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Abstract

Connexins and pannexins share very similar structures and functions; they also exhibit overlapping expression in
many stages of neuronal development. Here, we review evidence implicating connexin- and pannexin-mediated
communication in the regulation of the birth and development of neurons, specifically Cx26, Cx30, Cx32, Cx36,
Cx43, Cx45, Panx1, and Panx2. We begin by dissecting the involvement of these proteins in the generation and
development of new neurons in the embryonic, postnatal, and adult brain. Next we briefly outline common
mechanisms employed by both pannexins and connexins in these roles, including modulation of purinergic receptor
signalling and signalling nexus functions. Throughout this review we highlight developing themes as well as important
gaps in knowledge to be bridged.

Background
Connexins (Cxs) and pannexins (Panxs) are channel-
forming proteins that play several important roles, both
separate and over-lapping, in the regulation of neuronal
development (for recent related reviews see [1, 2]). Both
families help orchestrate complex arrays of cellular behav-
iours, including proliferation, migration, specification, and
differentiation. While Cxs and Panxs share important
structural similarities, critical differences indicate that their
pore-forming functions are not redundant. For instance,
despite both being defined by four transmembrane domains
(with intracellular N- and C-termini) that oligomerize into
higher order structures forming single membrane channels
(Fig. 1a-c), Cxs and Panxs share no sequence homology at
the protein level. Rather, their functional relationship is
indirect from a genetic perspective and is somewhat histor-
ical in nature. Cxs are the structural subunits of both single
membrane channels (also referred to as “hemichannels” or
“connexons”) in non-junctional membranes (Fig. 1c) and
gap junction channels (Fig. 1d). Axial alignment of two
connexons creates (a) intercellular channels that directly

connect the cytoplasm of adjacent cells and (b) reflexive
channels that span adjacent membrane compartments,
notably in myelinating oligodendrocytes (Fig. 1d, e).
Panxs were initially identified through moderate sequence
similarity to invertebrate gap junction forming proteins,
the innexins [3, 4], however, the bulk of evidence sug-
gests that endogenously expressed Panxs form primarily
single membrane channels in non-junctional membranes
and not intercellular channels [5] (Fig. 1b). Only compat-
ible Cxs in the central nervous system (CNS) are capable
of oligomerization, docking, hemichannel formation, and
gap junctional intercellular communication (GJIC) [6]
whereas both CNS Panxs, Panx1 and Panx2, can form
homotypic hexamers (Panx1) or octomers (Panx2) and
possibly heterotypic channels [7]. Thus, clustered assem-
blies of identical (homotypic Cxs or Panxs) or diverse
(heterotypic Cxs and Panxs and heteromeric, Cxs only)
pairings dictate network-specific permeabilities and gating
properties and, in the case of the Cxs, participate in
defining boundaries of cell-cell communication [6].
Despite these significant functional differences, Cxs and

Panxs do share similar mechanisms in directing the
development of neurons in both embryonic and adult
brain. For example, Cx hemichannels and Panx single-
membrane channels have both been implicated in
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Fig. 1 (See legend on next page.)
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mediating ATP release from neural progenitor cells
(NPCs) and neighbouring, potentially “instructive”, neurons
and glia cells (reviewed in [8, 9]). Critical autocrine and
paracrine signalling pathways are triggered by the action of
the released ATP on various types of ATP-sensitive (puri-
nergic) receptors expressed by NPCs. Moreover, in adult
tissues, cell-specific Cx and Panx expression and protein-
protein-specific interactomes [10] define distinct neuro-
glial networks implicated in the regulation of adult hippo-
campal neural progenitor cell fate [10–15]. However,
between these similar single membrane channels, there re-
main important differences. For example, Cxs are sensitive
to extracellular Ca2+, while Panxs are not [16]). The pur-
pose of this review is to highlight some developing themes
in this area, and to outline important gaps in knowledge
in the growing body of work suggesting Cxs and Panxs
play important roles in the development of neurons and
associated cellular behaviours. Understanding these com-
plexities has important implications for the understanding
of and development of treatments for diseases of neurode-
velopment and acquired brain injuries.

