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Abstract

Background: Ubiquitination serves multiple cellular functions, including proteasomal degradation and the
control of stability, function, and intracellular localization of a wide variety of proteins. NEDDA4L is a
member of the HECT class of E3 ubiquitin ligases. A defining feature of NEDDA4L protein isoforms is the
presence or absence of an amino-terminal C2 domain, a class of subcellular, calcium-dependent targeting
domains. We previously identified a common variant in human NEDD4L that generates isoforms that
contain or lack a C2 domain.

Results: To address the potential functional significance of the NEDD4L common variant on NEDD4L
subcellular localization, NEDDA4L isoforms that either contained or lacked a C2 domain were tagged with
enhanced green fluorescent protein, transfected into Xenopus laevis kidney epithelial cells, and imaged by
performing confocal microscopy on live cells. We report that the presence or absence of this C2 domain
exerts differential effects on the subcellular distribution of NEDDA4L, the ability of C2 containing and
lacking NEDDA4L isoforms to mobilize in response to a calcium stimulus, and the intracellular transport of
subunits of the NEDDA4L substrate, ENaC. Furthermore, the ability of the C2-containing isoform to
influence B-ENaC mobilization from intracellular pools involves the NEDDA4L active site for ubiquitination.
We propose a model to account for the potential impact of this common genetic variant on protein
function at the cellular level.

Conclusion: NEDDA4L isoforms that contain or lack a C2 domain target different intracellular locations.
Additionally, whereas the C2-containing NEDDA4L isoform is capable of shuttling between the plasma
membrane and intracellular compartments in response to calcium stimulus the C2-lacking isoform can not.
The C2-containing isoform differentially affects the mobilization of ENaC subunits from intracellular pools
and this trafficking step requires NEDDA4L ubiquitin ligase activity. This observation suggests a new
mechanism for the requirement for the PY motif in cAMP-mediated exocytosis of ENaC. We have
elucidated how a common genetic variant can underlie significant functional diversity in NEDDA4L at the
cellular level. We propose a model that describes how that functional variation may influence blood
pressure. Moreover, our observations regarding differential function of the NEDDA4L isoforms may impact
other aspects of physiology that involve this ubiquitin ligase.
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Background

Cells of various tissues employ ubiquitination to regulate
multiple proteins including cell cycle regulators, tran-
scription factors, and membrane proteins [1,2]. Despite
the diverse nature of ubiquitinated proteins, ubiquitina-
tion occurs in a common three step process [3]. First an
ubiquitin activating, or E1 enzyme, binds ubiquitin in an
ATP-dependent-process. Second, ubiquitin is transferred
to an ubiquitin conjugating, or E2 enzyme. Third, an
ubiquitin ligase or E3 enzyme catalyzes the transfer of
ubiquitin to its substrate. There are three classes of E3
ubiquitin ligases, HECT (homologous to E6-AP carboxy
terminus) E3 ligases, RING-finger E3 ligases [4,5], and U-
box E3 ligases [6,7]. Whereas HECT E3 ligases directly
bind ubiquitin prior to catalyzing substrate ligation,
RING-finger and U-box E3 ligases do not bind ubiquitin,
they function as adaptors, providing a physical link
between the E2 enzyme and the substrate, catalyzing the
transfer of ubiquitin directly from the E2 enzyme to the
substrate [8].

NEDDA4L (neural precursor cell-expressed developmen-
tally down-regulated 4like) is a member of the Nedd4-like
family of E3 ubiquitin ligases. The nine members of the
Nedd4-like family in humans share a common domain
organization that is evolutionarily conserved in the S. cer-
evisiae E3 ligase ortholog, Rsp5 [9,10]. Each contains two
to four WW domains, which mediate substrate interac-
tions, and a carboxy terminal HECT domain, that cata-
lyzes ubiquitin ligation and mediates interactions with E2
enzymes [10]. Additionally, each family member contains
a C2 domain-functionally known for its calcium depend-
ent lipid binding ability-at its amino terminus. The dis-
covery of multiple promoters that generate transcripts that
contain a start codon either upstream or downstream of
the C2 domain, reveals that in humans and rodents,
NEDDA4L can be expressed as a protein containing or lack-
ing a C2 domain (Figure 1A-C) [11-13]. The evolutionary
conservation of C2 containing or lacking NEDDA4L iso-
forms across multiple vertebrates could underlie func-
tional variability that could differentially affect NEDD4L
substrates.

The epithelial sodium channel (ENaC) is a heteromul-
timeric transmembrane ion channel consisting of alpha,
beta and gamma (o, B and y) subunits that is a critical
mediator of sodium absorption in the epithelium of mul-
tiple tissues. ENaC expression at the apical side of the epi-
thelium lining the lumen of the aldosterone-sensitive
distal nephron (ASDN) positions ENaC as the ultimate
determinant of renal sodium excretion [14]. It is thereby a
critical factor in blood pressure regulation [14]. Indeed,
loss- or gain-of-function in ENaC subunits accounts for
rare Mendelian forms of hypo- or hypertension [15-23].
Pseudohypoaldosteronism type I (PHAI) is an autosomal
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recessive form of hypotension that is caused by loss-of-
function mutations in either the a-, B- or y-ENaC subunit
[15,16,21]. Liddle syndrome, in contrast, is an autosomal
dominant form of hypertension that is caused by gain-of-
function mutations that alter or delete PY motifs in the
cytoplasmic tails of either the B- or y-ENaC subunit [17-
20,22,23]. These PY motifs interact with WW domains of
NEDDA4L [24,25], and the PY motif mutations cause gain-
of-function by increasing the cell-surface expression of
ENaC. Liddle's mutations are consistent with increased
ENaC activity at [26], an increase in the number of chan-
nels in [27], and reduced ENaC endocytosis from the
membrane [28]. Liddle's PY motif mutations also inhibit
cAMP-mediated rapid translocation of ENaC from intrac-
ellular pools to the cell surface stimulated by vasopressin
binding to the V2 vasopressin receptors [29]. Combining
these observations with those that demonstrate that ENaC
is ubiquitinated by NEDDA4L [30] and that NEDDA4L and
ENaC expression in the ASDN overlap [30,31] suggested a
mechanism that underlies Liddle syndrome. Impaired
interaction between ENaC and NEDD4L due to mutated
PY motifs reduces NEDD4L-mediated ENaC ubiquitina-
tion, thereby decreasing ENaC endocytosis from the
plasma membrane, leading to abnormally high sodium
retention and ultimately hypertension.

