct steps, namely cell detail segmentation (left, blue box) and cell region
segmentation (right, green box). The detected centroids from the detail segmentation are first combined with the extracted centroids of one
past frame to propagate cell centroids steadily through an image sequence. Afterwards the combination of the cell region image and the cell
centroid image leads to deletion of cell positions in non-cell regions (panel F). Subsequent centroid merging and shifting finally concentrate
groups of possible centroids within one cell to form a single cell centroid (panel G).

Table 3 Validity of automatically extracted cell tracks

Image
sequence no.

Cell detection rate median
(min, max)

# of frames/# of required cell-to-cell
associations

Swap
errors

Lost or
deleted

Track detection
(correct/total)

%

1, untreated 0.98 (0.92, 1.0) 63/4960 11 1 68/80 85

2, spc 0.98 (0.92, 1.0) 60/6077 9 4 90/103 87

3, tgfb 0.96 (0.90, 0.99) 64/4284 17 2 49/68 73

4, tgfb & U0126 0.97 (0.90, 1.0) 58/3933 3 3 63/69 91

5, U0126 & spc 0.99 (0.95, 1.0) 60/5900 6 5 89/100 89

Automatic track detection consists of cell identification and track generation. The cell identification rate is measured over all individual images. A cell track was
counted as swapped and thus false in two cases: either if two tracks “exchanged” their cells (which leads to a double swapping error) or if the merging during
the cell division (backward tracking) happened with the wrong child cell. The total number of cell-to-cell associations for each video file is given in column 3 (e.
g., video 1 consists of 80 tracked cells over 63 frames, requiring a total of 62 × 80 = 4960 cell-to-cell associations. Only 11 of those were incorrect (0.2%),
demonstrating an association performance of 99.8% for sample video 1).

The proportion of tracks that were followed correctly across all frames (i.e. without any form of mis-association of cells) is given in column 6. The third video
clearly shows the highest swapping error, which was expected as it contains the fastest cells and the lowest cell detection sensitivity (0.96).
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according variance were previously estimated using the
manual extracted cell tracks (see Additional file 1).
To assign new measurements to each track end (i.e.

measurement for the Kalman filter), the iterative unique
nearest neighbor (UNN) algorithm was utilized. This
algorithm associates only the best matching track-to-
measurement pair in each loop and effectively guards
against unreasonable track-to-measurement associations.
The UNN algorithm terminates if either all tracks or all
measurements are allocated.
In order to adequately analyze discontinuous cell

tracks, we have implemented a Monitoring Module
(MM), which recognizes and automatically integrates
higher-level events, such as cell division or moving of
cells into and out of the field of view, into the analysis.
The likelihood of any such event is evaluated individu-
ally for each track based on the outcome of the UNN
search, i.e. the distance between the previous track/new
measurement pair. A first threshold determines if the
pairing is likely to be correct. In this case the pair is

accepted and no further actions are taken. If the dis-
tance of the pair is too high, possible alternatives are
evaluated including cell division, track initialization,
missing measurements, and movement of the cell out of
the field of view. For each of these cases, an event num-
ber is defined which determines a maximal number of
events before further actions are taken. For instance, if
the measurement for a track is missing too often, the
track terminates. Until this threshold is reached, the
missing measurement is provided by the MM, i.e. it will
be formed by the last determined cell position. Other
higher level events are treated in a similar way, which
effectively guards against segmentation and track-to-
measurement association errors.
To simplify mitosis detection and track initialization/

termination, we utilized backward tracking in our sys-
tem, meaning that cells were followed from the last to
the first frame [26]. In backward tracking, detection of
cell division (mitosis) is observed as cell merging. This
means that - during the course of a tracking analysis -

Figure 3 Kalman filter tracked cell path. The blue line displays the “ground truth” cell path without any influence of noise. The track was
taken from the set of smoothed manual tracks of the first video file. The red dots indicate the noisy measurements, which were varied within a
standard deviation of five pixels around the original (blue) path. The dashed red line shows the track that would result from taking the noisy
measurements as real centroid positions. The track varies strongly around the original blue track. The green line displays the track derived by the
Kalman Filter implemented in this project. A main part of the noise is successfully filtered with our approach so that the Kalman track appears
much smoother than the track from the noisy measurement. Note that the KF with constant velocity model also performs well at major turning
points of the trajectory (black arrows).

