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Abstract

Background: The DDIT3 gene encodes a transcription factor belonging to the CCAAT/enhancer
binding protein (C/EBP) family. It is normally expressed at very low levels but is activated by cellular
stress conditions and induces G| arrest and, in some cell types, apoptosis. DDIT3 is found as a part
of the fusion oncogene FUS-DDIT3 that is causal for the development of myxoid/round-cell

liposarcomas (MLS/RCLS).

Results: In the present study, we searched for putative interaction partners of DDIT3 and the
oncogenic FUS-DDIT3 among G1 cyclins and cyclin-dependent kinases. We found that FUS-DDIT3
and the normal DDIT3 bind CDK?2. In addition, CDK?2 showed an increased affinity for cytoskeletal
proteins in cells expressing FUS-DDIT3 and DDIT3.

Conclusions: We conclude that DDIT3 binds CDK2 and that many of the observed biological
effects of DDIT3 may involve interaction with CDK2.

Background

DDIT3 (GADD153, CHOP) encodes a transcription factor
belonging to the CCAAT/enhancer binding protein (C/
EBP) family [1]. DDIT3 is normally transcribed at very
low levels but is elevated upon DNA damage in cellular
stress conditions [2-6]. The DDIT3 protein has a central
role in endoplasmatic reticulum stress and DNA damage
response by inducing cell cycle arrest and apoptosis [7,8].
DDIT3 has recently been implicated in the stress response
leading to death of pancreatic insulin producing B-cells
[9] and it may also be a part of cellular stress conditions
causing neurodegenerative disorders [10]. In addition,
DDIT3 is believed to be involved in growth cessation and
terminal differentiation of lipoblasts, osteoblasts and
erythrocytes [11-13]. DDIT3 forms heterodimers with sev-
eral other C/EBP family members [14] as well as other leu-

cine zipper carrying proteins [15,16] and the
heterodimers are believed to act as dominant negative
inhibitors of transcription [14].

DDIT3 is also a part of a fusion oncogene critical for the
development of myxoid/round cell liposarcoma (MLS/
RCLS) [17,18]. The tumor cells carry the chromosomal
translocation t(12;16)(q13;p11) that results in fusion of
DDIT3 to FUS (also called TLS) or more rarely the
t(12;22)(q13;q12) that fuses DDIT3 to EWSRI [19-21].
The chimerical FUS-DDIT3 oncoprotein functions as an
abnormal transcription factor [22] and localizes to dis-
tinct nuclear structures in cultured cells [23,24]. MLS/
RCLS cells exhibit abnormal expression profiles of cell
cycle controlling factors and among them cyclins and cyc-
lin-dependent kinases (CDKs) [25]. In addition, the
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DDIT3-binding C/EBPa has been shown to interact and
inhibit the kinase activity of CDK2 and CDK4 [26]. Based
on these observations, we searched for putative interac-
tion partners of the oncogenic FUS-DDIT3 with G1 cyclins
and CDKs as these might provide insight into the molec-
ular mechanisms by which the chimerical oncoprotein
induces malignancy.

Results

CDK2 and cyclin E colocalize with FUS-DDIT3

HT1080 cells were transiently transfected with a FUS-
DDIT3-GFP construct and colocalization between the
ectopically expressed fusion oncoprotein and endogenous
cyclin D1, cyclin E, CDK2 and CDK4 was investigated by
immunofluorescence. Cyclin E and CDK2 showed prom-
inent colocalization with the FUS-DDIT3 protein and
were detected in FUS-DDIT3 containing granules in the
majority of cells (Figure 1). We found no signs of colocal-
ization between FUS-DDIT3 and CDK4 (Figure 1) or cyc-
lin D1 (not shown). Cells transfected with the empty GFP
vector showed no granules and a smooth nuclear distribu-
tion of CDK2 and cyclin E (Figure 1).