Essential hypertension, a major contributor to cardiovas-
cular morbidity and mortality [32], involves multiple
genetic and environmental determinants [33]. This com-
plex etiology prompted genetic analyses of intermediate
blood pressure phenotypes [34]. A significant linkage
peak for postural changes in blood pressure on chromo-
some 18q from a study conducted by the Hypertension
Genetic Epidemiology Network contains human
NEDDA4L [35,36]. We previously identified a common
single nucleotide polymorphism (SNP, rs4149601, G/A,
hereafter referred to as the "G/A variant") at the last nucle-
otide of exon 1 in NEDDA4L that alters exon 1 splice donor
site selection [11] (Figure 1A-B). Whereas the G variant
leads to splicing of distinct mRNAs encoding protein iso-
forms that either contain or lack the C2 domain
(NEDD4L-C2(+) and NEDD4L-C2(-) respectively), the A
variant only produces mRNAs that encode NEDD4L-C2(-
) (Figure 1A-B). Subsequent association studies implicate
the G/A variant in blood pressure variation and salt sensi-
tivity [37-40].

The implication of NEDDA4L in Liddle syndrome, genetic
linkage of NEDDA4L to a blood pressure phenotype, and
evidence that ties the G/A variant to blood pressure varia-
tion and salt sensitivity, supported the hypotheses that
NEDDA4L participates in blood pressure regulation and
that genetic variation in NEDD4L such as the G/A variant
could contribute to individual differences to susceptibility
to essential hypertension. We investigated the functional
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NEDDA4L is expressed as isoforms that contain (NEDD4L-C2(+)) or lack (NEDD4L-C2(-)) a calcium binding C2
domain. (A) Chromosome 18q21.31 where NEDDA4L transcription occurs from several major alternate promoters designated
pl-4 and generates NEDD4L-C2(+) and NEDDA4L-C2(-) isoforms. Several additional promoters that generate NEDD4L-C2(+)
and NEDDA4L-C2(-) isoforms exist [| I]. The location of rs4149601 is labeled on the p2 transcript. (B) The C2(+) domain tran-
script that arises from p| encodes a methionine in exon I, initiating translation upstream of the C2 domain thereby generating
NEDDA4L-C2(+) isoforms. The p2 transcript generates NEDD4L-C2(+) and NEDD4L-C2(-) isoforms depending on the identity
of the rs4149601 variant [| 1]. Whereas the G variant generates NEDD4L-C2(+) and NEDD4L-C2(-), the A variant only gener-
ates NEDD4L-C2(-) [I I]. Transcripts from p3 and p4 encode only NEDD4L-C2(-) utilizing an initiation codon in exon 7,
downstream of the C2 domain. (C) The domain architecture of human NEDD4L-C2(+) and NEDDA4L-C2(-). Each isoform con-
tains four WW domains and a HECT (homologous to E6 associated protein carboxy terminus) domain.

relevance of the G/A variant by examining the localization
behavior of NEDD4L-C2(+) and NEDD4L-C2(-) in X. lae-
vis kidney epithelial (A6) cells in the absence and presence
of a calcium stimulus. Published evidence regarding the
functional interactions between NEDD4L and ENaC [41-
44] and the availability of two clonal A6 cell lines that sta-
bly expressed functional a- or B-ENaC subunit as EGFP
fusion proteins [45], provided the rationale and a cellular
model to test the effect(s) of potential functional differ-
ences between NEDD4L-C2(+) and Neddd4l-C2(-) on the
NEDDA4L substrates o- or [B-ENaC. We report that

NEDDA4L-C2(+) and Neddd41-C2(-) isoforms exhibit dis-
tinct subcellular distributions and exert differential affects
on the intracellular transport of ENaC subunits that
depend on the ubiquitin ligase activity of the HECT
domain. We propose a model to account for the potential
functional impact of the G/A variant on sodium handling
and blood pressure regulation involving NEDD4L and
ENaC.
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Results

NEDDA4L-C2(+) localizes to the cytoplasm while NEDD4L-
C2(-) localizes to the cytoplasm and early endosome