The birth of new neurons occurs in the embryonic,
postnatal and adult brain
The majority of neurons of the cerebral hemispheres are
born during embryonic development from unspecialized
cells collectively referred to as neural precursor cells
(NPCs; reviewed in [17]). This is an umbrella term
representing the spectrum of immature cells ranging from
radial glia or stem like cells (having the potential to be-
come any type of neural cell) to neuroblasts (committed
to becoming neurons) that we will use throughout this re-
view for simplicity. In the embryonic brain, cortical gluta-
matergic pyramidal neurons arise from ventricular zone
(VZ) NPCs, while GABAergic neurons arise from NPCs
in the ganglionic eminence. Developing neurons migrate
to form the cortical layers and extend axons and dendrites
outwards from the cell body as they differentiate. Axon
and dendrite outgrowth as well as remodeling and devel-
opment of synapses occurs during the early postnatal
weeks (recently reviewed in [18]). Complex changes in

cellular signalling and morphology are critical to facilitate
the growth, development, and maturation of immature
NPCs into neurons (recently reviewed in [19]).
In the postnatal and mature brain, the subventricular

zone (SVZ; a further specialization of the embryonic VZ)
and, in the dentate gyrus of the hippocampus, the sub-
granular zone (SGZ) retain the ability to generate new
neurons (Fig. 2), a process commonly referred to as
postnatal, and/or adult neurogenesis (reviewed in [20]).
Specification is a step-wise process. For example, in the
SGZ, activated type 1 stem-like cells, identified by nestin
and glial fibrillary acidic protein (GFAP) immunoreactiv-
ity, can generate nestin+/GFAP− Type 2a progeny [21, 22].
Both type 1 and 2a populations are multipotential,
although primarily restricted to a granule neuron pheno-
type in vivo [23, 24]. Neurogenesis is assured when Type
2a progenitors produce committed type 2b nestin+/
doublecortin (DCX)+ cells that, in turn, specify to type 3
DCX+ neuroblasts before terminal specification. Type 3
neuroblasts migrate a short distance from the SGZ into
the granule cell layer of the dentate gyrus where they can
terminally differentiate into post-mitotic neurons [21, 22].
Some of these newly born neurons will integrate in
dentate gyrus circuitry as granule neurons. The majority
will be deleted prior to maturation [21, 25] (Fig. 2). In
addition to primary cultures, many cell lines are also used
in cell biological analysis of NPC cellular behaviours such
as proliferation, migration, and neuritogenesis. The investi-
gation of Cxs and Panxs in NPCs and developing neurons
has spanned all of these models of NPC development:
embryonic cortex, early postnatal and adult SVZ and
hippocampal neurogenic niches, and cell line models.

Cx and Panxs in NPCs in the embryonic, early postnatal
and adult brain
Twenty mammalian Cxs have been identified in mouse;
twenty-one in humans. Fourteen Cxs (Cx26, Cx29,
Cx30, Cx30.2, Cx31.1, Cx31.9, Cx32, Cx36, Cx37, Cx40,
Cx43, Cx45, Cx47, Cx57) and two Panxs (Panx1 and 2)
are expressed in murine and human CNS [6, 26–30]
(Here the murine Cx naming nomenclature is used.).
The global expression pattern of at least nine of these

