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Abstract
Background: Shortly after weaning, a complex multi-step process that leads to massive epithelial
apoptosis is triggered by tissue local factors in the mouse mammary gland. Several reports have
demonstrated the relevance of mechanical stress to induce adaptive responses in different cell
types. Interestingly, these signaling pathways also participate in mammary gland involution. Then, it
has been suggested that cell stretching caused by milk accumulation after weaning might be the first
stimulus that initiates the complete remodeling of the mammary gland. However, no previous
report has demonstrated the impact of mechanical stress on mammary cell physiology. To address
this issue, we have designed a new practical device that allowed us to evaluate the effects of radial
stretching on mammary epithelial cells in culture.

Results: We have designed and built a new device to analyze the biological consequences of
applying mechanical stress to cells cultured on flexible silicone membranes. Subsequently, a
geometrical model that predicted the percentage of radial strain applied to the elastic substrate was
developed. By microscopic image analysis, the adjustment of these calculations to the actual strain
exerted on the attached cells was verified. The studies described herein were all performed in the
HC11 non-tumorigenic mammary epithelial cell line, which was originated from a pregnant BALB/
c mouse. In these cells, as previously observed in other tissue types, mechanical stress induced
ERK1/2 phosphorylation and c-Fos mRNA and protein expression. In addition, we found that
mammary cell stretching triggered involution associated cellular events as Leukemia Inhibitory
Factor (LIF) expression induction, STAT3 activation and AKT phosphorylation inhibition.

Conclusion: Here, we show for the first time, that mechanical strain is able to induce weaning-
associated events in cultured mammary epithelial cells. These results were obtained using a new
practical and affordable device specifically designed for such a purpose. We believe that our results
indicate the relevance of mechanical stress among the early post-lactation events that lead to
mammary gland involution.
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Background
Cells are able to act in response to multiple biochemical
and biophysical stimuli, depending on their type and
function. Particularly, it has been shown that mechanical
forces trigger specific events in a variety of cell types under
different physiological and pathological situations [1-5].
For example, it has been demonstrated that in solid
tumors, cells are subjected to mechanical stress due to ele-
vated interstitial pressure and perturbed vasculature [6].
The dramatic consequences of this strain were demon-
strated when it was shown that extracellular matrix rigid-
ity induced malignant phenotype in mammary epithelial
cells [7].

In the mouse mammary gland, post-lactational involu-
tion is divided in two distinct phases. The first one starts
only hours after weaning, when milk stasis induces the
expression of local factors that trigger apoptosis of the
alveolar epithelium [8,9]. Then, after a few days, there is a
decline in the lactogenic hormone circulating levels and
tissue remodeling of the mammary gland is initiated [10].
Interestingly, the specific signals that derive from milk sta-
sis and result in the release of those mammary local fac-
tors remain unknown. It has been proposed that milk
accumulation, caused by the lack of suckling, might sub-
ject alveolar cells to mechanical strain. This stress could
be, per se, the earliest stimulus to trigger expression and
release of local factors that would initiate mammary gland
involution [11]. To address this question, we developed a
new device, inspired in a system previously described by
Lee and coworkers [12], which allowed us to exert up to
30% radial strain to non-tumorigenic mammary epithe-
lial cells (HC11). Using this device we observed that radial
cell stretching modified the expression and/or activation
of c-Fos, ERK1/2, AKT, STAT3 and Leukemia Inhibitory
Factor (LIF), which are involved in mammary regression
after weaning. These results confirmed that mechanical
stress could be the very first initiator of post-lactational
mammary gland involution.

Methods
Equibiaxial stretching device
The device designed to apply controlled equibiaxial strain
to cells attached to stretchable membranes, consist in 5
different pieces (Figure 1A):

1) Delrin® made cylinder (item #1) that constitutes the
bottom of the assembled device. This piece has a protrud-
ing ring in the inner face, where the silicone membrane
(43 mm diameter) is placed.

2) Delrin® made ring (item #2) with an O-ring that fits the
inner membrane holder. This piece is placed inside item
#1 and attaches the membrane to the inner holder.

3) Indenter ring (item #3, Teflon® made), which fits in
item #2.

4) Flange (item #4, Delrin® made) that pushes down the
indenter ring (item #3).

5) Aluminum screw-top (item #5) that, when turned
down, pushes the indenter ring (item #3) that stretches
the silicone membrane.