To address the potential functional significance of the G/
A variant on NEDDA4L subcellular localization, NEDD4L-
C2(+) and NEDD4L-C2(-) were tagged with enhanced
green fluorescent protein (EGFP), transfected into A6 (X.
laevis kidney epithelial) cells, and imaged by using live cell
confocal microscopy. EGFP-NEDD4L-C2(+) exhibited a
diffuse cytoplasmic localization, similar to EGFP alone
(Figure 2A-C). In addition to this cytoplasmic localiza-
tion, EGFP-NEDD4L-C2(-) exhibited a distinct compart-
mental localization (Figure 2D-E). These phenotypes
were independent of the N- or C-terminal fusion of the
EGFP reporter (Figure 2A-B, D-E) and did not reflect dif-
ferential degradation of the two isoforms in Western blot
experiments (Figure 2F). The EGFP-NEDDA4L-C2(-) com-
partments partially colocalized with the early endosome
marker transferrin-Texas Red® (Figure 2G-I) but not with
other organelle markers tested (see Additional file 1). We
therefore conclude that when transiently expressed, EGFP-
NEDD4L-C2(+) localizes to the cytoplasm while EGFP-
NEDD4L-C2(-) localizes to the cytoplasm and to early
endosomal compartments in A6 cells.

The presence or absence of a C2 domain affects
intracellular NEDDA4L targeting in response to an increase
in intracellular calcium

To test the calcium-dependent lipid targeting capability of
the NEDD4L C2 domain, A6 cells were transfected with
EGFP-NEDDA4L-C2(+) and EGFP-NEDDA4L-C2(-), incu-
bated in the presence of Ca2+and ionomycin, and imaged.
The protein kinase C alpha (PKCa) C2 domain fused to
EGFP served as positive control (EGFP-PKCa-C2) for cal-
cium-dependent plasma membrane targeting [46]. Prior
to ionomycin treatment, EGFP-PKCa-C2, EGFP-
NEDDA4L-C2(+) and the EGFP control localized to the
cytoplasm while EGFP-NEDD4L-C2(-) localized to the
cytoplasm and early endosome (Figure 3A, C, E, G). Upon
incubation with Ca2* and ionomycin, EGFP remained in
the cytoplasm while EGFP-PKCo.-C2 moved to the plasma
membrane (Figure 3B, D). EGFP-NEDDA4L-C2(-) was
unaffected by Ca2+ (Figure 3F). In marked contrast, EGFP-
NEDDA4L-C2(+) relocalized to numerous small structures
(Figure 3H). Repeating the experiment at a higher data
acquisition rate showed that EGFP-NEDD4L-C2(+) trans-
ited first from the cytoplasm to the plasma membrane and
then to similar small structures (Figure 4A-C). The same
mobilization pattern was observed when only the C2
domain of NEDD4L was fused to EGFP (Figure 4D-F).
However, the use of various organelle markers did not
allow the identification of these structures as lysosomes
(Lysotracker® Red), Golgi (BODIPY® TR Cs-ceramide),
mitochondria (Mitotracker® Red), endoplasmic reticulum
(ER-Tracker™ Red), early endosomes (Transferrin Texas

http://www.biomedcentral.com/1471-2121/10/26

Red®), or autophagosomes (mCherry-LC3) (see Addi-
tional file 2). The absence of colocalization with transfer-
rin-Texas Red® suggests that Ca2+* mobilization did not
target EGFP-NEDD4L-C2(+) to labeled early endosomal
compartments, the organelle in which EGFP-NEDD4L-
C2(-) partially localized (see Additional file 2, panel E).

NEDD4L-C2(+) differentially regulates o~ and ~ENaC
subunits in response to an increase in intracellular calcium
Observations of the intracellular localization and mobili-
zation of NEDD4L-C2(+) in response to changes in intra-
cellular calcium raised the hypothesis that NEDD4L-
C2(+) may affect the intracellular trafficking of its sub-
strate ENaC. This hypothesis was tested by employing two
A6 cell lines that stably expressed either the a- or the -
subunit of ENaC fused to EGFP [45]. Because NEDD4L-
C2(+) but not NEDD4L-C2(-) relocalized in response to
an increase in calcium, the a- and B-ENaC stably-express-
ing-cell-lines were transiently transfected with NEDD4L-
C2(+) that was labeled with the red fluorophore, mCherry
(mCherry-NEDD4L-C2(+)). Intracellular trafficking in
response to ionomycin and Ca2* treatment was monitored
by time-lapse confocal microscopy. In cells stably express-
ing a-ENaC-EGFP, mCherry-NEDD4L-C2(+) mobiliza-
tion occurred in three distinct steps (Figure 5 and see
Additional file 3). First, mCherry-NEDD4L-C2(+) moved
from the cytoplasm to the plasma membrane (Figure 5A-
B). Second, mCherry-NEDD4L-C2(+) transited to the
periphery of some of the vesicles containing o-ENaC-
EGFP (Figure 5C). Third, mCherry-NEDD4L-C2(+)
moved back to the plasma membrane (Figure 5D).
Despite partial photo-bleaching of the EGFP fluorophore
and fluctuation of the cellular monolayer, the localization
of a-ENaC-EGFP remained unaltered throughout the time
lapse (Figure 5A-E and see Additional file 3). In cells sta-
bly expressing B-ENaC-EGFP, mCherry-NEDD4L-C2(+)
mobilization proceeded through the same three distinct
steps observed above (Figure 5F-I, Figure 6 and see Addi-
tional file 4). A notable and consistent difference how-
ever, was that in the third step, B-ENaC relocated to the
plasma membrane together with mCherry-NEDDA4L-
C2(+) (Figure 51, J and see Additional file 4).

