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Lack of a8 integrin leads to morphological
changes in renal mesangial cells, but not in
vascular smooth muscle cells
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Abstract

compensate for the lack of a8 integrin.

Background: Extracellular matrix receptors of the integrin family are known to regulate cell adhesion, shape and
functions. The a8 integrin chain is expressed in glomerular mesangial cells and in vascular smooth muscle cells.
Mice deficient for a8 integrin have structural alterations in glomeruli but not in renal arteries. For this reason we
hypothesized that mesangial cells and vascular smooth muscle cells differ in their respective capacity to

Results: Wild type and a8 integrin-deficient mesangial cells varied markedly in cell morphology and expression or
localization of cytoskeletal molecules. In a8 integrin-deficient mesangial cells a-smooth muscle actin and CTGF
were downregulated. In contrast, there were no comparable differences between a8 integrin-deficient and wild
type vascular smooth muscle cells. Expression patterns of integrins were altered in a8 integrin-deficient mesangial
cells compared to wild type mesangial cells, displaying a prominent overexpression of a2 and a6 integrins, while
expression patterns of the these integrins were not different between wild type and a8 integrin-deficient vascular
smooth muscle cells, respectively. Cell proliferation was augmented in a8 integrin-deficient mesangial cells, but not
in vascular smooth muscle cells, compared to wild type cells.

Conclusions: Our findings suggest that a8 integrin deficiency has differential effects in mesangial cells and
vascular smooth muscle cells. While the phenotype of vascular smooth muscle cells lacking a8 integrin is not
altered, mesangial cells lacking a8 integrin differ considerably from wild type mesangial cells which might be a
consequence of compensatory changes in the expression patterns of other integrins. This could result in
glomerular changes in a8 integrin-deficient mice, while the vasculature is not affected in these mice.

Background

Integrin family receptors mediate cell-cell or cell-matrix
interactions. Integrins are heterodimers consisting of an
o and a B subunit. At least 18 o and 8  chains are
known to date, which combine to 24 integrin receptors
[1]. Most receptors recognize more than one ligand and
each ligand is capable of binding several integrins,
which leads to a wide variety of possible interactions [2].
Many B1 and B3 integrins are receptors for extracellular
matrix molecules mediating not only adhesion of cells

* Correspondence: andrea.hartner@uk-erlangen.de

t Contributed equally

1Hospi‘[a\ for Children and Adolescents, Universitat Erlangen-Nurnberg,
Loschgestrasse 15, 91054 Erlangen, Germany

Full list of author information is available at the end of the article

( BiolMed Central

but also conveying signals which affect cytoskeletal
architecture and thus cell morphology and differentia-
tion (reviewed in [3-5]): In renal cells, signaling via
integrins can alter the expression of cytoskeletal proteins
[6] and the arrangement of cytoskeletal components,
which is mediated via integrin linked kinase [7,8]. Sev-
eral studies have suggested a regulatory role for integ-
rins in the differentiation of epithelial cells [9],
podocytes [6], mesangial cells [10] or fibroblasts [11].
Moreover, integrin signaling is involved in epithelial to
mesenchymal transition, a phenomenon frequently seen
in models of renal fibrotic disease [12,13].

The a8 integrin chain is expressed predominantly on
mesenchymal cells, like vascular smooth muscle cells,
certain fibroblast cells and glomerular mesangial cells,
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where it serves as a receptor for fibronectin, vitronectin,
tenascin-C fragments, osteopontin and nephronectin,
but not for collagens [14-17]. Moreover, a role for o831
integrin in migration, proliferation and survival of cells
was described [18,19].

A few studies suggested that a8 integrin may be
involved in cell differentiation processes: a8 integrin
expression was reported to contribute to the mainte-
nance of the smooth muscle cell differentiated pheno-
type, because downregulation of a8 integrin led to a
severe reduction of a.-smooth muscle actin expression
and an increase in cell motility [20], while overexpres-
sion of a8 integrin had the opposite effects [21]. In
fibroblasts, the downregulation of a8 integrin resulted
in epithelialization, possibly due to induced WT-1
expression [22].