The assembly process is described in Figure 1B. Complete
specifications for this apparatus are detailed in Figure 1C.
The 3D device model shown in Figure 1B was built using
Rhinoceros software version 3.0 (McNeel North America,
Seattle, USA). In addition, for practical purposes, we cal-
culated the relationship between the indentor penetration
and number of thread turns, which is 0.54 mm/turn.

Selection of materials for building this device and the
stretchable membranes was made according to previous
reported apparatus [12,13]. Since they resist high temper-
atures without loosing their physical properties, these
devices can be sterilized by autoclaving.

It must be taken into consideration that in this device, cell
medium is in close contact with the Teflon® made indenter
(item #3). Perfluorooctanoic acid (PFOA) is a chemical
compound that was detected in trace amounts in finished
Teflon products. The Agency's Science Advisory Board of
the Environmental Protection Agency (EPA) suggested
that PFOA is "likely to be carcinogenic to humans". How-
ever, EPA is still in the process of evaluating this informa-
tion and has not made any definitive conclusions at this
time http://www.epa.gov. This should be considered for
apparatus manipulation and if the device were used for
evaluating effects that could be altered or imitated by
traces of this compound.

Laboratory-made silicone membranes
Elastic silicone membranes were made by vulcanizing liq-
uid silicone rubber (RhodorsilRTV-1556, Rhodia, France)
with Platinum as catalyst. Preformed matrices were filled
with this material that polymerized at room temperature
(25°C) during 3–7 days. Later, membranes were treated
with 5.7% KOH in methanol for 5 min to neutralize the
polymerization-derived HCl. After being washed with
double-distilled water, silicone membranes were steri-
lized by autoclaving. Cell attachment was facilitated by
incubating membranes with 50 μg/ml of rat collagen type
I (Sigma, CA) in 0.02N acetic acid for 1 h at room temper-
ature. Then, membranes were rinsed with phosphate-buff-
ered saline solution and cells were seeded.
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Cell culture
The HC11 cell line, derived from pregnant BALB/c mouse
mammary glands, was maintained as previously
described [14]. To perform the experiments, comercially
available silicone membranes (Flexcell International,
Hillsborough, NC, USA) or laboratory-made silicone
membranes, both coated with collagen type I, were placed
inside Petri dishes (60 mm diameter). Cells were plated at
a density of 7 × 105 cells/dish. After attachment, they were
grown for approximately 48 h, until the cell culture
became confluent. Then, culture medium was removed
and cells were washed and held for 12 h under serum-free
conditions.

Mechanical Stimulation
Membranes with the attached cells were removed from
the culture dishes and carefully placed inside the stretch-
ing device (Figure 1B, step 1). Then, the unit was assem-
bled by the steps (1 to 5) described in Figure 1B and pre-
warmed serum-free culture medium was added on top of
the cells. Membranes were either exposed to different
intensities (0 to 30%) of sustained radial strain for 1 h, or
to 20% radial strain for different time intervals (15 min to
3 h). Afterwards, mRNA and protein extraction protocols
were carried out as described below.

Theoretical Model
We built a theoretical model that let us to predict the
strain exerted on flexible membranes (Figure 2). In this
geometrical representation the area outlined by the O-ring
was considered the "stretchable surface" and it is shown in
the diagram as the circle of radius a ("Initial Position" in
Figure 2). In addition, the area defined by the indenter
ring is depicted as a circle radius b. When the flange (item
#4) is pushed down an h distance, the membrane adopts
an "inverted hat" shape of radius a, at the top, and b, at the
bottom ("Final Position" in Figure 2). This shape was the-
oretically re-defined as a new circle of radius c, whose area
could be calculated by Equation 1. Then, the relative radial
increment of the membrane (c/a) could be calculated by
Equation 2 (Figure 2, grey box).

Microscopy and Image Analysis
Observations were performed using an inverted micro-
scope (Diavert, Leitz Wetzlar, Germany) equipped with a
Canon A520 or a Canon Rebel 350 XT digital camera
(Canon USA Inc., USA). The obtained phase contrast
video images could be then analyzed by the Image J 1.37v
software (NIH, USA).