FUS-DDIT3 binds CDK2 through its DDIT3 part

Cells were transfected with FUS-DDIT3-GFP and cellular
proteins were immunoprecipitated with GFP antibodies
and further analyzed by western blot. In pilot experi-
ments, we used HT1080 cells stably expressing FUS-
DDIT3-GFP and could weakly detect endogenous CDK2
in immunoprecipitates while cyclin E was not found (data
not shown). To further confirm a possible interaction
between FUS-DDIT3 and CDK2, we instead transiently
transfected cells using cloned CDK2 ¢DNA expressed in
frame with the fluorescent protein DsRed1. Cells co-trans-
fected with CDK2-DsRed1 and either of FUS-DDIT3 or
DDIT3 expressing constructs showed presence of CDK2-
DsRed1 in anti-GFP immunoprecipitates from both FUS-
DDIT3 and DDIT3 transfected cells (Figure 2a). In con-
trast, CDK2-DsRed1 was not found in immunoprecipi-
tates of cells transfected with the N-terminal part of FUS
present in the FUS-DDIT3 protein or in GFP-transfected
control cells (Figure 2a). In a reverse experiment, HT1080
cells were transfected with FUS-DDIT3, FUS-DDIT3 LZ,
DDIT3 and GFP constructs and cellular proteins in
extracts were immunoprecipitated with anti CDK2 anti-
bodies (Figure 2b). We found that endogenous CDK2 co-
immunoprecipitated with DDIT3, FUS-DDIT3 and FUS-
DDIT3 lacking a leucine zipper domain. These results
indicate that the region binding CDK?2 is located N-termi-
nally of the leucine zipper part of DDIT3. ClustalW align-
ment performed between DDIT3 and the related C/EBPa
showed conservation of several amino acids in distinct
regions shared by the two proteins but that DDIT3 lacks a
region similar to the one that binds CDK2 in C/EBPa [26]
(Figure 2¢).
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CDK2 and cyclin E colocalize with FUS-DDIT3 in
transiently transfected HT 1080 cells. The endogenous
distribution of CDK2 and cyclin E seen in red is detected by
antiserum specific for these proteins. Ectopically expressed
GFP-tagged FUS-DDIT3 is shown in green. The DAPI dye is
used to stain nuclei blue. CDK4 was not seen to accumulate
in FUS-DDIT3-containing granules and no granules were
formed in cells overexpressing the GFP protein only. Bars
indicate 5 pum.
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Figure 2

Co-immunoprecipitation of DDIT3 and CDK2. (a) HT 1080 cells were co-transfected with the indicated GFP constructs
and CDK?2-DsRed|. Proteins in cell lysates were further immunoprecipitated with anti GFP serum and recombinant CDK2-
DsRed| protein was detected by western blot using CDK2 antibodies. Input shows proteins before immunoprecipitation of
cell lysates while IP shows proteins present in immunoprecipitates. (b) HT 1080 cells were transiently transfected with the indi-
cated GFP constructs and cellular proteins were immunoprecipitated with CDK2 antibodies. Recombinant proteins in samples
were detected with anti GFP serum. The most intense bands in the input show the correct size of the GFP-tagged protein
products while additional unspecific bands were also reacting with the GFP antisera in these samples. (c) ClustalVV alignment
of DDIT3 and C/EBPa amino acid sequences. A region shown to bind CDK2 in C/EBPa is boxed. Letters indicate standard
amino acid abbreviations. Amino acids with related physicochemical characteristics are displayed below the sequences as: ™'
(identical residue), "' (highly similar residue), '." (weakly similar residue). The leucine zipper region is seen towards the C-termi-
nal in both proteins.
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Figure 3

Expression and phosphorylation status of CDK2.
Western blot analysis of cell lysates from HT 1080 cells tran-
siently transfected with FUS-DDIT3-GFP and GFP. -actin is
used as loading control.