A role for a8 integrin was suggested in atherosclerotic
[23] and fibrotic diseases [24,25]. Changes in the cytos-
keletal architecture of cells could influence their ability
to adhere and migrate. This might have an important
impact on the progression of atherosclerotic or fibrotic
diseases. On the other hand, we did not observe altera-
tions of the smooth muscle cell layers of renal arteries
and arterioles in a8 integrin-deficient mice, whereas the
glomerular mesangium of these mice was clearly abnor-
mal [26]. Thus, we hypothesized that mesangial cells
and vascular smooth muscle cells might be differently
affected by a lack of a8 integrin. We investigated if the
properties of mesangial and vascular smooth muscle
cells isolated from a8 integrin-deficient mice differ from
their respective counterparts cultured from wild type
controls.

Results
Cultivated wild type and a8 integrin-deficient mouse
mesangial cells (MCs) were tested for mRNA and pro-
tein expression of a8 integrin to confirm lack of a8
integrin expression in a8 integrin-deficient MCs and
presence of a8 integrin in wild type cells. a8 integrin
mRNA expression was readily detected in wild type
MCs by real-time RT-PCR (Figure 1A), while a8 integ-
rin mRNA expression was within background detection
in 0.8 integrin-deficient MCs (Figure 1A). a8 integrin pro-
tein was detected in wild type MCs, but not in a8 integ-
rin-deficient MCs by Western blot analysis (Figure 1B).
Wild type MCs in culture grew in a typical mesenchy-
mal pattern (Figure 2A), while the morphology of a8
integrin-deficient MCs was different with a more com-
pact cell shape lacking long protrusions. Moreover, a8
integrin-deficient MCs were arranged in groups forming
cell islets (Figure 2B). F-actin fibers were frequently
arranged parallel to the cytoplasma membrane in a8
integrin-deficient MCs (Figure 2D, F and 2H), while in
wild type MCs f-actin fibers were spanning the whole cell
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Figure 1 Mesangial cell expression of a8 integrin in wild type
(wt) and a8 integrin-deficient mesangial cells (a8-/-). A: Real-
time RT-PCR analysis of a8 integrin expression in wt and a.8-/-
mesangial cells. B: Western blot analysis of a.8 integrin protein in wt
and a8-/- mesangial cells. Amido black (Abl) staining of the blot
served as loading control. Results are representative for at least 3
similar experiments. Data are means + sd. * p < 0.05 vs. wt.

more irregularily (Figure 2C, E and 2G) after an attach-
ment time of 24 hours. Focal contacts were shorter in o8
integrin-deficient MCs compared to wild type MCs and
frequently arranged in bundles (Figure 2D and 2K).
mRNA expression of a-smooth muscle actin was clearly
detectable in wild type MCs but downregulated in o8
integrin-deficient MCs almost to background levels
(Figure 3A). a-smooth muscle actin protein was barely
detectable by Western blot analysis in a8 integrin-
deficient MCs (Figure 3B). While wild type MCs
o-smooth muscle actin stain was arranged in typical
stress fibers, most a8 integrin-deficient MCs stained
negative for o-smooth muscle actin, except for some
occasional staining in short cortical fibers along the
plasma membrane (Figure 3C). Double staining for
o-smooth muscle actin and f-actin confirmed that in
wild type MCs a-smooth muscle actin is a component of
stress fibers (Figure 3D). In a8 integrin-deficient MCs
f-actin staining is preserved despite the lack of a.-smooth
muscle actin immunoreactivity, arguing for a contribu-
tion of other types of actin to f-actin-positive fibers
(Figure 3D).

In contrast to MCs, vascular smooth muscle cells
(VSMCs) downregulate a8 integrin expression after cell
passaging in culture. In freshly isolated VSMCs of pas-
sage 1, a8 integrin expression was readily detectable by
real-time RT-PCR, while in VSMCs after 10 passages,
08 integrin became nearly undetectable (Figure 4A). For
this reason, we only used freshly isolated VSMCs in pas-
sage 1 for our further experiments. Lack of a8 integrin
expression in a8 integrin-deficient VSMCs was con-
firmed by real-time RT-PCR (Figure 4B) and Western
blot analysis (Figure 4C).