NEDDA4L-C2(+) trafficking of /~ENaC to the plasma
membrane requires ubiquitin ligase activity

Mutation of the HECT domain catalytic cysteine residue
to alanine abolishes NEDD4L-mediated ubiquitination of
o and B-ENaC [47]. To test whether relocation of
mCherry-NEDD4L-C2(+) with B-ENaC to the plasma
membrane was dependent on mCherry-NEDD4L-C2(+)
ubiquitin ligase activity, the cysteine residue (C943) was
mutated to alanine to make the construct mCherry-
NEDD4L-C2(+)-C943A. Transfection of A6 cells that sta-
bly-expressed B-ENaC-EGFP with mCherry-NEDD4L-
C2(+)-C943A and time lapse confocal microscopy of live
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EGFP-Nedd4l-C2(+) Nedd4l-C2(+)-EGFP

EGFP-Nedd4l-C2(-) ——_ JNedd4l-C2(-)-EGFP

EGFP-Nedd4l-C2(-) — QTransferrin-Texas Red _—— JOverlay

Figure 2

Differential subcellular localization of EGFP tagged NEDD4L-C2(+) and NEDD4L-C2(-) isoforms. Confocal
microscopic images of X. laevis A6 cells transiently transfected with EGFP-NEDDA4L-C2(+) (A), NEDD4L-C2(+)-EGFP (B),
EGFP (C), EGFP-NEDDA4L-C2(-) (D), and NEDD4L-C2(-)-EGFP (E). Western blot experiments of crude lysates from tran-
siently transfected A6 cells (F) demonstrate that differential degradation of either isoform did not occur. The monoclonal EGFP
antibody, JL-8 (Clontech) was used for detection. Confocal microscopic images of A6 cells transiently transfected with EGFP-
NEDD4L-C2(-) and incubated with the early endosomal marker, Transferrin-Texas Red® (G-I) indicate that EGFP-NEDDA4L-
C2(-) localizes to the early endosome. Green (EGFP-tagged NEDD4L-C2(-)) and blue (nuclear marker) channels (G). Red
(early endosome marker) and blue channels (H). Green, blue and red channel overlay (I). Scale bars are equivalent to 10 um.
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EGFP-Nedd4l-C2(-) EGFP-Nedd4l-C2(+)

€

Subcellular localization of EGFP tagged NEDD4L-C2(+) and NEDD4L-C2(-) isoforms in response to ionomycin
and Ca?* treatment. Confocal microscopic images of live A6 cells transiently transfected with EGFP (A, B), EGFP-PKCa.-C2
(C, D), EGFP-NEDD4L-C2(-) (E, F), and EGFP-NEDD4L-C2(+) (G, H). Images prior to (A, C, E & G) and 90 seconds after (B,
D, F, H) incubation with 0 uM ionomycin and 1.97 mM Ca?*. EGFP and EGFP-NEDDA4L-C2(-) do not relocalize in response to
an intracellular Ca2* influx. EGFP-PKCa-C2 relocalizes to the plasma membrane. EGFP-NEDD4L-C2(+) mobilizes to numer-
ous small intracellular structures. Scale bars are equivalent to 10 um.

cells following the addition of ionomycin were performed
as above (Figure 5K-O and see Additional file 5). In
response, mCherry-NEDD4L-C2(+)-C943A first moved
from the cytoplasm to the plasma membrane (Figure 5K,
L). Then mCherry-NEDD4L-C2(+)-C943A transited to the
periphery of some of the vesicles containing B-ENaC-
EGFP (Figure 5M). Unlike wild-type mCherry-NEDD4L-
C2(+) however, catalytically inactive mCherry-NEDD4L-
C2(+)-C943A did not relocate to the plasma membrane
(Figure 5N). Also unlike wild-type mCherry-NEDDA4L-
C2(+) transfected cells, B-ENaC-EGFP did not mobilize to
the plasma membrane either (Figure 50 and see Addi-
tional file 5).

Discussion and Conclusion

The availability of two clonal A6 cell lines that stably over-
express functional a- or B-ENaC subunits as EGFP fusion
proteins, provided a relevant cellular model to test the
effect(s) of potential functional differences between
NEDD4L-C2(+) and Neddd41-C2(-) on the NEDD4L sub-
strates o- or B-ENaC. Furthermore, using the A6 cell cul-
ture system allowed functional comparisons in the
presence and absence of ENaC subunit overexpression.
We report that NEDD4L-C2(+) and NEDD4L-C2(-)
exhibit different subcellular localizations and distinct
mobilization responses to a calcium stimulus. Addition-

ally, we report that NEDD4L-C2(+) differentially affects
short term trafficking of a- and B-ENaC subunits after a
calcium stimulus. Moreover, the effect of NEDD4L-C2(+)
on a segment of B-ENaC trafficking is ubiquitin depend-
ent.

We observed that the presence or absence of the C2
domain affected the subcellular localization of NEDDA4L.
NEDDA4L-C2(+) and NEDD4L-C2(-) were labeled with
EGFP and transfected into A6 cells. Whereas EGFP-
NEDDA4L-C2(+) localized to the cytoplasm, EGEFP-
NEDD4L-C2(-) localized to the cytoplasm and early
endosome. Although it is unclear what functional signifi-
cance NEDD4L-C2(-) localization to the early endosome
may have, it is plausible that the absence of the C2
domain prevents or hinders NEDD4L-C2(-) targeting to
intracellular sites beyond the early endosome.