(See figure on previous page.)
Fig. 1 Cx and Panx nexuses. a Cxs are the structural units of single membrane channels (hemichannels) and intercellular channels (gap junctions).
Panxs are primarily single-membrane channel proteins. Membrane topology in monomeric form (i.e., Panx1, blue) is strikingly similar to that of a
connexin (i.e., Cx43, red). b Panxs exclusively form single-membrane pores composed of Panx1 hexamers, Panx2 octomers, or possibly Panx1/2
heterotypic channels of unknown numbers of protein subunits. c Cxs oligomerize to hexamers capable of forming single membrane channels
(homotypic connexons or hemichannels are indicated). Schematic models crystal structure in a non-junctional lipid bilayer. d Axial alignment of compatible
Cx connexons generate homotypic (blue connexon/blue connexon), heterotypic (yellow connexon/blue connexon), and heteromeric (blue-yellow
connexon/blue-yellow connexon). e Cx26, Cx30, and Cx43 are expressed by astrocytes. Cx29, Cx32, and Cx47 are expressed by oligodendrocytes. Cx32
is expressed by oligodendrocyte precursor cells (OPCs). Cx36 and Cx45 are expressed by neurons. Cx45 and Cx30 are expressed by NPCs.
Panx1 is expressed by astrocytes, OPCs, oligodendrocytes, and neurons. Panx2 is found in neurons and NPCs. Panx single membrane channels, Cx
hemichannels/connexons, and Cx-compatible gap junction channels are depicted. Abbreviations: CT, carboxyl termini domain; E1/E2, extracellular loop
domains; IL, intracellular loop; JXP, juxtaparanode; M1-M4, transmembrane domains; NT, amino termini domain. Representations are based on [125–127]
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Cxs (Cx26, Cx29, Cx31.1, Cx32, Cx36, Cx37, Cx43,
Cx45, Cx47) and both Panxs changes over the course of
cerebral development [31–38]. These changes corres-
pond closely with the spatial-temporal patterns of em-
bryonic and early postnatal neurogenesis and gliogenesis
[31–35] and are recapitulated over the course of NPC
differentiation in vitro [12, 13, 39–41]. Ray et al., [38]
showed that Panx1 expression in neural crest-like cells is
downregulated when cells adopt a Schwann cell-like glial
lineage suggesting a role for Panx expression in gliogen-
esis. In postnatal hippocampus, we found that Panx2
localizes to subsets of multipotential NPCs both in vitro
and in vivo and is transiently downregulated when
cells commit to a neuronal lineage [11]. Panx1 also
promotes NPC proliferation [42] as well as cell mi-
gration, while inhibiting neurite outgrowth [43] in
vitro.

Embryonic neurogenesis
There are at least three ways in which Cx expression im-
pacts upon embryonic neurogenesis. First, Cx-mediated
GJIC between NPCs enables clusters of coupled cells to
coordinate their responses to extrinsic stimuli. In the
embryonic CNS, spatial-temporal patterns of synchron-
ous cellular activity are observed between cells destined
to become functional domains [44–46]. GJIC is recog-
nized as one of the underlying mechanisms regulating
this type of synchrony [47–53]. For example, proliferat-
ing units in the embryonic VZ are segregated from
migrating units in the overlying cortex by engagement of
α1β6 integrin receptors with laminins [54, 55]. We have
shown that laminin differentially regulates Cx mRNA

and protein expression [12]. Within these ECM-defined
boundaries, GJIC ensures the creation of functional do-
mains by enabling coordination between “like-lineage
cells” yet isolation from neighbouring groups of cells in-
duced by competing stimuli to specify to a different fate
(reviewed in [56]). In addition to synchronous activity,
Cx-mediated intercellular communication also permits
NPCs to exchange small signalling molecules with
adjacent “instructive” cells. In vitro, NPCs are directed
to adopt a neuronal or oligodendrocytic lineage by juxta-
crine communication with different populations of termin-
ally differentiated feeder layers [24] presumably mediated,
in part, by GJIC.
Regionalization is further influenced by the changing

repertoire of Cxs expressed by adjacent populations over
time. For example, Cx36, a neuronal specific Cx, is dy-
namically expressed over the course of embryonic neuro-
genesis [31, 57, 58] . Cx36 and, to a lesser extent, Cx26
localizes to the VZ during the first wave of neurogenesis
[59]. Cx36 expression is dramatically reduced over the
course of post-natal maturation, but remains enriched in
subsets of interneurons in the hippocampus, olfactory
bulb and thalamus, and is sparsely expressed in the neo-
cortex [60–62]. In embryonic striatal derived murine NPC
cultures, Cx36 is a positive regulator of neuronal differen-
tiation [57]. While reports on Cx36 mRNA expression in
embryonic brain in mouse [31, 58] and Danio rerio [63]
note that expression overlaps with the period of neural
induction, the authors did not specifically investigate
Cx36 expression in NPCs making it likely Cx36 is
expressed towards the end of neurogenic specification
(although this hypothesis requires empirical validation).