CDK2 expression, phosphorylation status and turnover is
not changed by FUS-DDIT3

The CDK2 expression in HT1080 cells after 42 hours of
transfection with FUS-DDIT3-GFP or GFP was investi-
gated by western blot analysis (Figure 3). In addition, the
phosphorylation status of CDK2 was analyzed using
CDK?2 antibodies targeting either the two inhibitory phos-
phorylations at threonine 14 and tyrosine 15 or the acti-
vating phosphorylation at threonine 160 (Figure 3). No
apparent difference in CDK2 phosphorylation between
cells expressing FUS-DDIT3-GFP or GFP was detected and
the amount of CDK2 between the two transfected cell
populations was equivalent (Figure 3). The CDK2 protein
half-life did not differ between stably transfected FUS-
DDIT3 cells and HT1080 control cells upon a six hour
cycloheximide chase assay (not shown).

CDK2 protein binding affinity is altered in FUS-DDIT3 and
DDIT3 expressing cells

HT1080 cells were transfected with either of FUS-DDIT3,
DDIT3 or GFP and CDK2 was immunoprecipitated from
lysates with CDK2 specific antibodies (Figure 4). Precipi-
tates were analyzed by SDS polyacrylamide gel electro-
phoresis and stained with Coomassie Blue. Several bands
were present in the FUS-DDIT3 and DDIT3 precipitates
that were absent in precipitates from GFP expressing cells
(Figure 4). Bands from three regions were cut as indicated
in the figure and analyzed by LC-MS/MS. The cytoskeletal
cross-linker plectin (Figure 4, region 1), the actin motor-
protein myosin (Figure 4, region 2) and the intermediary
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Figure 4

SYPRO stained gel of co-immunoprecipitated pro-
teins in extracts from HT 1080 cells transiently trans-
fected with either of DDIT3-GFP, FUS-DDIT3-GFP or
GFP constructs. CDK2 antibodies were used for immuno-
precipitations. Boxes indicate regions of the gel analyzed by
mass spectrometry. Three proteins were enriched in immu-
noprecipitates from DDIT3 and FUS-DDIT3 expressing cells
(region I: plectin, region 2: myosin, region 3: vimentin).
Arrows indicate the differentially immunoprecipitated vimen-
tin bands present in lanes of DDIT3 and FUS-DDIT3 cells but
absent in that of GFP cells. These bands migrate slightly
slower than the thicker bands inside the same region. The
thicker bands were identified as rabbit heavy chain immu-
noglobulin molecules and these originate from the antibodies
used for immunoprecipitation of CDK2 and are present in all
three lanes.

filament protein vimentin (Figure 4, region 3) were
enriched in immunoprecipitates of FUS-DDIT3 and
DDIT3 cells. The thicker bands with similar abundance in
all three lanes in region 3 were identified by mass spec-
trometry as rabbit heavy chain immunoglobulin mole-
cules.

Discussion

In the present study, we used immunofluorescence micro-
scopy to investigate putative colocalization between FUS-
DDIT3 and cyclins/cyclin-dependent kinases involved in
G1 cell cycle control. CDK2 and the CDK2 binding cyclin
E were found to change their localization in FUS-DDIT3
expressing cells to a pattern that was identical to the FUS-
DDIT3 nuclear granules reported earlier [24]. This sug-
gests that CDK2 and cyclin E are translocated to nuclear
structures defined by the FUS-DDIT3 protein. As the
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DDIT3 part is considered a DNA-binding transcription
factor [27], we speculate that the FUS-DDIT3 defined
structures may contain active chromatin and mRNA at dif-
ferent stages of processing. Thus, the accumulation of
CDK?2 and cyclin E to such nuclear regions may result in
changed phosphorylation patterns and regulation of sub-
strates present at these foci.