In contrast to our findings in MCs, cell morphology
was not different in wild type and a8 integrin-deficient
VSMCs (Figure 5A and 5B). Moreover, the distribution
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Figure 2 Comparison of wild type (wt) and a8 integrin-deficient (a8-/-) mesangial cell morphology after hematoxylin stain (A+B),
immunofluorescent double staining for f-actin in green and vinculin in red (high magnification C+D, low magnification E+F),
immunofluorescent staining for f-actin alone (G+H) or immunofluorescent staining for vinculin alone (I1+K). White arrows indicate focal
contacts of the cells and white arrowheads indicate bundles of focal contacts in a8-/- mesangial cells.
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Figure 3 Comparison of a-smooth muscle actin expression in wild type (wt) and a8 integrin-deficient (a8-/-) mesangial cells. mRNA
expression analysis by real-time RT-PCR analysis (A), representative Western blot analysis with amido black (Abl) staining as loading control (B)
and immunofluorescent detection of a.-smooth muscle actin (C). Arrows indicate cell nuclei of cells negative for a-smooth muscle actin. D:
Doublestaining of wild type mesangial cells for a-smooth muscle actin (left) and f-actin (middle panel). Detection of f-actin in a.8-/- mesangial
cells (right). Results are representative for at least 3 similar experiments. Data are means + sd. * p < 0.05 vs. wt.
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Figure 4 Expression of a8 integrin in vascular smooth muscle
cells. Real-time RT-PCR analysis of a8 integrin expression in wild
type (wt) vascular smooth muscle cells cultivated in passage 1 or 10
(A). Real-time RT-PCR analysis of a8 integrin expression in freshly
isolated wt and a8-/- vascular smooth muscle cells (B). Western blot
analysis of a8 integrin expression in freshly isolated wt and a.8-/-
vascular smooth muscle cells (C). Amido black (Abl) staining of the
blot served as loading control. Results are representative for at least
3 similar experiments. Data are means + sd. * p < 0.05 vs. freshly
isolated cells or wt, respectively.
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of f-actin fibers was not different in a.8 integrin-deficient
VSMCs compared to wild type VSMCs (Figure 5C and
5D) after 24 hours of attachment. Adherent a8 integrin-
deficient VSMCs developed focal contacts, which were
comparable to the focal contacts of wild type VSMCs
(Figure 5E and 5F).

Evaluation of a-smooth muscle actin expression
revealed no significant differences between wild type
and a8 integrin-deficient VSMCs (Figure 6A). Western
blot analysis revealed that o.-smooth muscle actin pro-
tein was abundant in wild type as well as a8 integrin-
deficient VSMCs (Figure 6B). a-smooth muscle actin
fibers were spanning the whole cell and were not
reduced in a8 integrin-deficient VSMCs compared to
wild types (Figure 6C).

As reorganisation of the actin cytoskeleton can lead to
changes in the expression of connective tissue growth
factor (CTGF), we assessed protein expression levels of
CTGF in wild type and a8 integrin-deficient MCs in
comparison to VSMCs. In MCs, a lack of a8 integrin
resulted in downregulation of the protein expression of
CTGEF (Figure 7), while in a8 integrin-deficient VSMCs
CTGF expression was not reduced (Figure 7).

We hypothesized that the differences in the effects of
the lack of a8 integrin on cytoskeletal organization
observed in MCs and VSMCs could be a consequence of
a different regulation of other integrins in both cell types.
Therefore, we compared expression patterns of several
integrins in a8 integrin-deficient cells and wild type cells.
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In a8 integrin-deficient MCs, induction of integrin
chains a1, and even more prominently of a2 and a6, was
detected when compared to wild type MCs (Figure 8A).
In contrast, none of the investigated integrin chains was
induced in a8 integrin-deficient VSMCs (Figure 8B).