Fig. 2 The adult SVZ and SGZ support neurogenesis. Adult NPCs are defined by their capacity to proliferate and replenish neuronal and glial numbers.
Antigenic markers used to distinguish between lineages are listed
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The anticipated changes in Cx-mediated intercellular
communication associated with these changes in protein
expression, in addition to changes in Cx-mediated hemi-
channel formation and Panx-mediated single membrane
pores in non-junctional membranes, are believed to play a
role in coordinating activity of NPCs influencing NPC ac-
tivation, tissue differentiation, NPC migration, regional
specification, axonal growth and guidance, and synapto-
genesis during CNS development [56, 64–66]. Functional
indices of both electrical and metabolic coupling are wide-
spread in the developing nervous system and thus gap
junctions represent the predominant means of cell-cell
communication between NPCs prior to formation of
chemical synapses [45, 67]. Both electrical and metabolic
coupling have been implicated in terminal regional
specialization and the establishment of cortical circuits
[53, 68]. Prenatal GJIC is thought to be involved in regu-
lating the formation and stabilization of cortical neuronal
circuits providing a means by which NPCs and newly born
neurons can communicate until sufficiently mature to ex-
press neuron-specific neurotransmitters [32].
Second, the passage of ions and lipid second messengers

through Cx-hemichannels in non-junctional membranes
propagates sequential signalling waves to adjacent cells
over great distances. During corticogenesis, hemichannel-
mediated Ca2+ waves increase in number, amplitude, and
distance travelled over the course of embryonic develop-
ment [66]. Moreover, in the early postnatal neocortex,
dendritic gap junctions mediate the propagation of inosi-
tol trisphosphate (IP3) and calcium waves. This process is
thought to form the basis of functional regionalization by
dividing the immature neocortex into columnar patches
of coordinated activity [44, 69–71].

Finally, Cxs also mediate protein-protein interactions that
affect regulation of NPC cell behaviours such as migration.
These have commonly been referred to as ‘channel inde-
pendent’ functions. The prime example in the embryonic
brain is the adhesive properties of Cx43 allowing transient
cell-cell interactions that direct cell migration without ap-
parent formation of functional channels (Fig. 3) [72–74]. It
is not completely clear whether (or which) protein-protein
interactions are involved in other functions of Cx43 during
cortical development such as the regulation of proliferation
[75] and differentiation [76–78]. Cx43 interactions regulat-
ing cell proliferation have, however, been described in other
cell types. For example, in human hepatocarcinoma cells,
Cx43/Hsc70 interactions regulate the G1/S cell cycle check
point [79]. Here, Cx43 sequesters Hsc70 at the plasma
membrane preventing its interaction with the Cdk inhibitor
p27 and therefore nuclear translocation of the cyclin D1-
CDK4-p27 complex regulating transition through G1/S.
Thus, increasing Cx43 levels inhibits cell proliferation. In-
hibition can be rescued by Hsc70 overexpression. This ex-
ample illustrates the idea that cell specific differences in
Cx/Panx interacting proteins, in addition to expression
levels of Cxs/Panxs themselves, has functional conse-
quences. In another example, Cx43 has also been shown to
interact with Ask1, an upstream activator of c-jun N-
terminal kinase (JNK [80]) This interaction, in part, pro-
tects both C6 glioma cells and primary astrocytes from
apoptosis induced by oxidative stress. Interesting, upregula-
tion of Ask1 following inflammation also promotes neur-
onal differentiation [81]. As multipotential NPCs express
Cx43, it would be important to test whether Ask1/Cx43
interaction enhances NPC survival and neurogenesis in the
context of inflammation/pathology. Finally, the C-terminus