We observed the mobilization response of EGFP-
NEDDA4L-C2(+) and EGFP-NEDD4L-C2(-) following an
increase in intracellular calcium. A6 cells that had been
transfected with either fusion protein were incubated in
1.97 mM Ca2?* and imaged immediately after the addition
of 10 um ionomycin. The Ca2+ concentration is within
typical ranges of Ca2+* concentrations that are used in stud-
ies that characterize intracellular C2 domain translocation
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EGFP-Nedd4l-C2(+) EGFP-Nedd4l-C2(+) EGFP-Nedd4l-C2(+)

EGFP-Nedd4l-C2only

EGFP-Nedd4l-C2only EGFP-Nedd4l-C2only

Figure 4

Subcellular localization of the EGFP tagged NEDD4L-C2(+) isoform and the NEDD4L C2 domain (C2(only)) in
response to ionomycin and Ca2* treatment. Confocal images of live A6 cells transiently transfected with EGFP-NEDDA4L-
C2(+) (A-C) or EGFP-C2(only) (D-F) that were incubated in 1.97 Ca2*. Images were acquired at 0 (A), 40 (B), 90 (C), 0 (D), 10
(E), and 30 (F) seconds after a 10 uM ionomycin addition. Both EGFP-NEDD4L-C2(+) and EGFP-C2(only) respond to the Ca?*
stimulus by first mobilizing to the plasma membrane and then relocalizing to numerous small intracellular structures. Scale bars

are equivalent to 10 um.

[48,49]. While EGFP-NEDD4L-C2(-) did not respond to
the Ca2+ stimulus, EGFP-NEDD4L-C2(+) mobilized from
the cytoplasm to the plasma membrane and then to small
intracellular compartments. These compartments were
not targeted by Transferrin Texas Red®, a marker of the
early endosome, or other subcellular organelle markers
used (see Additional file 2).

The availability of distinct A6 cell lines that stably express
a- or B-ENaC, combined with the observation that like
NEDD4L-C2(+), ENaC localizes in this overexpression
system to unidentified intracellular compartments [45],
provided a means and rationale to test the effect(s) of
NEDD4L-C2(+) mobilization on a well characterized sub-
strate. Because a- and B-ENaC were stably expressed as
EGFP fusion proteins [45], NEDD4L-C2(+) was tagged
with the red fluorophore, mCherry. mCherry-NEDDA4L-

C2(+) exhibited a similar calcium-dependent localization
response in cells that expressed either a-ENaC-EGFP or
EGFP-B-ENaC. This process occurred in three steps. First,
mCherry-NEDD4L-C2(+) moved from the cytoplasm to
the plasma membrane. Second, mCherry-NEDD4L-C2(+)
transited to the periphery of some of the vesicles that con-
tained ENaC subunits. Third, mCherry-NEDD4L-C2(+)
moved back to the plasma membrane. mCherry-
NEDD4L-C2(+) did not affect the localization of a-ENaC-
EGFP. However, in cells that expressed EGFP-B-ENaC,
mCherry-NEDD4L-C2(+) transited to the plasma mem-
brane with EGFP-B-ENaC in the third mobilization step.

Ubiquitination is intimately involved in several aspects of
the intracellular trafficking of various proteins [1]. We
therefore tested whether the co-transit of NEDD4L-C2(+)
and B-ENaC to the plasma membrane in response to an
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a-ENaC-EGFP

mCherry-Nedd4l-C2(+)

EGFP-B-ENaC

mCherry-Nedd4l-C2(+)

EGFP-B-ENaC

mCherry-Nedd4l-
C2(+)-C943A

Figure 5
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Distinct subcellular localization behaviors of EGFP tagged o- and 3-ENaC and mCherry tagged NEDDA4L-
C2(+) or NEDD4L-C2(+)-C943A in response to an ionomycin treatment in the presence of Ca2*. Confocal
images of live A6 cells stably expressing a.-ENaC-EGFP (A-E) or EGFP-B-ENaC (F-J, K-O) transiently transfected with
mCherry-NEDD4L-C2(+) (A-E, F-)) or mCherry-NEDD4L-C2(+)-C943A (K-O) and incubated in 1.97 mM Ca2*. The images
were acquired at 0 (A), 30 (B), 210 (C), 420 (D, E), 0 (F), 41 (G), 66 (H), 236 (I, J), 0 (K), 80 (L), 120 (M), and 240 (N, O)sec-
onds after a 10 uM ionomycin addition. All images are overlays of the blue, green and red channels except for images E, J, and

Owhich show only the blue and green channels.

increase in intracellular calcium was ubiquitination
dependent. To ablate the ubiquitin ligase capability of
NEDDA4L-C2(+), the catalytic cysteine 943 (C943) in the
HECT domain was mutated to alanine. C943 forms a
thioester linkage with ubiquitin prior to substrate ligation
and this association is required for substrate ubiquitina-
tion. The functional significance of C943 is supported by
its conservation in NEDD4L orthologs from humans to
yeast. In the context of ENaC regulation, mutation of the
catalytic cysteine to alanine abolishes NEDD4L mediated
B-ENaC ubiquitination [47]. In the mobilization response
to an increase in intracellular calcium, mCherry-
NEDDA4L-C2(+)-C943A first transited from the cytoplasm
to the plasma membrane and then transited to the periph-
ery of some vesicles that contained B-ENaC-EGFP. How-
ever, unlike the mobilization response of wild-type
mCherry-NEDD4L-C2(+), neither mCherry-NEDDA4L-
C2(+)-C943A nor B-ENaC-EGFP subsequently transited
to the plasma membrane.