We then hypothesized that MCs lacking a8 integrin
might downregulate not only a.-smooth muscle actin
but also additional mesenchymal markers. To analyze
expression patterns of other mesenchymal markers, we
performed real-time RT-PCR for vimentin and desmin
and for the epithelial marker E-cadherin, because a6
integrins are known to upregulate E-cadherin-mediated
adhesion [27]. In a8 integrin-deficient MCs the expres-
sion of desmin was significantly lower than in wild type
MCs (Figure 9A), while in a8 integrin-deficient VSMCs
desmin expression was not significantly different from
desmin expression in wild type VSMCs (Figure 9B). On
the other hand, vimentin expression was not affected
by the lack of a8 integrin, in none of the cell types
(Figure 9C and 9D). E-cadherin expression was barely
above detection level in both wild type and a8 integrin-
deficient MCs, compared to its expression in liver cells
used as positive control (Figure 9E). In VSMCs, expres-
sion of E-cadherin was not different in wild type and o8
integrin-deficient cells (Figure 9F).

To clarify if these differences of the properties of o8
integrin-deficient MCs and VSMCs have functional con-
sequences, we performed proliferation assays. Our
results show that a8 integrin-deficient MCs and VSMCs
differ in their growth response to fetal calf serum when
grown on fibronectin, a ligand for a8 integrin (Figure
10). While stimulation of a8 integrin-deficient MCs
leads to significantly more proliferation than stimulation
of wild type MCs, proliferation of wild type and a8
integrin-deficient VSMCs was not different.

Discussion

Taken together, a8 integrin-deficient MCs differed from
wild type MCs with regard to morphology, cytoskeletal
architecture and proliferative capacity, while a8 integrin-
deficient VSMCs did not differ from wild type VSMCs.
This is in keeping with our previous in vivo findings sug-
gesting changes in the glomerular mesangium but not in
the media of renal arteries in a8 integrin-deficient mice
[26], although in normal mice both structures contain
mesenchymal cells expressing a8 integrin. a8 integrin-
deficient MCs downregulated expression of a-smooth
muscle actin and desmin, but not vimentin, while expres-
sion of these mesenchymal proteins was not altered in a8
integrin-deficient VSMCs. a8 integrin-deficient MCs had
higher expression levels of integrin chains al, a2 and a6
compared to wild type MCs. Similar differences were not
detected between a8 integrin-deficient and wild type
VSMCs. Moreover, increased proliferation rates due to a
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Figure 5 Comparison of wild type (wt) and a8 integrin-deficient (a8-/-) vascular smooth muscle cell morphology after hematoxylin
stain (A + B) or immunofluorescent staining for f-actin (C +D) or immunofluorescent staining for vinculin (E + F).

lack of a8 integrin were only detected in MCs, not in
VSMCs.

Several studies show that integrins can contribute to
cell differentiation and to the maintenance of the phe-
notype of the cell via outside-in signaling from the sur-
rounding matrix to the cytoskeleton and small adapter
molecules inside the cell [4,28]. Many integrins use a

signaling pathway involving the B1 integrin chain and
integrin linked kinase to regulate the cytoskeletal archi-
tecture of the cell [29]. Moreover, integrins can alter the
organization of the actin cytoskeleton via proteins of the
rho family, which also regulate CTGF [30]. CTGEF,
besides having profibrotic function, can act as a media-
tor of growth arrest [31]. In MCs, disassembly of actin
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Figure 6 Comparison of a-smooth muscle actin expression in
wild type (wt) and a8 integrin-deficient (a8-/-) freshly isolated
vascular smooth muscle cells. a8 integrin expression by real-time
RT-PCR analysis (A), Western blot analysis with amido black (Abl)
staining as loading control. (B) and immunofluorescent detection (C)
(x1000). Results are representative for at least 3 similar experiments.

stress fibers with an inhibitor of rho family proteins
resulted in inhibition of CTGF expression [32]. We
could show that MCs lacking a8 integrin rearrange their
actin cytoskeleton and downregulate CTGF.