Fig. 3 Connexon-Connexon mediated adhesion domains. In addition to forming functional intercellular channels, docking of compatible connexons
between radial glia (yellow) and NPCs (gold) directs migration of NPCs Docking and undocking enables the “rolling” of NPCs along their radial glial
guides to their final location before terminal differentiation. Adhesion can be channel-independent without requiring exchange of small molecules or
functional channel opening
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of Cx43 has been shown to be a negative modulator of
neuronal differentiation [77]. It has been suggested that the
Cx43 C-terminus engages in important protein-protein in-
teractions underlying this effect, however, the specific pro-
tein interaction partners involved have yet to identified.
Moreover, while differentiation does not appear to be
dependent on channel function [77, 78] (but see also [82,
83]), work by Cheng et al. [75] suggests that the regulation
of proliferation by Cx43 does depend on channel function.
Because these critical behaviours in the development of
neurons: migration, proliferation and differentiation, often
overlap and require very fine tuned transitions, there is
likely some cross-talk between channel function and
protein-protein interactions. It would be reasonable to
speculate that conformational changes associated with
changes in channel activity could impact on interactions
with intracellular proteins. This underlies the impact of
many types of ion channels and receptors on cell biology
(for example see [84]). As new technologies reveal the
finer details of the relationships between these, the term
‘channel independent’ may need to be revised.

Postnatal/adult neurogenic niches
The current state of knowledge of reported Cx and Panx
expression patterns in different NPC populations is sum-
marized in Fig. 1e and Fig. 2 with focus on the hippocam-
pus. NPCs and immature neurons of the early postnatal
and adult SVZ express Cx26 [85] Cx43 [85–91], Cx45
[85–87, 92] and Panx1 [42, 43, 85]. Dye coupling ex-
periments suggested that NPCs (specifically radial
glia) are connected with one another and with astrocytes
[85, 87, 88, 90] or microglia [85] via gap junctions. Inter-
estingly, the rare radial glia that are retained in postnatal
retina also express Cx30 [93] suggesting a role for this Cx
in the control of adult multipotential glial NPC fate. Lacar
et al. [88] observed bidirectional Ca2+ waves travelling be-
tween NPCs and resident astrocytes via gap junctions.
The Cx composition of these intercellular junctions was
proposed to be Cx43 or Cx45 based on expression data,
but this has yet to be experimentally tested using knock-
out (KO) mice and it is likely that Cx30 may also play a
role given its localization in postnatal NPCs cultured in
vitro and retina [12, 93]. Notably, Cx43 expression levels
in SVZ NPCs increase with postnatal age [91] and in-
versely correlate with bromo-deoxyuridine labeling, an
indicator of cell proliferation, suggesting that Cx43 nega-
tively regulates cell proliferation (in contrast with its role
in promoting proliferation during embryonic development
[75]). Conversely, Cx45 was recently reported to promote
NPC proliferation [92], in part through activation of
purinergic receptors. Panx1 was also reported to promote
proliferation [42] as well as cell migration, while inhibiting
neurite outgrowth [43] in vitro. Treatment with CBX [86],
which affects function of all four channel proteins (Cx30,

Cx43, Cx45, Panx1), reduced migration of NPCs within
the SVZ and rostral migratory stream (route of NPC mi-
gration towards the olfactory bulb).
In terms of the postnatal hippocampus, Rozental et al.

[39–41] and Imbeault et al. [12] exhaustively characterized
the repertoire of Cx expression therein. Cx26, Cx30, Cx37,
Cx40, Cx43, and Cx45 mRNA and protein were expressed
in various NPC populations. Using primary cultures of hip-
pocampal NPCs, the authors demonstrated that expression
changes dynamically over the course of neuronal commit-
ment [39–41] and, as indicated above, that engagement
with laminin differentially altered Cx expression in distinct
NPC and oligodendrocyte precursor cell (OPC) popula-
tions [12]. As expected, Cx36 was also expressed in imma-
ture neurons. Kunze et al. [94] confirmed expression of
Cx26, 30 and 43 in hippocampal NPCs in vivo, determin-
ing that deletion of Cx30 and Cx43 hampered proliferation
of hippocampal NPCs. This is consistent with the role of
Cx43 in promoting VZ proliferation in the embryonic brain
[75], but seemingly contrasts with the association between
high levels of Cx43 and reduced proliferation of SVZ NPCs
in the postnatal/adult brain [91]. With respect to Panxs in
the postnatal hippocampus, the highest expression levels of
Panx2 in the hippocampus coincided with the period of
peak postnatal hippocampus neurogenesis [11]. This corre-
sponded with detection of Panx2 in several NPC popula-
tions. While Panx1 mRNA and protein was detected in
primary postnatal hippocampal NPC cultures [42], its ex-
pression and role in hippocampal NPCs in vivo has not yet
been determined.