Huth et al. BMC Cell Biology 2010, 11:24
http://www.biomedcentral.com/1471-2121/11/24

Page 6 of 12



cells can technically only newly emerge when they
migrate into the field of view (thus only at the border of
a frame) and false track initialization can effectively be
avoided.
The complete automated tracking process, starting

with the processed images, is schematically outlined in
Figure 4A. The average computation time for one frame
was five seconds. A detailed description of the cell seg-
mentation, UNN, KF tracking and the MM as well as
the user tunable parameters can be found in the supple-
mentary material (Additional file 1). The entire system
was implemented in MatLab as a graphical application
(free, open source, cross platform). The image-proces-
sing module offers a large degree of adjustability to
accommodate different cellular phenotypes (size, shape)
or different image qualities (Additional file 2). The
tracking module is adjustable to different cell speeds
and types of motion. Examples of video files of Panc1 in
DIC and HeLa cells recorded with phase contrast are
part of the supplementary material (Additional files 3 to
5) accompanying this manuscript.
The software is available online (TimeLapseAnalyzer:
Software Documentation: http://www.informatik.uni-
ulm.de/ni/staff/HKestler/tla/) together with a short
introduction, a detailed software documentation and
example video files.
The tracking system was evaluated using the video

sequences of differentially treated Panc-1 pancreatic
cancer cells. Figure 4B provides a graphical representa-
tion of the tracking results for a sample video file. For
evaluation of tracking performance, the complete set of
420 manually validated tracks (see Methods) was used
to analyze the validity of corresponding automatically
extracted tracks. An automatically generated track was
only regarded as valid if it followed one cell (and only
one) through all frames in which the cell was visible.
This stringent criterion was violated if a track failed to
initialize, was prematurely terminated, or swapped
between two cells. The overall accuracy of the complete
cell identification and tracking procedure across all five
video samples was 85.48%. Swapping errors were highest
for the fastest (TGFb-treated) cells. In contrast, counts
of lost or deleted cell tracks were uniformly low in all of
the video files (Table 3). In order to evaluate the preci-
sion of cell speed measurements derived by the tracking
system, AMD values calculated from automatically
extracted tracks were compared to those calculated
from smoothed manually determined tracks (centered
moving average filter, window size 5). As shown above,
the AMD values calculated from smoothed tracks pro-
vide the best possible estimate of “true” migration rates.
No significant differences were detected between the
automated tracking (Figure 1, red) and the manual
tracking (Figure 1, blue) of all cells in the five image

sequences (exact Wilcoxon test, paired, p = 0.25, 95%
CI: -0.027 to 0.012 for difference in medians).

Discussion and Conclusions
Active cell migration is a complex task involving many
different cellular components and pathways. The identi-
fication and characterization of contributing factors is
very important e.g. in cancer biology, where the migra-
tory potential of malignant cells is directly related to
their invasive and metastatic phenotype, and hence to
patient prognosis. In order to be able to objectively eval-
uate the contribution of individual genes and specific
signaling pathways, or to examine the influence of che-
mical compounds, etc., it is of utmost importance to
measure migratory activity as precisely as possible.

Error sources in manual cell tracking
In unstained cell images, cell borders can be difficult to
detect visually. Together with the inherent difficulty of
visually estimating the center of irregularly shaped
objects, this leads to substantial imprecision in cell cen-
troid determination in point-and-click methods of cell
tracking. Bahnson et al. [27] have reported that manu-
ally determined cell centroid positions differed consider-
ably between two individual analysis runs. In a study
with synthetic data simulating the movement of fluores-
cent particles within cells, Smal et al. [28] estimated that
the error of manual particle localization, even under
these comparatively favorable conditions, was 2-3 times
higher than the error of the automated tracking system
they evaluated. Our own results with the real-world data
sets revealed that the standard deviation of manually
selected cell centroids from the estimated “true” cell
centroids was as high as 7.71 μm for pancreatic cells,
which display cell diameters of approx. 50 - 200 μm. As
we have demonstrated, this consistently leads to overes-
timation of cell speeds by up to 410%.
Even more severe was the influence of cell subset

selection on the result of the migration analyses. As
mentioned above, selecting subsets of cells for analysis
to approximate the behavior of the whole population is
a common practice in manual cell tracking. The selec-
tion of cells from a video was found to be highly indivi-
dual. Nearly all participants chose subsets that overrated
the “true” migration rates. More importantly, variability
of the results was precariously high between individual
participants. This is also highlighted by the low level of
agreement between the participants’ cell subset choices
(on the average only 6.17 out of 20 cells were mutually
selected by any two participants). Although the relative
differences of the AMD values between the single video
files were preserved in all data sets for individual partici-
pants, these results clearly demonstrate that substantial
user bias can be introduced in such an analysis which
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Figure 4 Overview of the tracking scheme. (A) In each iteration, the actual extracted cell centroids and the optimized state estimate from the
Kalman filter process are used to compute the unique nearest neighbor for each track end. The unique nearest neighbor is processed in a
monitoring module to check whether a cell division, cell death, or leaving of the cell out of view event might have occurred. The stored tracks
are updated accordingly. All tracks that are still active are further processed: the tuple consisting of actual track end and associated unique
nearest neighbor track (measurement) is used to make the next state ahead prediction using the Kalman filter. (B) Three-dimensional
representation of the result of the migration analysis for a video sample derived by the automated tracking system. The extracted cell tracks are
exemplarily plotted onto the first video frame. Each colored line marks the path of a single cell through the stack of images (video frames).
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may be even more significant if certain experimental
outcomes are expected a-priori. These uncertainties
severely complicate the meaningful comparison of
experimental results across different laboratories or dif-
ferent experimenters.
An obvious solution to the problem of human influ-