Equibiaxial stretching deviceFigure 1
Equibiaxial stretching device. (A) Assembled device and its individual components (1–5): 1) Delrin® made cylinder with an 
inner ring that constitutes the silicone membrane holder; 2) Delrin® made ring with an O-ring that attaches the membrane to 
the inner holder; 3) Teflon® made indenter ring; 4) Delrin® made flange that pushes down piece #3; 5) Aluminum screw-top, 
that pushes down piece #4. (B) Diagram (in scale) depicting the procedure to assemble the complete device for performing cell 
stretching protocols; step 1 indicates positioning of the flexible membrane with attached cells grown in a 60 mm Petri dish; fol-
lowing steps indicate assembly of components shown in (A); (C) Cross-section of the complete device. For each piece, specific 
dimensions are described in millimeters.
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Figure 2 (see legend on next page)
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RNA preparation, cDNA synthesis and quantitative real-
time RT-PCR
Total RNA extraction from HC11 cells was performed
using Trizol reagent (Invitrogen, Argentina). For each
assay, 1 μg of total RNA was reversed-transcribed as previ-
ously described [15]. Real-time PCR data were acquired
and analyzed with an Opticon Monitor System (MJ
Research, Bio-RAD, Hercules CA, USA). For c-fos detec-
tion, the primers used were: sense 5'-TCCCTGGATTT-
GACTGGAGGTCTG-3' and antisense 5'-
CGACTGAGGAAGGGTTCG-3'. The thermal cycling con-
ditions were: 95°C for 3 min, followed by 34 cycles of 30
sec at 95°C, 45 sec at 68.7°C for annealing, and 45 sec at
72°C for extension. Levels of c-fos expression were nor-
malized by gapdh expression that was determined by using
the following primers: sense 5'-AAGAAGGTGGTGAAG-
CAGGCATC-3', antisense 5'-CGAAGGTGGAAGAGT-
GGGAGTTG-3'. The cycling conditions used were: 95°C
for 3 min, followed by 35 cycles of 40 sec at 95°C, 40 sec
at 65°C and 40 sec at 72°C. For lif and actin expression
analysis, primers and protocols were previously described
[15]. To determine mRNA expression levels, calibration
curves were made. Melting curve analysis was performed
to confirm a single amplification product. Experiments
were always run in triplicate and repeated at least three
times.

Protein analysis
Total or nuclear proteins were extracted from HC11 cells
as previously described [15]. Proteins extracts were run in
12.5% SDS-polyacrylamide gels and analyzed by western
blot. A set of pre-stained molecular mass standards was
run in each gel. Membranes were incubated overnight at
4°C with the following primary antibodies: anti-c-fos (sc-
7202), anti-tubulin (sc-9104), anti-pERK (sc-7383), and
anti-ERK (sc-154) anti-AKT (sc-1618), anti STAT3 (sc-
482), anti-pSTAT3 (sc-8059) from Santa Cruz Biotechnol-
ogies (CA, USA) and anti-p-AKT (Cell Signaling Technol-

ogy, Beverly, MA, USA). After washing, membranes were
incubated with horseradish peroxidase-conjugated sec-
ondary antibody. Immunoreactive protein bands were
detected using the enhanced chemioluminescence system
(ECL+Plus System; GE, Buckimghamshire, UK) and the
FujiFilm ImageReader LAS-1000. Images were analyzed
by densitometry using the Image J 1.34 software (Wayne
Rasband, National Institutes of Health, USA. http://
rsb.info.nih.gov/ij/). For band quantification, the
obtained images were converted to grayscale and equal
areas encompassing each band were drawn. Then, the
integrated density in each rectangle was obtained and the
background noise was subtracted for each band. In each
case, the obtained value was normalized as indicated in
each experiment.

Enzyme-linked immunosorbent assay (ELISA)
After carrying out stretching protocols, conditioned
medium from stretched and control cells was collected
and the Leukemia Inhibitory Factor (LIF) content was
determined using a mouse LIF-enzyme-linked immuno-
sorbent assay (ELISA) (R&R Systems, Minneapolis, MN,
USA) according to the manufacturer's instructions.

Statistics
Data are expressed as means ± SE. Data were analyzedby
one-way ANOVA (following Bartlett's test of homogeneity
of variance) followed by Tukey-Kramer as post-hoc test
correction for multiple comparisons between means. Sta-
tistical comparisons were performed using Statistica
(version6.0) software package (StatSoft, Inc., Tulsa, OK,
USA). Differences were regarded as significant at p < 0.05.
Each experiment was performed independently at least
three times.