Changes in the cytoskeletal architecture can alter cell
adhesion and motility [33]. In a previous study, we
showed that compared to wild type MCs, a8 integrin-

CTGF
MCs

VSMCs
wt a8-/-

wt a8-/-

- 36 kDa

SN W - 42 kDa

Figure 7 Connective tissue growth factor (CTGF; 36 kDa)
protein expression in wild type (wt) and a8 integrin-deficient
(a8-/-) mesangial cells (MCs) and vascular smooth muscle cells
(VSCMs). Staining for B-actin was used as a loading control. Results
are representative for 3 similar experiments.
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deficient MCs adhered weaker to fibronectin and vitro-
nectin, two ligands for a8 integrin, but adhered more
easily on collagens, which are not ligands for a8 integrin
[18]. On the other hand, a8 integrin-deficient MCs
migrated more easily on fibronectin or vitronectin than
wild type cells [18]. These results support the notion
that a8 integrin could serve as an anti-migratory integ-
rin, keeping MCs resting at their native location. Firm
adhesion, as mediated by a8 integrin, inhibits migration
in many cell types [34]. Thus the decreased ability of o8
integrin-deficient MCs to adhere to fibronectin or vitro-
nectin could contribute to the increased ability of these
cells to migrate. Given these differences in migratory
abilities, we hypothesized in the present study that wild
type and a8 integrin-deficient MCs also differ in their
cytoskeletal architecture and general morphology.
Downregulation of a-smooth muscle actin expression
in a8 integrin-deficient MCs leads to a reduction in a-
smooth muscle actin containing stress fibers and conse-
quently to a reduction in firm adhesion. This in turn
seems to lead to increased cell motility of a8 integrin-
deficient MCs. Similar observations were made in
VSMCs after siRNA knockdown of a8 integrin expres-
sion [20]: Treatment with a8 integrin siRNA reduced
expression of a-smooth muscle actin and increased cell
migration, which is in contrast to our findings in a8
integrin-deficient VSMCs, where both the a8 integrin-
deficient and the wild type genotype expressed a-smooth
muscle actin in comparable amounts. The reasons for
the discrepancy of the results of the studies in VSMCs
after blockade of a8 integrin expression with siRNA and
in a8 integrin-deficient VSMCs are unclear at present.
Our results regarding a-smooth muscle actin expression
in a8 integrin-deficient MCs are reminiscent of the find-
ings of Zaghram et al. [20] after siRNA blockade of a8
integrin in VSMCs. We therefore wanted to investigate
the differences in a8 integrin-deficient MCs and a8
integrin-deficient VSMCs: A compensatory increase of
integrin chains al, a2 and a6 was detected in a8 integ-
rin-deficient MCs. A similar increase of integrin expres-
sion was not found in a8 integrin-deficient VSMCs.
Thus, it seems possible that changes in the cytoskeletal
architecture and a-smooth muscle actin expression in a8
integrin-deficient MCs is not a direct consequence of
the lack of a8 integrin, but more likely due to the induc-
tion of other integrin chains. a6 integrin is usually not
expressed in MCs, but is an integrin characteristic of
epithelial cells, while a8 integrin is a typical mesenchy-
mal integrin [35,36]. During kidney development, down-
regulation of a8 integrin, possibly by WT-1 [22], results
in epithelialization of mesenchymal cells and in the for-
mation of tubular structures [37]. For this reason, we
tested if a8 integrin-deficient MCs exhibit reduced
expression of other mesenchymal markers or increased
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Figure 8 Real-time RT-PCR analysis of integrin chain a1, a2, a3, o5, a6, ov and B1 expression profiles in wild type (wt) and a8
integrin-deficient (8-/-) mesangial cells (A) and freshly isolated vascular smooth muscle cells (B). Results are representative for at least 3

similar experiments. Data are means + sd. * p < 0.05 vs. wt.

expression of a typical epithelial marker, widely used in
the detection of epithelial-mesenchymal transition
[38,39]. A reduction of desmin expression was readily
detected, but vimentin expression was not reduced and
E-cadherin expression was very low in a8 integrin-
deficient MCs. These findings argue against the hypothesis
that lack of a8 integrin, along with increased expression of
al, a2 and a6 integrins, leads to an epithelialization of
MCs, but more likely might result in dedifferentiation of
MCs. Why a8 integrin-deficient MCs undergo these
changes in integrin expression and cytoskeletal architec-
ture, while a8 integrin-deficient VSMCs do not, remains
unclear. Discrepancies in the differentiation status might
influence the ability of cells to dedifferentiate more easily
than others. MCs and VSMCs might also use distinct tran-
scriptional mechanisms, like it was described for smooth
muscle cell and myofibroblast a-smooth muscle actin
expression [40]. Moreover, no explanation exists to date as