ence and subjective choices would be the random selec-
tion of cells without prior knowledge of the cells’
behavior in the image sequence. Our resampling experi-
ments, however, revealed that the range of possible out-
comes using this selection strategy is extremely broad,
posing a considerable danger of severely distorting the
results of the analysis. Taken together, these results
clearly demonstrate that manual tracking of cells, in par-
ticular when subsets of cells are used to approximate the
behavior of whole populations, is not an adequate
method to generate precise and inter-subjectively com-
parable measurements of cell motility. To our knowl-
edge, this is the first report quantifying the influence of
different error sources in manual cell tracking.

Performance of the automated cell tracking system
Object identification is the first critical step in auto-
mated tracking applications [27,29]. The Differential
Interference Contrast (DIC) imaging technique
employed here offers the best prospect for recognition
of unstained cells in live cell microscopy since it does
not suffer from the phase halos typical of phase-contrast
images [30]. However, precise identification of individual
cells remains a challenging task for computer vision
applications [31]. DIC images show no contrast perpen-
dicular to the shear angle of the splitted beams, which
excludes the use of the image processing techniques of
skeletonization and standard contour closure to define
the borders of cellular structures [32]. The low contrast
regions which are typically encountered in strongly out-
spread migrating epithelial cells pose particular pro-
blems for the cell segmentation [33,34]. Previously
proposed methods for cell identification in DIC images
include template matching [35], local variance detection
[36], or a combination of gradient variations and texture
filter to outline cell boundaries Most recently, the use of
deformable templates has been explored [27,37,38].
These are modeled closed curves, which are fitted to
object boundaries in iterative processes. In each frame,
an attraction area must be identified in the surrounding
of each cell, either by seeking cell edges (gradients)
which is less promising due to the missing contrast per-
pendicular to the shear angle, or by analyzing region-
based energy [39,40]. However, all of these techniques
are either limited to cell types with relatively constant
sizes and shapes, or require relatively long processing
times, making them unsuitable for high-throughput
applications. We have demonstrated that the combined

analysis of local image entropy [41] and local illumina-
tion intensity is suitable to identify individual cells with
high sensitivity and specificity at low computational
cost.
The precision of cell detection in our analyses ranged

between 96% and 99%, which compares favorably with
other systems, although only few related studies provide
quantitative information regarding the performance of
their cell identification procedures. For the segmentation
of cells in a set of phase contrast videos, Li et al. [37]
implemented a procedure of classifying pixels into fore-
ground and background based on a coarse pre-segmenta-
tion and a maximum a-posteriori principle. They report a
specificity of 98.1% and a sensitivity of 96.6% for the detec-
tion of individual cells. For the identification of fluorescent
objects in live cell videos, several authors have used the
well-established technique of watershed segmentation
[42]. Chen et al. [43] and Yan et al. [44] report accuracies
of detection of 97.8% and 98.12%, respectively, but had to
implement fragment merging techniques to avoid over-
segmentation, which is an inherent problem of the
watershed segmentation principle.
The next step in our procedure is the tracking of indivi-

dual detected cell centroids through the image sequences.
The two main potential error sources during this phase
are swapping of cells and erroneous loss or deletion of
valid tracks. Of these, swapping of cells is less critical for
the average mean displacement computation, since only
single displacement values of individual tracks will be
computed erroneously. In contrast, the deletion of tracks
due to missing cell-to-cell associations can lead to larger
errors in this calculation, as all displacement values
beyond the time point where the track is deleted are lost
for this measurement. We have implemented two proce-
dures to guard against both types of errors: the Kalman
Filter [24,25] and a Monitoring Module. Due to its com-
putational simplicity and its optimal performance in linear
movement problems, the Kalman filter can substantially
improve the precision of assigning subsequent positions to
existing tracks [37,45]. Events such as cell division or
migration out of and into the field of view, however,
require higher level decisions such as initialization of new
and termination of ending tracks. These behaviors necessi-
tate processing on a symbolic level, as implemented by the
Monitoring Module. As demonstrated, our system cor-
rectly initialized and accurately followed 85.48% of all
valid tracks across all 5 image sequences. More impor-
tantly, the automatically determined average mean displa-
cement values for the five cell populations did not show
any significant differences from the estimated “true” rates,
clearly outperforming the participants of the cell subset
selection experiments.
Further improvements in the precision of the tracking