Results
The goal of this study was to determine whether applying
controlled strain to cultured mammary epithelial cells

Theoretical model to predict membrane strain magnitudeFigure 2 (see previous page)
Theoretical model to predict membrane strain magnitude. (A) Initial and final position of stretching device (1st row) 
and flexible membrane (2nd row); equations describing membrane area in each position (3rd row); a: radius of circular stretch-
able area; b: radius of inner circle where cells can be visualized; h: distance made by the flange (item#4 of Figure 1); c: radius of 
a hypothetical new circle corresponding to the area of the stretched membrane in the final position (Equation (1)). The relative 
increment of c/a can be calculated by Equation (2). Equation (3) indicates the percentage of radial strain applied (RSA) to the 
membrane. (B) The distances between 10 pairs of cells were measured in each orientation (horizontal, vertical and diagonal) in 
4 different microscope fields. Data are expressed as means ± SE. Predicted RSA respect to h (from Equation (2) and (3)) is also 
plot in the graph. (C) Relationship between thread turns and cell area change (%). The areas of 15 cells were measured in four 
different microcope fields. Data are expressed as means ± SE. The predicted substrate area change (%) is also plot in the graph. 
(D) Representative image of phase contrast micrographs (magnification 200×) of HC11 cells attached to silicone membranes. 
Silicone membranes were progressively subjected to 0% (upper panel), 20% (middle panel) and 30% (lower panel) RSA and the 
same field is shown in each panel. At each RSA, the arrow points out a loosely attached cell, while the arrowhead shows a well 
attached one. On the left, contours of cells identified on the right are depicted. Relationship between thread-turns and RSA: 1 
turn = 0.54 mm.
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would induce involution-associated cellular events. The
device described herein is capable of delivering up to 30%
of two-dimensional homogeneous strain to silicone
membranes that were either purchased (Flexcell Inc, NC,
USA) or made in the laboratory. The device complete
description and assembly process are described in "Meth-
ods" and in Figure 1A and 1B. Specifications for the appa-
ratus reproduction are detailed in Figure 1C.

As the flexible membrane remains in the same horizontal
plane during strain application, the silicon support and
the attached cells can be observed under an inverted
microscope before and after stretching. In order to predict
the percentage of radial strain applied (RSA) to the elastic
substrate, we have developed a theoretical model based
on the device geometry (see "Methods"). To test the result-
ant formula (Equation 2, Figure 2A), the distance between
pairs of sub-confluent HC11 cells (400–500 μm), were
determined before and after application of different strain
intensities (i.e. different "h" values in Equation 2: from
0.285 mm to 6 mm). The homogeneity of the equibiaxial
strain was verified by determining the distance between
10 pairs of cells in each orientation (horizontal, vertical
and diagonal) in four different microscope fields. Figure
2B shows that the orientation in which cell distances were
measured was irrelevant since the increment pattern was
almost the same in the three directions. This indicated
that the surface of the elastic membrane increased in a
homogeneous way throughout flange displacement.
Then, to determine whether mechanical strain was effi-
ciently transmitted from the elastic substrate to the
attached cells, the area of polygonal (well attached) vs.
round (loosely attached) HC11 cells at increasing levels of
RSA was analyzed. Only the surface of polygonal attached
epithelial cells resulted affected by membrane stretching
(Figure 2D, arrowheads), while not significant changes
were observed in round cells (Figure 2D, arrows). Then,
the area of 15 cells in four different microscope fields,
were measured at increasing strain intensities. Figure 2C
shows the similarity between the actual and the predicted
cell area change (by Equation 1) relative to the flange dis-
placement (or screw-top thread turns). These observations
indicated there was an efficient strain transmission from
the silicone substrate to the mammary epithelial cells.
Once this was verified, we carried out the studies
described below in confluent HC11 cells grown on the
flexible membranes.

Since c-Fos protein has been implicated in both, cellular
response to mechanical stress and mammary gland invo-
lution, we proceeded to analyze its expression and activa-
tion levels in our experimental setting. Figure 3A shows
that c-fos mRNA expression was induced in a dose-
dependent manner under rising single-step RSAs (from 0
to 15%) for 1 h. This induction reached a plateau from

15% to 20% RSA and started to decrease at 30% RSA.
Then, time course of c-fos mRNA expression in HC11 cells
subjected to 20% linear strain was analyzed. We found
that the highest expression levels were reached after 30
min of sustained strain (Figure 3B). When c-Fos protein
expression levels were determined by western blot analy-
sis, a significant increase was observed after 60 min of
20% RSA (Figure 3C). In addition, under these condi-
tions, nuclear localization of the protein was also verified
(Figure 3D) indicating that mechanical stress also induced
c-Fos nuclear translocation.