to why VSMCs after blockade of a8 integrin with siRNA
behave differently from a8 integrin-deficient VSMCs
regarding a-smooth muscle actin expression and cytoske-
letal rearrangements. As shown by Zargham et al. [20],
blockade of a8 integrin with siRNA results in a dysregula-
tion of the expression of other integrins, like an increased
expression of the a2, a5 and av chains, or reduced expres-
sion of the al chain. In our isolations of a8 integrin-
deficient VSMCs we did not observe significant increases
in the expression of the a2, a5 and av chains, while the
expression of the al chain indeed was reduced. One has
to be aware that acute blockade of a8 integrin with
siRNA in VSMCs might not be consistent with a genetic
knockdown of a8, which is more comparable to a
chronic deficiency from the time of VSMC differentiation
on. As a consequence, many regulatory pathways might
differ in the two cell types. Moreover, the findings with
blockade of a8 integrin with siRNA was obtained in rat
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VSMCs [20], while our data are derived from mouse
VSMCs. Species differences might exist with regard to
VSMC biology.

Finally, differences in the properties of MCs and
VSMCc lacking a8 integrin were detected regarding cell
growth. While a8 integrin-deficient MCs had significantly
increased proliferation rates on ligands for a8 integrin
compared to wild type MCs [18], wild type and a8

integrin-deficient VSMCs showed a comparable growth
response after stimulation. Thus it is conceivable that the
cytoskeletal and matrix receptor changes in a8 integrin-
deficient MCs may result in changes in proliferative capa-
cities of these cells. Both a2 and a6 integrin chains,
which are upregulated in o8 integrin-deficient MCs, can
promote cell proliferation [41,42]. On the other hand,
increased proliferation rates in MCs lacking a8 integrin



Marek et al. BMC Cell Biology 2010, 11:102
http://www.biomedcentral.com/1471-2121/11/102

>

Mesangial Cells

*
» 607 T

® 50 -

2 40 -

2 a0 - T

(=%

> 20 -

2

@ 10 -

=0 : .

o

Vascular Smooth Muscle Cells

60 -
50 -
40 T 1
30 -
20 1
10

° wt a8~

Figure 10 Cell proliferation of wild type (wt) and o8 integrin-
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might be a consequence of rho-mediated disruption of
actin stress fibers, leading to increased expression of
CTGF, which was described to act anti-proliferative [31].

Conclusion

A lack of a8 integrin appears to be of little consequence
in VSMCs whereas the deficiency of this integrin has
profound effects on the MC phenotype. The different
abilities of both cell types to induce other integrin
chains might well result in different phosphorylation
patterns of kinases involved in integrin signaling, which
could lead to a different activation of signaling cascades,
causing differences in cytoskeletal characteristics and
proliferation capacities.

Methods

Cultivation of mouse mesangial cells and vascular

smooth muscle cells

Cells used in this study were obtained from organs of
wild type or a8 integrin-deficient mice (obtained from U.
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Miiller, Basel). Animal caretaking was performed accord-
ing to the guidelines of the American Physiological
Society and approved by local government authorities.
Mesangial cells (MCs) were isolated from kidneys by the
sieving method [43] using 63, 75 and 38 pm grid sieves.
Cultured wild type and a8 integrin-deficient MCs were
characterized as described [18]. MCs were grown in Dul-
becco’s modified Eagle’s Medium (DMEM; PAA Labora-
tories GmbH, Linz, Austria) containing 10% FCS, 5 pg/
ml insulin, 5 pg/ml plasmocin (TEBU, Frankfurt, Ger-
many) and 2 mM L-glutamine (Sigma, Deisenhofen, Ger-
many) in a 95% air - 5% CO, humified atmosphere at 37°
C. MCs were used for experiments in passages 5-10.