The paradigm of E3 enzyme function within the ubiquitin
system implies that E3s down-regulate or sequester their
substrate targets. Ubiquitination results in substrate trans-

port to the proteasome and lysosome (for degradation) or
to endosomal compartments where proteins remain
intact but sequestered until needed and recycled for future
use [1]. It is not clear how our observation of mCherry-
NEDD4L-C2(+) and B-ENaC-EGFP mobilization from
intracellular compartments to the plasma membrane
would facilitate NEDD4L mediated ENaC down-regula-
tion. Since B-ENaC is active at the cell surface this inside-
out movement propels B-ENaC towards its functional
locale. This trafficking step may therefore correspond to -
ENaC mobilization from an intracellular pool or recy-
cling. Recent work using live-cell imaging and GFP-
labeled ENaC subunits overexpressed in polarized kidney
epithelial (MDCK) cells, has shown that cAMP can stimu-
late rapid ENaC trafficking, more from replenishment
than recycling, to the apical surface from an intracellular
pool [50]. Furthermore, this rapid cAMP-stimulated
replenishment is dependent on the presence of intact PY
motifs because it is impaired by PY-motif mutants of
ENaC suggesting that the PY motifs play a role in regulat-
ing exocytic trafficking of the channel. These results con-
firmed earlier work in rat thyroid cells demonstrating that
cAMP stimulation of ENaC was dependent on the PY
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Summary schematic of the observed mobilization response of NEDD4L-C2(+) in response to a Ca?* stimulus.
NEDDA4L-C2(+)-C943A that lacks ubiquitin ligase activity does not mobilize to the plasma membrane in step 4, and prevents 3

ENaC transit to the plasma membrane in step 4.

motif in the COOH terminus of each subunit, with the
most pronounced effect seen with a truncating mutation
in the B-ENaC subunit [29].

The observation here that neither catalytically inactive
NEDD4L (mCherry-NEDD4L-C2(+)-C943A) nor f-
ENaC-EGFP mobilize to the plasma membrane suggests
that ubiquitination is necessary for wild-type NEDD4L
(mCherry-NEDD4L-C2(+)) and B-ENaC-EGFP co-transit
to the plasma membrane. This result is surprising consid-
ering that ubiquitination of ENaC as well as myriad other
proteins typically leads to internalization and functional
down-regulation [10,51]. However, our observation of
ubiquitin-dependent mobilization of p-ENaC by
NEDD4L-C2(+) provides a novel mechanism for the PY
motif-dependent ENaC mobilization from intracellular
pools by cAMP. Multiple reports suggest that intracellular
calcium oscillations can be mediated by cAMP in renal
collecting duct cells [52-54]. A cCAMP mediated increase in
intracellular calcium could trigger NEDD4L-C2(+) mobi-
lization and targeting of intracellular compartments that
contain B-ENaC. Subsequent co-transiting of NEDD4L-

C2(+) with B-ENaC from intracellular pools to the cell
surface could occur in a PY motif-dependent manner due
to the requirement for interactions with NEDD4L-C2(+)
WW domains.

The observation that mCherry-NEDD4L-C2(+) mobilizes
to the plasma membrane independently in A6 cells that
stably express o-ENaC (Figure 5D, see Additional file 3)
suggests that fluorescently labeled ENaC subunits may
not be the only substrate(s) that are ubiquitinated. Future
investigations that employ alternate experimental
approaches should provide more detailed insight into the
mechanisms of NEDD4L and ENaC trafficking. Likewise,
the functional effects of the observed co-mobilization
between mCherry-NEDD4L-C2(+) and B-ENaC should be
correlated with functional sodium transport studies.

The differential trafficking effect of NEDD4L-C2(+) on a-
and B-ENaC subunits is consistent with differential subu-
nit trafficking observed in other contexts. In A6 cells an
increase in the density of B-ENaC subunits, but not a- or
v-ENaC subunits, at the cell membrane in response to
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aldosterone and vasopressin stimuli has been observed
[55]. Aldosterone-mediated-regulation of ENaC occurs at
least in part by activating the serum glucocorticoid-induc-
ible kinase 1 (Sgk1) [56]. Subsequent phosphorylation of
NEDDA4L hinders the interaction between NEDD4L and
ENaC thereby reducing the negative regulatory effect of
NEDDA4L on ENaC [57,58]. In vivo vasopressin induces a
significant increase of the B-ENaC subunit compared to
the a-ENaC subunit in rat kidney [59] as well. Further-
more, a model that describes intracellular ENaC traffick-
ing proposes that its subunits are transported
individually, independent of each other, in a non-coordi-
nate manner [60].

The differential regulation of intracellular trafficking as a
function of the presence or absence of a C2 domain may
extend to other substrates of NEDD4L, including the
dopamine transporter (dopamine active transporter,
DAT) [61], and to other Nedd4-like E3 ligases, including
the NEDDA4L paralog Nedd4-1 (Nedd4). Moreover,
Nedd4-like proteins have been implicated in the process
of viral budding due to the potential interaction between
Nedd4-like WW domains and viral late domains that con-
tain proline-rich motifs [62]. Viral pathogens could there-
fore exploit the differential trafficking behavior and
intracellular localization between NEDDA4L-C2(+) and
NEDDA4L-C2(-) to suit aspects of their pathogenesis. Two
recent publications indicate that NEDD4L-C2(-) can more
potently correct human immunodeficiency virus type 1
(HIV-1) release defects in 293T cells compared to
NEDDA4L-C2(+) [63,64]. We observed that NEDD4L-C2(-
) localizes predominately to transferrin-labeled early
endosomal compartments instead of the cytoplasm like
NEDDA4L-C2(+) (Figure 2). A recent study demonstrated
that HIV-1 localizes to transferrin-labeled early endo-
somal compartments [65]. Perhaps the ability of
NEDD4L-C2(-) to correct more readily HIV-1 release com-
pared to NEDD4L-C2(+) is the result of the preferential
localization of NEDD4L-C2(-) to early endosomal com-
partments where HIV-1 is present, thereby facilitating
interactions that promote viral egress.