DDITS3 is able to form DNA-binding heterodimers with C/
EBPa through its leucine zipper region [14] and C/EBPa
is reported to bind CDK2 and inhibit its kinase activity
[26]. Therefore, it is possible that the binding between
DDIT3 and CDK2 is mediated through C/EBPo or
another C/EBP protein. However, we here show that a
DDIT3 mutant lacking the leucine zipper domain binds
CDK2, which implies a binding between DDIT3 and
CDK2 that is independent of other C/EBP proteins.
DDIT3 and C/EBPa contain several regions with sequence
similarities but the proline-histidine rich part reported to
bind CDK2 in C/EBPa [26] (Figure 2c) is not present in
DDIT3. This suggests that DDIT3 binds CDK2 through a
different mechanism than C/EBPa.

Analyses of GFP-immunoprecipitates failed to detect cyc-
lin E in these samples. The absence of cyclin E in CDK2
immunoprecipitates bears resemblance to previous
reports showing that C/EBPa disrupts CDK2/cyclin com-
plexes leading to growth arrest [26]. Hence, it is possible
that the DDIT3 bound to CDK2 disrupts CDK2/cyclin E
complexes in similar way as C/EBPa. Consequently, since
cyclin E is a major regulator of CDK2 kinase activity in G1,
the DDIT3 binding may alter CDK2 activity in DDIT3 and
FUS-DDIT3 expressing cells. We did however not detect a
change in phosphorylation status of CDK2 in FUS-DDIT3
expressing cells compared to control cells. To further ana-
lyze the functional effects of DDIT3/FUS-DDIT3 binding
to CDK2, we immunoprecipitated CDK2 in cells tran-
siently transfected with FUS-DDIT3, DDIT3 and GFP con-
structs. Analysis of the precipitates revealed enhanced
binding of CDK2 to components of the cytoskeleton in
cells expressing FUS-DDIT3 and DDIT3. An increased
affinity for cytoskeletal components and crosstalk
between cell cycle proteins and cytoskeletal regulatory
proteins could lead to changes in cytoskeleton structure
[28].

Conclusions

In conclusion, we show that CDK2 is translocated to
nuclear structures defined by the FUS-DDIT3 oncoprotein
and that it binds the DDIT3 part of the chimera. Cyclin E
is also recruited to FUS-DDIT3 nuclear structures but can
not be found in CDK2-containing DDIT3/FUS-DDIT3
precipitates. The interaction of FUS-DDIT3 and DDIT3
with CDK2 appears to alter the binding affinity of CDK2,
possibly leading to changed phosphorylation patterns

http://www.biomedcentral.com/1471-2121/10/89

and regulation of cytoskeletal or other proteins. Many of
the observed biological effects of DDIT3 may involve the
interaction with CDK2.

Methods

Cell culture and transfection

Human HT1080 fibrosarcoma cells were grown in RPMI
1640 medium (Sigma-Aldrich) supplied with 10% fetal
bovine serum, penicillin (50 U/ml) and streptomycin (50
pg/ml) at 37°C in 5% CO,. Cells were transiently trans-
fected at 50-70% confluence using the FuGENE 6 transfec-
tion reagent (Roche) with a 3:1 FuGENE:DNA ratio,
according to the instructions supplied by the manufac-
turer.

Immunofluorescence

Cells were fixed 24 hours after transfection in 3.7% for-
maldehyde in PBS for 10 min, rinsed in PBS and stained
with rabbit polyclonal antibodies for CDK2 (C5223,
Sigma-Aldrich), CDK4 (C8218, Sigma-Aldrich), cyclin D1
(M7155, Dako) or cyclin E (C4976, Sigma-Aldrich) that
were detected using Cy3 conjugated secondary antibodies
(Fluorolink, Amersham Biosciences). Finally, slides were
mounted using DAPI/DABCO solution (Sigma-Aldrich),
incubated over night at room temperature and then
imaged using a Zeiss LSM510 META confocal microscope
system.