Vascular smooth muscle cells (VSMCs) were isolated
from mouse aorta similar as described by Strehlow et al.
[44] for rat vascular smooth muscle cells. Briefly, the aor-
tas were excised, washed in phosphate-buffered saline with
1% penicillin-streptomycin and fat was removed with a
fine forceps. The aortas were then incubated in DMEM
containing 1 mg/ml collagenase type I (Sigma), 0.3 mg/ml
elastase (Serva, Heidelberg, Germany) and 0.3 mg/ml tryp-
sin inhibitor type II (Sigma) for 15 to 20 minutes at 37°C.
The aorta was washed and the adventitia was stripped
with fine forceps. The vessels were incised longitudinally
and the endothelial cells were gently scraped off. The aor-
tas were then minced with scissors and transferred to
reaction tubes containing the same enzymatic solution as
described above, incubated in 37°C for 60 to 90 minutes
until 90% of the cells were dispersed under the micro-
scope. The cells were centrifuged at 5000 rpm for 2 min-
utes, then resuspended in 3 ml DMEM with 20% fetal calf
serum (FCS), 2% penicillin-streptomycin, and cultured in
plates or flasks in a 95% air - 5% CO, humidified atmo-
sphere at 37°C for experiments. Cultured cells were veri-
fied to be VSMCs by immunostaining with anti-smooth
muscle actin antibody (Sigma).

For detection of cytoskeletal components, MCs and
VSMCs were allowed to attach on culture slides coated
with 10 pg/ml fibronectin for 24 hours.

Isolation of mRNA and Real-time PCR

To evaluate mRNA expression levels, total RNA was
obtained from harvested cells by extraction with RNeasy”
Mini columns (Quiagen, Hilden, Germany). First-strand
c¢DNA was synthesized with TagMan reverse transcrip-
tion reagents (Applied Biosystems, Weiterstadt, Ger-
many) using random hexamers as primers. Final RNA
concentration in the reaction mixture was adjusted to 0.1
ng/puL. Reactions without Multiscribe reverse transcrip-
tase were used as negative controls for genomic DNA
contamination. PCR was performed with an ABI PRISM
7000 Sequence Detector System and SYBR Green or
TaqMan reagents (Applied Biosystems) according to
the manufacturer’s instructions. The relative amount



Marek et al. BMC Cell Biology 2010, 11:102
http://www.biomedcentral.com/1471-2121/11/102

of the specific mRNA was normalized with respect to
18 S rRNA. Primers used for amplification are listed in
Table 1. For detection of E-cadherin mRNA, a TagMan
probe was used: 5-GTC ACA GAC CCC ACG ACC
AAT GAT-3". All samples were run in triplicates.

Western Blot Analysis

Protein concentration of cell lysates was determined using
a protein assay kit (Pierce, Rockford, IL). Protein samples
containing 30 pg total protein were denatured by boiling
for five minutes and separated on a 8% denaturing SDS-
PAGE gel. After electrophoresis, the gels were electro-
blotted onto PVDF membranes (Pall Filtron, Karlstein,
Germany), blocked with 5% horse serum/TBS/0.1% Tween
20 for 2 hours and incubated with the primary antibody
overnight. Immunoreactivity was visualized with a second-
ary horseradish peroxidase-conjugated anti-rabbit IgG
antibody or anti-mouse IgG antibody (both from Santa
Cruz Biotechnology, Heidelberg, Germany), using the ECL
system according to the manufacturer’s instructions
(Amersham, Braunschweig, Germany).

Immunocytochemistry

MCs and VSMCs were seeded on glass 8-well chamber
slides blocked with 2% BSA. Cells were allowed to adhere
for 24 h. Then, supernates were removed, adherent cells
were rinsed 3x with PBS and fixed in 3% paraformaldehyde
for 20 min. After blockade of free aldehyde groups with 50
mM ammonium chloride, cells were permeabilized by 1%
Triton X-100 and nonspecific binding was blocked using
100% ECS. Cells were incubated with the primary antibo-
dies overnight, followed by a CY3-labelled goat anti-rabbit
or anti-mouse immunoglobulin G (Dianova) as secondary
antibody and embedding in Tris-buffered Mowiol, pH 8,6
(Hoechst). F-actin was visualized with phalloidin from
Molecular Probes (Leiden, The Netherlands).