Our data support the hypothesis that the G/A variant
impacts ENaC-dependent sodium handling in the ASDN
by affecting the relative synthesis of NEDD4L-C2(+) and
NEDDA4L-C2(-). Individual differences in the regulation
of sodium balance mediated by this genotype may con-
tribute modest but definite individual differences in the
liability to develop essential hypertension through a
sodium dependent mechanism. Our cellular observations
suggest a mechanism accounting for recently reported
clinical correlations between the genotype of the G/A var-
iant and responses to acute sodium loading as well as
changes in blood pressure [40]. Greater synthesis of the
NEDDA4L-C2(+) isoform relative to the NEDD4L-C2(-)
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isoform may favor apical recycling or mobilization from
intracellular pools, thereby generating a greater apical
density of ENaC channels in the ASDN through regulation
of the B-ENaC subunit, without concurrent effects on the
o-ENaC subunit.

The cellular observations provide a framework for future
investigations of the potential relationship between
genetic variation in NEDDA4L affecting relative expression
of C2-defined isoforms, subcellular trafficking and regula-
tion of ENaC subunits, and whether and how such genetic
variation can contribute to individual susceptibility to
develop essential hypertension. It is of particular interest
whether our observations relate to ENaC activity. Electro-
physiological experiments that would investigate amilo-
ride sensitive sodium current in a similar tissue culture
system would be a logical approach to resolve this issue.
While we exploited published evidence regarding interac-
tion between ENaC and NEDDA4L as well as the availabil-
ity of a cellular model system [45], the functional
implications of C2-containing and C2-lacking NEDD4L
isoforms may extend beyond blood pressure control to
other NEDD4L mediated processes including viral patho-
genesis [62,63] and regulation of dopamine transport
[61].

Methods

Cloning

Nedd4l cDNAs were amplified by PCR from mouse hip-
pocampal cDNA and ligated into the TOPO®XL TA clon-
ing vector (Invitrogen; K4700-20). The following primers
that were used for amplification are oriented 5' to 3"
GCTCCATGGCGACCGGGC and CCTGTAGCGTGAT-
TAATTCCA (NM_001114386.1, NEDDA4L that contains
the C2 domain (NEDD4L-C2(+)): CCGACAGAAGATC-
CAACCATGGAG and CCTGTAGCGTGATTAATTCCA
(NM_031881.2, NEDDA4L that lacks the C2 domain
(NEDD4L-C2(-)): ATGACAGAGAAGAGGGGGCGG and
TTCTGGAATGGGCACGITGTA  (Protein  Kinase C
alphaC2 (PKCa-C2)): GCTCCATGGCGACCGGGC and
GCCTAAATTGTCCACTITCTC (NEDD4L C2 domain (C2
only)). Amplified sequences were ligated into the EcoRI
site of pEGFP or pmCherry (Clontech; PT3051-5, PT3052-
5 & 632524).

Site Specific Mutagenesis

Alteration of cysteine 943 to alanine in NEDD4L-C2(+)
was performed by using the QuikChange® I XL Site-
Directed Mutagenesis Kit (Stratagene; 200521). The site
directed mutagenesis was performed on the mCherry-
NEDDA4L-C2(+) plasmid with the following primers:
AAACTACCCAGAGCTCATACAGCCITTAATCGCCIT-
GATTTACC and GGTAAATCAAGGCGATTAAAGGCTG-
TATGAGCTCTGGGTAGTIT. The mutation was verified
by sequencing.
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Cell Culture and Transfections

AG cells (including those that stably express either a- or -
ENaC) were cultured as recommended (American Type
Culture Collection; reference CCL-102) and as previously
described [45]. 24 hours prior to transfection the cells
were seeded at a density of 80,000 cells per cm2in 1.7 cm?
chambers (Nunc Brand; 155382). For transfection, the
growth medium was removed, the cells were incubated at
27°C in a solution containing 10 pl Lipofectamine 2000
(Invitrogen; 11668-019) and 1.14 pmol of DNA in a final
volume of 300 pl Optimem® I (Gibco; 31985-062). Five
hours post transfection, the transfection medium was
replaced with growth medium and the cells were incu-
bated for 24 hours at 27°C prior to imaging.

The following cellular organelle markers were utilized in
colocalization studies under the following conditions: the
dsDNA binding stain Hoechst 33342 (nuclear marker,
Invitrogen; H3570: working concentration 2.1 ng/ul) was
added 30 minutes prior to imaging. The lysosome marker,
Lysotracker” Red (Invitrogen; L-7528: working concentra-
tion 83 nM), was added 2 hours prior to imaging and was
washed once with growth medium immediately before
imaging. The Golgi marker BODIPY®TR Cs-ceramide (Inv-
itrogen; B34400: working concentration of 5 uM) was
added 30 minutes prior to imaging. Cells were washed 3
times with growth medium immediately before imaging.
The mitochondrial marker, Mitotracker® Red (Invitrogen;
M7512: working concentration 167 nM) was added 45
minutes prior to imaging. The endoplasmic reticulum
marker, ER-Tracker™ Red (Invitrogen; E34250: working
concentration 1 uM) was added 2 hours prior to imaging.
The early endosome marker, Transferrin Texas Red® (Invit-
rogen; T2875: working concentration 20 ng/ul) was
added 1 hour prior to imaging. The autophagosome
marker, LC-3, was fused to mCherry (Clontech; 632524)
and was co-transfected with EGFP-NEDDA4L-C2(+) 24
hours prior to imaging at a quantity of 0.57 pmol each.