It has been reported that the activation of the MAP kinase
ERK1/2 is involved in mechanical stress-induced c-fos
expression and activation in different cell types [16] and
its phosphorylation has been observed during the early
phase of mammary gland involution in vivo [17]. To
examine the ability of mechanical strain to induce this
MAPK activation in mammary epithelium, HC11 cells
were subjected to 20% RSA and ERK1/2 phosphorylation
levels were analyzed by western blot. Our results show
that mechanical strain was able to induce transient ERK1/
2 activation in mammary epithelial cells, achieving the
highest phosphorylation level after 5 min of applying
such a stimulus (Figure 4A).

In order to explore if mechanical stress could regulate the
AKT/PKB surviving signal in mammary epithelial cells,
AKT phosphorylation levels in HC11 subjected to
mechanical strain were analyzed by western blot. Figure
4B shows that p-AKT levels were reduced after 15 min of
20% sustained strain and were significantly down-regu-
lated at 60 min. Interestingly, basal AKT phosphorylation
levels, were fully recovered after 6 h of sustained strain.

The activation of the JAK/STAT3 pathway is critical for the
initiation of apoptosis and involution in the mammary
gland. Therefore, we decided to explore the effects of
mechanical strain on STAT3 tyrosine phosphorylation lev-
els by western blot analysis. Figure 5A shows that mechan-
ical stress induced a transient, but significant increase in
STAT3 phosphorylation after 15 min of 20% sustained
strain. Then, a second STAT3 activation peak was observed
after 6 h of applied mechanical strain (Figure 5A). As LIF
is the most relevant activator of STAT3 in vivo [8,9], we
wondered whether this cytokine expression could be
induced by mechanical stress in mammary epithelial cells.
Therefore, we analyzed the time course of lif mRNA induc-
tion by real-time PCR. The results show that 60 min of
20% RSA generated a 6 fold up-regulation of lif expression
in these cells (Figure 5B). To test whether mechanical
strain was also able to induce LIF secretion, the presence
of this protein in the Conditioned Media (CM) collected
from cells subjected or not to 20% RSA for 8 h, 15 h, and
24 h, was analyzed by a LIF-enzyme-linked immunosorb-
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ent assay (ELISA). We found that LIF secretion induction
was already detected at 8 h and became significant at 15 h
and 24 h, compared to 8 h and to their respective not-
stretched controls (Figure 5C).

In order to evaluate if mechanical strain was able to
induce apoptosis in mammary epithelial cells, caspasa-3
activation was analyzed in HC11 cells subjected to 8 h, 15
h and 24 h of 20% RSA. This analysis was performed by
measuring p-nitroanilide levels cleaved from the synthetic
substrate Ac-DEVD-pNA. We found that, under these con-

ditions, caspase-3-like activity was not induced in
stretched HC11 cells (data not shown).

Discussion
The mammary gland epithelium undergoes dramatic
changes during the successive stages of pregnancy, lacta-
tion and involution. In the fully lactating gland, the layer
of ductal and alveolar mammary cells form coherent
sheets in which cell junctions provide a compact permea-
bility barrier. It has been indicated that mechanical stress
imposed by milk secretion on these tightly attached cells
after parturition is one of the main factors that determine

Effects of mechanical stress on c-Fos expressionFigure 3
Effects of mechanical stress on c-Fos expression. mRNA levels were analyzed by quantitative real time RT-PCR in HC11 
cells stretched for 1 h using different strain intensities (A) or subjected to 20% RSA for the indicated time periods (B); gapdh 
expression was used to normalize c-fos mRNA levels. c-Fos protein levels were analyzed by western blot in HC11 cells sub-
jected to 20% RSA for the indicated times (C). Nuclear fractions from HC11 mammary epithelial cells were analyzed by west-
ern blot to determine c-Fos protein presence in this compartment after 3 h of sustained 20% RSA (D). Analysis was performed 
by triplicate in at least three independent experiments. Significant differences: (*) p < 0.05 compared to 0% RSA and (**) p < 
0.05 compared to 5% RSA.
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initiation of the ejection reflex [18]. On the other hand,
soon after weaning, when those epithelial junctions are
still intact, milk accumulation might initiate involution-
associated events.