Table 1 Primer pairs for Sybr green analysis
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Antibodies

The rabbit polyclonal antiserum to a8 integrin was
kindly provided by Dr. Ulrich Muller, San Diego and
used at a dilution of 1:200 as described before [43].
A polyclonal antibody to CTGF (Santa Cruz Biotechnol-
ogy) was used in a dilution of 1:1000. A monoclonal
antibody to smooth muscle actin (DAKO Diagnostika,
Hamburg, Germany) was used at a dilution of 1:50 for
immunocytochemistry or 1:1000 for Western blot analy-
sis. A polyclonal antibody to vinculin (Santa Cruz Bio-
technology) was used in a dilution of 1:500 for
immunocytochemistry.

Determination of cell proliferation

To assess cell growth, a 5-bromo-2’-deoxy-uridine
(BrdU) incorporation assay into cellular DNA was per-
formed using a BrdU labeling and detection kit
(#1299964; Roche Mannheim, Germany). Cells were
washed two times with PBS and serum-starved for 72
hours in medium containing 0.1% FCS. After trypsinat-
ing and washing they were seeded into culture slides
(Falcon, HTS; Becton Dickinson, Heidelberg, Germany)
which had been coated with 10 pg/ml fibronectin and
blocked with 2% BSA. After a 12-hour resting period
allowing the cells to attach to the matrix, they were
incubated with medium containing 10% FCS for 48
hours. For the last two hours of incubation, BrdU was
added. Cells were then fixed with 70% ethanol (in 50
uM glycine buffer; pH 2.0) and processed following the
manufacturer’s instructions. Incorporated BrdU was
detected by an alkaline phosphatase-conjugated second-
ary antibody reacting with an NBT/X-phosphate sub-
strate. Cells were counterstained with hematoxylin.
Nuclei with a positive staining for BrdU were counted.
Results shown are representative for at least three inde-
pendent experiments.

forward

reverse

a-smooth muscle actin 5-CCC TGA AGA GCA TCC GAC AC-3’

ol integrin 5-CCA GTC AGC AGC TTC GTT TGA-3'
o2 integrin 5-TGA CCA GGT TCT GCA GGA TAG A-3'
o3 integrin 5-AGG CAC AGG CTA TGG AGA ATC A-3'
a5 integrin 5-TCG GAG CAA CAG TTC GGG-3'

a6 integrin 5-TCC CCG ACT GGC ATA ATT ACC-3
a8 integrin 5-TCA AGG CGA GGA ACA GCA A-3

ov integrin 5-GGA GCT TTT GGT GTG GAT CG-3'

B1 integrin 5-TGG CAA CAA TGA AGC TAT CGT G-3'
desmin 5-GTG AAG ATG GCC TTG GAT GT-3'
vimentin 5-ACG ATC TCA CCC TCA GGG CT-3'
e-cadherin 5-AAG TGA CCG ATG ATG ATG CC-3'

185

5-TTG ATT AAG TCC CTG CCC TTT GT-3

5-GCC TTA GGG TTC AGT GGT GC-3'
5'-TTC CAG TCA TAG GCT CCC ACA G-3'
5-AGT AGA AAT TGC AGC CAC AGA GTA AC-3'
5-CGC ACT CTT TCT GGA AGT GGA C-3
5-GTG GAG CAC ATG CCA AGA TG-3'
5-CGA TGT CCC CTC GAG AAC C-3'

5-CCT TGG GAA CCC GAT GGT-3"

5-GAC AAC GGG TCT GGC TCT GTA-3
5-GTA GGA CAG TCT GGA GTC TCC ACA-3"
5-TTG AGA GCA GAG AAG GTC TGG-3'
5-GGG TCG CTG AGT CAG TGG AT-3
5-CTT CAT TCA CGT CTA CCA CGT-3'
5'-CGA TCC GAG GGC CTC ACT A-3
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Statistical analyses

A t-test was used to test significance of differences
between groups. A P-value <0.05 was considered signifi-
cant. The procedures were carried out using SPSS soft-
ware (SPSS Inc., Chicago, USA). Values are displayed as
means * standard deviation (SD).

List of Abbreviations
CTGF: connective tissue growth factor; MCs: mesangial cells; VSMCs: vascular
smooth muscle cells
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