In the mobilization experiments, A6 cells that had been
transfected as above were incubated in growth medium
that contained 1.97 mM Ca?+*. lonomycin was added at a
working concentration of 10 pm, and the time lapse con-
focal microscopy was performed immediately.

Microscopy

Images were acquired using a Fluoview™ FV1000 confocal
microscope (Olympus, 60x oil immersion) and the FV10-
ASW software. Single plane, xy scans and time lapse, xyt
scans were used to image live, transfected A6 cells at 27°C
in growth medium. The wavelengths of the excitation
lasers were 405 nm and 488 nm for Hoechst 33342 and
EGFP respectively. The 543 nm laser was used to excite
mCherry as well as the red colocalization fluorophores
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applying the manufacturers' recommended excitation and
emission wavelengths.

Western Blot

A6 cells were transfected as described, proportionally scal-
ing up all reagents for 3.8 cm? culture chambers. Cells
were isolated by scraping and centrifuging at 14,000 RPM
for 5 minutes. The growth medium was then replaced
with 80 pul of 1x SDS loading buffer (Laemmli buffer). Fol-
lowing four minutes in a boiling water bath, cells were
further homogenized using a Dounce homogenizer. Fol-
lowing a brief centrifugation, 25 pl homogenate was
loaded onto a 4-15% Tris-HCl gradient gel (BioRad; 161-
1104). Electrophoresis was performed for two hours at 90
V. Proteins were transferred to a nitrocellulose membrane
(Amersham; RPN2020E) and incubated with the mono-
clonal mouse anti-EGFP, JL-8 antibody (Clontech;
632380). A horseradish peroxidase based secondary
detection system (Biorad; 170-5043) enabled visualiza-
tion of bands via chemiluminescence.
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Additional material

Additional file 1

EGFP-NEDD4L-C2(-) does not colocalize with markers of mitochon-
dria, the endoplasmic reticulum (ER), the Golgi complex or lysosome.
Confocal images of live AG cells that were transiently transfected with
EGFP-NEDD4L-C2(-) (A-L) and incubated in the presence of
MitoTracker” Red (A-C), ER-Tracker™ Red (D-F), BODIPY® TR C;-cera-
mide complexed to BSA (Golgi marker) (G-I) or Lysotracker® Red (J-L).
Blue and green channel overlay (A, D, G, J). Blue and red channel over-
lay (B, E, H, K). Blue, green and red channel overlay (C, F, I, L). Scale
bars are equivalent to 10 ym.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-26-S1.pdf]
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Additional file 2

In response to a Ca?* stimulus, EGFP-NEDD4L-C2(+) does not target
the endoplasmic reticulum, lysosome, Golgi complex, mitochondria,
early endosome or autophagosome. Confocal images of live A6 cells
transiently transfected with EGFP-NEDD4L-C2(+), treated with 10 uM
ionomycin and 1.97 mM Ca?*, and incubated in the presence of ER-
Tracker™ Red (A), Lysotracker® Red (B), BODIPY® TR Cs-ceramide com-
plexed to BSA (Golgi marker) (C), MitoTracker® Red (D), or Transferrin-
Texas Red® (E). A confocal image of an AG cell that was transiently
cotransfected with EGFP-NEDD4L-C2(+) and mCherry-LC3
(autophagosome marker) after a Ca?* stimulus (F). Blue, green and red
channel overlay (A-F). Scale bars are equivalent to 10 pm.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-26-S2.pdf]

Additional file 3

Subcellular localization of EGFP tagged a-ENaC and mCherry-
NEDD4L-C2(+) in response to ionomycin treatment in the presence of
Ca?+. The movie, taken at 1 frame every 30 seconds, is of an A6 cell that
stably expresses a-ENaC-EGFP, was transiently transfected with
mCherry-NEDD4L-C2(+), and was incubated in 1.97 mM Ca?* and 10
uM ionomycin. It is the same AG cell that is shown in Figure 5, panels A-
E.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-26-S3.mov]|

Additional file 4

Subcellular localization of EGFP tagged -ENaC and mCherry-
NEDDA4L-C2(+) in response to ionomycin treatment in the presence of
Ca?+. The movie, taken at 1 frame every 2 seconds, is of an A6 cell that
stably expresses EGFP--ENaC, was transiently transfected with
mCherry-NEDD4L-C2(+), and was incubated in 1.97 mM Ca?* and 10
UM ionomycin. It is the same A6 cell that is shown in Figure 5, panels F-J.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-26-S4.mov]

Additional file 5

Subcellular localization of EGFP tagged -ENaC and mCherry-
NEDD4L-C2(+)-C943A in response to ionomycin treatment in the
presence of Ca?*. The movie, taken at 1 frame every 10 seconds, is of an
AG cell that stably expresses EGFP--ENaC, was transiently transfected
with mCherry-NEDD4L-C2 (+)-C943A, and was incubated in 1.97 mM
Ca?+and 10 uM ionomycin. It is the same AG cell that is shown in Figure
5, panels K-O.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-26-S5.mov]|
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