In an effort to understand mechanical strain contribution
to mammary gland involution, we have designed, built
and validated a new cell-stretching device. The apparatus
presented in this study is inspired in the system previously
described by Lee and coworkers [12], but it allows a wider
RSA range. Here we show that this device is useful to apply
dose-dependent, homogeneous equibiaxial strain to
mammary epithelial cells growing on deformable silicone
membranes. Further, mechanical strain transmission to
the cultured cells was confirmed by cell area changes
shown in Figure 2C and 2D. These results show, as it was
previously demonstrated in other models [12], that the
strain applied to the collagen-coated silicone membranes
is very similar to the one exerted to the cells cultured on
these membranes. Interestingly, we found relatively larger
errors in the percentage of cell area change with RSAs
higher than 20% (4 thread turns) (see Figure 2C). Micro-
scopic observations suggested that these relatively larger
statistic errors might be due to variations among cells in
the ability to adapt to high strain intensities. Excessive cell
stretching seemed to cause changes in the attachment of
various cells, which could lead to a lower strain transmis-

sion from the substrate to these cells (so their area did not
increase at the same rate) and/or to an uneven strain dis-
tribution within them (causing changes in cell shape).

Different devices that use elastic membranes substrates to
support cell adhesion and transmit strain have been pre-
viously described [12,19-22]. Some of them, like the one
made commercially available by Flexcell International,
depend on a computer controlled vacuum unit to exert
cyclic or static strain to flexible membranes [23,24]. How-
ever, even providing a very precise stimulus control, these
devices are complex and often require technical and/or
electronic assistance, what leads to a significant cost incre-
ment. Therefore, we believed that there was a need for
new practical, flexible and affordable devices to easily
analyze the biological responses of cultured cells to
mechanical stress. In fact, not only our device has been
developed as a result of this necessity, there were others
very recently introduced, as the one presented last year by
Rhana et al. [25]. In this apparatus, flange displacement
was also used to generate membrane deformation, but the
design was made for 6-well plates instead of single 60 mm
dishes.

The device described herein shows the following proper-
ties: 1) easy real time optical monitoring of cell geometry,
function, and deformation upon strain application; 2) a

Effects of mechanical stress on ERK1/2 and AKT phosphorylationFigure 4
Effects of mechanical stress on ERK1/2 and AKT phosphorylation. ERK1/2 (A) and AKT (B) phosphorylation levels 
were analyzed by western blot in HC11 cells subjected to 20% RSA for the indicated times. Analysis was performed by tripli-
cate in three independent experiments. Data are expressed as means ± SE. Significant differences: (*) p < 0.05 compared with 
0 min and (**) p < 0.05 compared with 60 min. Six-hour stretched cells have their own corresponding un-stretched control 
(grey bar).
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small size that allows long-term stretching protocols to be
performed in a cell incubator; 3) easy sterilization by
autoclaving and 4) low cost, which permits the construc-
tion of multiple units that can be used to test simultane-
ously different experimental conditions (e.g. strain levels,
intervals of static stress, pharmacological treatments, etc.).

The intensity of mechanical strain imposed on mammary
epithelium by milk accumulation after weaning is not
known. However, in most experiments reported herein, a
20% RSA was applied. We have chosen that stretching
strength because it did not cause any cell damage and was
sufficient to activate various signaling pathways in differ-
ent cell types [26-30]. Besides, other studies carried out in
epithelial cells have been done using 20% RSA [31]. In
our laboratory, observations in vivo are underway trying to
establish the strain range experienced by the alveolar cells
upon weaning. We hope this analysis will help us to deter-
mine the biological threshold for triggering mammary
involution associated events.

Once the device was developed, we first analyzed the
effect of mechanical strain on c-Fos expression in the
HC11 mammary epithelial cells. This protein interacts
with the Jun family members generating AP-1 transcrip-
tion factors that bind to DNA in specific regions [32]. AP-
1 plays a very important role in controlling expression of
different genes that have a great impact on cell fate deci-
sions [33-37]. In addition, this factor has been associated
with stress-induced apoptosis in several cell types [38].
Marti and colleagues have reported that AP-1 expression
and activation is linked to apoptosis induction during the
early phase of the mouse mammary gland involution.
They observed that c-fos and junB mRNA species were
induced in the mammary epithelium soon after weaning,
suggesting that AP-1 may be a nuclear regulator of post-