process can potentially be achieved by consistently
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adapting the motion model in the Kalman Filter to the
observed previous motion of the individual cell in each
iteration [37]. Another option is to make use of Particle
Filters (PF) [46], which have been applied to the area of
multiple target tracking applications [28,47]. PF are able
to deal with non-linearity of movement- and measure-
ment-models, which enables more elaborate object state
ahead prediction. Smal et al [28] have described the use
of PF to track intracellular objects in fluorescence
microscopic applications. The performance of their sys-
tem was strongly dependent on signal-to-noise ratio
(SNR) and object density. For a density of 40 objects per
field of view, a SNR of at least 5 was required to reach
an accuracy of 90%. As a general drawback, the compu-
tational cost of the PF framework increases considerably
with the number of objects and particles used for
motion prediction. Moreover, Godinez et al. [48]
demonstrated in a similar experimental setting that Kal-
man Filters perform equal to Particle Filters under most
conditions.
Alternatively, the use of Interacting Multiple Models

(IMMs), which combine more than one motion predic-
tor (e.g. Kalman Filter) to optimize state estimates, can
be advantageous for modeling individual cell characteris-
tics and cyclic cell behaviour [37]. Using an IMM with 4
interacting models for tracking of cells recorded with
the phase contrast technique Li et al. report an accuracy
of 77.8% - 88.9%. Genovesio et al [49] applied IMMs to
the three dimensional tracking of fluorescent intracellu-
lar objects. In their evaluation, the IMM approach per-
formed better than a single KF for different particle
densities, but the differences in performance were small
(ranging from 86.7% vs. 90% to 64.2% vs. 66.6% for low-
est and highest particle densities, respectively). More-
over, the use of IMMs will lead to additional
computational costs and requires a good a-priori knowl-
edge of the cells behavior in order to select appropriate
models, and/or the production of elaborate sets of train-
ing data for each individual cell population for estimat-
ing the increased number of model parameters (i.e.
transition matrix probabilities).
In the current analysis, our system showed an effective

processing time of 720 frames/h (framesize: 1024 × 1344
pixels) on an Intel Core 2 Duo, 2.4 GHz PC with 2 Gb
RAM using a MatLab implementation.

Availability and requirements
The software (TimeLapseAnalyzer) is available online
http://www.informatik.uni-ulm.de/ni/staff/HKestler/tla/).
A detailed documentation containing an in-depth
description of the functionality of the software as well as
example applications can be found in the supplementary
information accompanying this article (Additional file 2)
and on the project website.

Project name: TimeLapseAnalyzer
Project home page: http://www.informatik.uni-ulm.

de/ni/staff/HKestler/tla/
Operating system(s): Platform independent
Programming language: MatLab (v. 7.2)
Other requirements: MATLAB Compiler Runtime

(provided on the webpage if not available)
License: The source code is distributed under a Crea-

tive Commons Attribution-Noncommercial 3.0 License
Any restrictions to use by non-academics: n.a.

Additional file 1: Supplementary information: Core elements of the
tracking system.

Additional file 2: Supplementary information: Manual of the
TimeLapseAnalyzer.

Additional file 3: Supplementary Video File A. Example video file of
automatically tracked untreated Panc1 cancer cells, recorded with the
Differential Interference Contrast (DIC) imaging technique. Cell tracks (cell
paths) are marked with colored spots. Green flashing spots indicate a cell
division; red flashing spots indicate either a track loss or the leaving of a
cell out of the field of view (event near the border). In addition, each
track is also plotted into the last video frame for a final overview.

Additional file 4: Supplementary Video File B. A second example
video file of automatically tracked untreated Panc1 cancer cells, recorded
with the DIC imaging technique. Cell tracks (cell paths) are marked with
colored spots. Green flashing spots indicate a cell division; red flashing
spots indicate either a track loss or the leaving of a cell out of the field
of view (event near the border). In addition, each track is also plotted
into the last video frame for a final overview.

Additional file 5: Supplementary Video File C. Example video file of
automatically tracked untreated Hela cancer cells, recorded with the
Phase Contrast (PC) imaging technique. Cell tracks (cell paths) are
marked with colored spots. Green flashing spots indicate a cell division;
red flashing spots indicate either a track loss or the leaving of a cell out
of the field of view (event near the border). In addition, each track is also
plotted into the last video frame for a final overview.

Abbreviations
CI: Confidence Interval; DIC: Differential Interference Contrast; KF: Kalman
Filter; MD/AMD: Mean Displacement/Average Mean Displacement; MM:
Monitoring Module; spc: Sphingosylphosphorylcholine; UNN: Unique nearest
neighbor; PF: Particle Filter; IMM: Interacting Multiple Models
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