Probing Cx and Panx function and spatiotemporal changes
in expression using NPC cell lines
In order to address specific cell biological research ques-
tions as well as to bridge mouse to human studies, sev-
eral cell lines have also been used to study the role of
Cxs and Panxs in neuronal development. Cell line stud-
ies facilitated certain investigations such as expression
analyses (over the course of differentiation) and siRNA
knockdown, which were difficult to perform in situ due
to the rarity and complexity of NPCs in the brain. For
this reason, popular murine cell lines include Neuro2a
(N2a) cells (derived from a murine neuroblastoma), P19
cells (derived from an murine embryonal carcinoma),
NT2/D1 cells (derived from a human teratocarcinoma)
and PC12 cells (an rat adrenal pheochromacytoma cell line)
have been used to study Cxs and Panxs, primarily in the
context of proliferation and differentiation. For example,
Wicki-Stordeur et al. [42, 43] came to similar conclusions
about Panx1 function in both primary postnatal SVZ cul-
tures and N2a cell models in terms of a positive role in pro-
liferation and a strong inhibitory role in neurite outgrowth.
Recent work performed in vivo by Wicki-Stordeur et al.
[95] confirmed that Panx1 regulates SVZ maintenance,
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through mechanisms that have yet to be determined. Simi-
larly, Panx2 negatively regulated neurite outgrowth and dif-
ferentiation in N2a cells [11].
The role of Cx43 in neuronal proliferation and differ-

entiation has been widely studied in “NPC-like” cell line
models with somewhat conflicting results. Moorby and
Patel [95] made similar observations with respect to
Cx43 in N2a cells to those previously made in postnatal
SVZ [91], in that its overexpression increased the doubling
time, which suggested a reduction in proliferation. Studies
employing PC12 [96] and P19 cells [83] as well as their
analogous human counterpart NT2/D1 cells [82] suggested
that Cx43 acted as a positive regulator of neurite out-
growth and differentiation. By contrast, work with P19 and
NT2/D1 cells revealed spatial-temporal changes in Cx43
(down-regulation) that were suggestive of negative regula-
tion of neuronal differentiation [13, 97, 98]. Moreover,
studies using the human NPC line ReNcell VM197 derived
from the embryonic ventral midbrain suggested that siRNA
mediated down regulation of Cx43 impaired both prolifera-
tion and differentiation [99]. The differing results and inter-
pretations garnered from these in vitro models point to the
need for more comprehensive understanding of Cx in-
volvement in signalling pathways regulating these behav-
iours, including the relationship between channel function
and signalling pathway/protein-protein interaction involve-
ment. Furthermore, now that new tools are available that
can be used to specifically target NPCs in vivo, and since
issues with antibody-specificity have been resolved or can
be addressed using null-mutant mice, many of these in
vitro findings can now be confirmed in situ.

Common mechanisms between Cx and Panx function in
neuronal development
While it is fairly generally accepted that Cxs regulate the
migration of NPCs through directly modulating cell-cell
adhesion, the role of Panx1 in migration and the roles of
Panxs and Cxs and Panxs in proliferation and differenti-
ation are less well understood at the mechanistic level. A
handful of reasonable hypotheses have emerged that war-
rant further study. Two of these include modulating ATP-
sensitive purinergic receptor signalling, and setting up key
signalling nodes through protein-protein interactions with
multiple components of specific signalling pathways.

Modulation of purinergic receptor signalling
A large body of evidence suggests that Cx hemichannels
and Panxs are capable of releasing ATP into the extracellu-
lar space (reviewed in [100]). Notably, it has been well
established that both ionotropic purinergic (P2X) and me-
tabotropic purinergic (P2Y) ATP receptor activation
shapes embryonic and postnatal/adult neurogenesis
(reviewed in [8, 9]). For example, activation of metabotro-
bic P2Y1 receptors increases NPC proliferation and