Figure 5

Effects of mechanical stress on STAT3 phosphorylation and LIF expressionFigure 5
Effects of mechanical stress on STAT3 phosphoryla-
tion and LIF expression. STAT3 phoshorylation levels 
were determined by western blot analysis (A) and lif mRNA 
expression levels were analyzed by quantitative real time RT-
PCR (B) in HC11 cells subjected to 20% RSA for the indi-
cated times. In (A) and (B), analysis were performed by tripli-
cate in three independent experiments. Data are expressed 
as means ± SE. Significant differences: (*) p < 0.05 compared 
with 0 min and (**) p < 0.05 comparing cells stretched for 6 
h with its corresponding control (grey bar). LIF expression 
levels quantified by ELISA in the conditioned medium (CM) of 
cells subjected (S) or not (C) to 20% RSA for the indicated 
times. Results are expressed in ng/ml and represent the 
mean ± S.E. of three independent experiments. Significant dif-
ferences: (*) p < 0.05 compared to their corresponding con-
trol and to CM of cells stretched for 8 h (C).
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lactational involution [39]. Interestingly, it has also been
reported that c-Fos expression is up-regulated by mechan-
ical stress, in vitro and in vivo, participating in different spe-
cific cellular responses in cardiomyocytes [40,41]
osteoblasts [42]and pulmonary epithelial cells [43]. Our
results clearly indicate that mechanical strain is capable of
inducing c-Fos transcription and nuclear translocation in
mammary epithelial cells, suggesting that they might be
very early events during the involution process.

Three Mitogen-activated protein kinase (MAPK) families
have been well characterized: the extracellular-regulated
protein kinase (ERK1/2), the c-Jun NH2-terminal protein
kinase (JNK), and the p38 (the last two are also known as
stress-activated protein kinases or SAPKs). Upon activa-
tion through tyrosine and threonine phosphorylation,
these proteins translocate to the nucleus and phosphor-
ylate transcription factors, such as AP-1 family members
and the serum response factor (SRF) [44]. MAPK activa-
tion, have been implicated in mechanically induced sig-
nalling in various cell types. For example, in smooth
muscle cells, ERK1/2 has been reported to be involved in
mechanical stress-induced c-Fos expression [16]. Interest-
ingly, ERK1/2 activation was also detected during the
early phase of mammary gland involution in vivo [17].
Our results indicate that ERK1/2 phosphorylation is rap-
idly increased in mammary epithelial cells subjected to
the same mechanical strain that generated c-Fos induc-
tion. Therefore, it is possible that ERK1/2 activation
induced by mechanical strain may be modulating c-Fos
expression induction and activation as previously
observed in other models [16,45,46].

Not only ERK1/2, but also STAT3 might be implicated in
c-Fos expression induction and activation in epithelial
cells [47]. In the case of c-fos gene transcription, it has
been determined that both STAT3 and the ERK-mediated
pathway co-operate in its induction. In fact, Kunisada et
al. [48] showed that dominant-negative STAT3 or a MEK
inhibitor, PD98059, inhibit LIF-induced c-fos mRNA
expression in cardiac myocites. Therefore, the same sign-
aling pathways might be interacting in mechanically
stressed mammary epithelial cells.

One of the most critical molecular changes associated
with apoptosis induction during mammary gland involu-
tion is STAT3 activation via the Janus kinase (JAK) path-
way in response to cytokines and growth factors [17,49].
It has been demonstrated that shortly after weaning, LIF
expression is induced in the mammary epithelium [8,9]
and it has been reported that this cytokine is the main
responsible for STAT3 activation in mammary epithelial
cells [8,9,15]. Interestingly, it has been shown that LIF
expression is induced by hemodynamic overload in the
adult mammalian heart [50] and our results show that cell

stretching induced STAT3 phosphorylation after 15 min
of sustained strain. However, LIF secreted by the stretched
HC11 cells was only detected in the conditioned medium
(CM) after several hours of sustained strain (see Figure
5C). Therefore, we believe this STAT3 early activation
would not be due to an endocrine/paracrine LIF action.
Alternatively, it is possible that SRC kinase might be
involved in p-STAT3 induction in the HC11 cells as it has
been previously found in mechanically induced pulmo-
nary epithelial cells [51] and smooth muscle cells [52].