Expression vectors

For cloning of CDK2 the following primers were used:
CDK2 forward GATCTCGAGCCACCATGGAGAACTTC-
CAAAAG, CDK2 reverse CAAGGATCCCGGAGTCGAA-
GATGGGGTACT. The CDK2 fragment was cloned into the
pDsRed1-N1 vector (Clontech Laboratories) in frame
with the DsRed1 sequence. All constructs were sequenced
to exclude mutant clones. FUS-DDIT3-GFP, DDIT3-GFP
and FUSA-GFP were previously described [24,29]. The
FUS-DDIT3 LZ-GFP construct, expressing a protein lack-
ing the 38 most C-terminal amino acids (including the
leucine zipper region), is described elsewhere [30]. Stably
transfected FUS-DDIT3 cells has been described previ-
ously [31].

Co-immunoprecipitation

HT1080 cells were co-transfected with CDK2-DsRed and/
or FUS-DDIT3-GFP/FUS-DDIT3-ALZ/DDIT3-GFP/FUSA-
GFP/GFP constructs at 50-70% confluence. Twenty-four
hours post transfection, cells were washed in PBS, scraped
and lysed in NP-40 buffer (150 mM NacCl, 1% NP-40, 50
mM Tris pH 8.0) containing protease inhibitor (Complete
Mini, Roche). Debris was removed by centrifugation at
14,000 g and supernatants were used for co-immunopre-
cipitations. Two microgram of antibodies specific for GFP
(8372-2, BD Pharmingen) or CDK2 (C5223, Sigma-
Aldrich) were prebound to protein A agarose beads (Mill-
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ipore) blocked with 5% bovine serum albumin in NP-40
buffer overnight. Cell lysates were incubated with anti-
body-beads mixtures for 4 h at room temperature. Beads
were washed 5 times with NP-40 buffer and proteins were
released from beads by addition of 4x NuPAGE LDS sam-
ple buffer (Invitrogen) and incubation at 95°C. Superna-
tants were subsequently analyzed with western blot or
with SYPRO Ruby gel staining (Sigma-Aldrich) according
to the instructions supplied by the manufacturer. SYPRO
stained gels were analyzed by liquid chromatography-
mass spectrometry (LC-MS/MS) at the Proteomics Core
Facility at University of Gothenburg. For experiments with
phospho-CDK2 antibodies (see below), transfected cells
were lysed in RIPA buffer (50 mM Tris-HCI pH 7.4, 150
mM NaCl, 1 mM EDTA, 1% Triton x-100, 1% Sodium
deoxycholate, 0.1% SDS) containing protease inhibitors
and phosphatase inhibitors (NaF 10 mM, Na;VO, 1 mM).

Western Blot Analysis

Proteins were separated using NuPAGE 4-12% Bis-Tris
gels (Invitrogen), blotted onto PVDF membranes (Milli-
pore) and probed with the following primary antibodies:
CDK2 (sc-6248, Santa Cruz Biotechnology), p-CDK2
Thr14/Tyrl5 (Santa Cruz Biotechnology), p-CDK2
Thr160 (Cell Signaling), cyclin E (C4976, Sigma-Aldrich),
B-actin (mAbcam8226, Abcam) and GFP (8371-2, BD
Pharmingen). Primary antibodies were detected with
alkaline phosphatase conjugated secondary antibodies
(Dako) and bands were visualized with BCIP/NBT Alka-
line Phosphatase Substrate (Sigma-Aldrich).

ClustalW alignment

The amino acid sequences of DDIT3 and C/EBPa were
aligned using the ClustalW algorithm available at the Uni-
versal protein resource (UniProt) [32].

Abbreviations

CDK2: cyclin-dependent kinase 2; C/EBP: CCAAT/
enhancer binding protein;, CHOP: C/EBP homologous
protein; DDIT3: DNA damage-inducible transcript 3; FUS:
fusion; GFP: green fluorescent protein; LC-MS/MS: liquid
chromatography mass spectrometry; MLS/RCLS: myxoid/
round-cell liposarcoma; TLS: translocated in liposarcoma.
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