migration in the VZ [101–105]. These effects are
dependent on a number of physiological factors, such as
crosstalk with growth factor receptor signalling [101, 105].
A similar mechanism has been identified in the adult
hippocampus [106]. NPCs also express a variety of iono-
tropic P2X receptors over the course of embryonic and
postnatal development (reviewed in [107]). For example,
ionotropic P2X7 receptors are expressed in the embryonic
VZ [108] and adult SVZ [109] and participate in the regu-
lation of differentiation at all developmental stages. Down-
regulation of P2X7 receptors coincides with neuronal
differentiation, and their inhibition stimulates differenti-
ation and neurite outgrowth [110–112], suggesting that in
some contexts, P2X7 receptors negatively regulate neuronal
differentiation. However, in the embryonic brain, P2X7 re-
ceptors promote differentiation of NPCs [108]. Notably,
P2X7 receptors are also involved in apoptosis [109, 113]
and in the clearance of apoptotic cells [114], both of which
are important in the regulation of neurogenesis and devel-
opment of the brain. It has been suggested that expression
of different P2X7 receptor isoforms could underlie these di-
vergent actions of P2X7 receptors (reviewed in [115]).
Moreover, the differential expression of multiple P2Y and
P2X isoforms over the course of development (reviewed in
[107]) adds several layers of complexity in terms of nucleo-
tide signalling and the potential for crosstalk with Cx hemi-
channels and Panxs.

Cxs and Panxs as potential signalling nexuses in the brain
The term signalling ‘nexus’ (or node) refers to the cap-
acity for ion channels and receptors (or any protein) to
compartmentalize the components of one or more sig-
nalling pathways into close proximity to ion fluxes (or
any signalling molecule or event) by virtue of providing
interaction sites for multiple components of the pathway
to enhance efficiency and speed of signalling (for discus-
sion of examples see [84]). As described above, although
this is related to the idea of ‘channel-independent’ func-
tions, there is likely crosstalk between channel function
and protein interactions, as occurs with many other ion
channels and receptors. This role is likely very important
in neuronal development, as multiple signalling pathways
must be activated and deactivated in a highly orchestrated
and strict manner for neuronal development to occur nor-
mally, as even subtle aberrancies in signalling during neur-
onal development, both embryonically and postnatally can
lead to significant dysfunction, such as learning disabilities,
autism, schizophrenia and epilepsies (for recent reviews see
[116–118]). Cxs have emerged as important focal points
for the organization of signalling systems (reviewed in
[119–121]), but whether and how this occurs during
neuronal development has yet to be elucidated. Recent
work suggests that Panxs also likely form important
signalling nodes ([43] and reviewed in [119, 122, 123]).
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At least initially, there appear to be some similarities
between Cx and Panx interactomes. Both Cxs and
Panxs have been shown to interact with multiple cyto-
skeletal components and modulators/regulators (for re-
views see [119, 120, 123]). For example, in addition to
interacting with actin, both Panx1 and Cx43 interact
with actin-regulating proteins. Panx1 interacts with the
actin-regulating protein Arp2/3 [43] and Cx43 interacts
with Drebrin [124]. Interactions with both structural
and functional components of the dynamic actin cyto-
skeleton could underlie their shared regulation of cell
behaviours that require complex, concerted rearrange-
ments of the actin cytoskeleton like neurite outgrowth
and cell migration. The elucidation of the Cx and Panx
interactomes over the course of neuronal development
therefore represent a key area for bridging our current
gaps in knowledge with respect to the role(s) of these
proteins in regulating neuronal and brain development.

Conclusions
Cxs and Panxs undoubtedly play important roles in
neuronal development in the embryonic, postnatal, and
adult brain. From this body of work, it has emerged that
there is a great deal of expression and functional overlap
between Cxs and Panxs in the context of neuronal devel-
opment. Moving forward, dissecting the precise timing
and roles of different Cxs and Panxs is now becoming
more feasible due to the increasing availability of deleting
Cxs and Panxs with greater cell type specificity and tem-
poral precision. In addition to improved genetic manipula-
tion (and improved validation), more potent, selective
drugs for Cxs and Panxs and their signalling partners, such
as the purinergic receptors will also improve our ability to
dissect their combinatorial contributions. Furthermore,
elaboration and functional study of Cx and Panx signalling
nexuses will also provide greater understanding of the
roles of these proteins in the proper development of the
brain, and in disorders of neurodevelopment.
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