Levels of p-STAT3 significantly decreased after 1 h and
were recovered after 6 h (Figure 5A). We believe that the
second wave of STAT3 activation might be due to LIF
secreted by the stretched cells (see Figure 5C). In fact, pre-
liminary data from our laboratory indicates that CM col-
lected from stretched cells (6–24 h of 20% sustained
strain) induced STAT3 phosphorylation in non-stretched
HC11 cells. Noteworthy, this effect was inhibited when
CMs were pre-incubated with a LIF blocking antibody.

Several studies regarding the impact of mechanical stimuli
on protein kinase B/AKT (PKB/AKT) activation have been
described in endothelial cells [53], in vascular smooth
muscle [54] and keratinocytes [55]. In this study, we
observed that mechanical strain triggered p-AKT transient
down-regulation in mammary epithelial cells (see Figure
4B). In the mammary gland, the relevance of shutting
down the PI(3)K/AKT pathway after weaning has been
demonstrated when activated-AKT transgenic mice
showed significant delay in the involution process
[56,57]. In addition, it has been reported that expression
of the PI(3)K negative regulatory subunits (p55alpha and
p50alpha), which inhibited AKT phosphorylation, were
induced by STAT3 during mammary regression [58].
These studies indicate that AKT activation may provide a
critical cell survival signal that has to be turned-down dur-
ing mammary involution. Therefore, we believe that
stretching induced p-AKT down-regulation might sensi-
tize epithelial cells to undergo apoptosis. However, more
experiments need to be done to determine whether or not
STAT3 activation mediates this effect in our model.

In spite of p-AKT down-regulation, we have not detected
apoptosis induction (analyzed by caspase-3 activation) in
the stretched HC11 cells. This observation has different
possible explanations. First, it has been reported that in
smooth muscle cells, mechanical stress induced apoptosis
is p53-dependent [59]. Therefore, the lack of apoptosis
induction in the stretched HC11 cells might be solely due
to the lack of wild type p53 expression in this cell line
[60]. Second, it has been reported that in vivo active
(cleaved) caspase-3 was observed only in the shed cells at
12 h and 24 h involution and not in the alveolar wall until
72 h [61]. Therefore, during mammary involution,
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although the apoptosis program is initiated before cells
detach, the final events would not occur until these cells
are removed from the epithelial layer. In this scenario, it
is conceivable that an early involution-associated event as
mechanical stress may prepare the epithelial cells to die,
but would not be enough to trigger the whole apoptotic
program.

It is important to point out that the experiments showed
herein were performed in confluent, but not differenti-
ated, HC11 cells. We observed that grown on silicon as a
substrate, these cells show similar features to competent
HC11 cells grown on plastic. We observed high expression
of STAT5A and low levels of p-STAT5 and β-casein com-
pared to cells treated with lactogenic hormones. Expres-
sion levels of these proteins did not significantly change
upon stretching (data not shown). However, we do not
know whether mechanical stress would be able to block
the action of lactogenic hormones and/or would be able
to trigger cell death in fully differentiated cells. More
experiments are being performed to answer these ques-
tions.

We have previously reported that tumor cell secreted LIF
was able to decrease HC11 cell viability [15]. Here, we
show that cells stretched for up to 24 h did not undergo
apoptosis, but were able to secrete up to 0.8 ng/ml of LIF
(Figure 5C). New experiments carried out in our labora-
tory have shown that LIF secreted by mechanically
stressed cells was able to induce STAT3 phosphorylation
in non-stretched cell (data not shown). Therefore, lumi-
nal cells bearing mechanical stress might not be the first
to die, but could initiate a domino effect that may lead to
massive apoptosis in the mammary epithelium.

Conclusion
The results showed herein provide, for the first time,
experimental evidence that mechanical strain applied to
mammary epithelial cells induces molecular events
involved in the initiation of post-lactational involution. A
big advance was made when it was determined that this
biological process was not only regulated by circulating
hormones, but also -and primordially- by tissue local fac-
tors. Similarly, determining that mechanical forces play a
relevant role in the initiation of such a complex process
might reveal significant mechanisms underlying cell fate
decision in the mammary gland. However, studying this
scenario requires new experimental approaches involving
the development and/or adaptation of methods and
apparatus. Therefore, here we have made a special effort to
carefully describe the device and the geometrical model
we built to such a purpose. Using them we were able to
demonstrate that mechanical stress can trigger intracellu-
lar pathways that facilitate epithelial apoptosis and secre-

tion of specific cytokines that may induce death in
neighboring non-stretched cells.
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