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Abstract

Background: Hedgehog (Hh) signaling is a conserved morphogenetic pathway which plays critical
roles in embryonic development, with emerging evidence also supporting a role in healing and
repair processes and tumorigenesis. The Gli family of transcription factors (Glil, 2 and 3) mediate
the Hedgehog morphogenetic signal by regulating the expression of downstream target genes. We
previously characterized the individual and cooperative roles of the Gli proteins in Hh target gene
regulation using a battery of primary embryonic fibroblasts from Gli null mice.

Results: Here, we describe the establishment of spontaneously immortalized mouse embryonic
fibroblast (iMEF) cell lines lacking single and multiple Gli genes. These non-clonal cell lines
recapitulate the unique ligand mediated transcriptional response of primary MEFs. While loss of
Glil had no effect on target gene induction, Gli2 null cells demonstrated reduced target gene
induction while Gli3 null cells exhibited elevated basal and ligand-induced expression. Target gene
response in Glil--2-- iMEFs was severely reduced while Gli2--3-- iMEFs were incapable of ligand-
induced transcriptional response. However, we found that both Glil7-2-- and Gli2--3-- iMEFs
exhibited robust leukotriene synthesis-dependent migration responses to Hh ligand, demonstrating
that this response is not transcriptionally-dependent.

Conclusion: This study provides fundamental characterizations of the transcriptional and non-
transcriptional Hh responsiveness of a battery of Gli-null iMEFs. Moving forward, these cell lines
should prove a valuable tool set to study the unique functional regulation of the Gli proteins in a
Hh-responsive cell-type.

Background Patched (Ptcl). This relieves the Ptc1-mediated suppres-
The Hedgehog (Hh) signaling pathway is a critical regula-  sion of Smoothened (Smo), triggering a complex down-
tor of diverse biological processes including developmen-  stream signal cascade [Reviewed in [1]]. Glil and Ptc1 are

tal patterning and organogenesis. The pathway is initiated =~ conserved Hh target genes and their expression levels are
upon Hh ligand binding to the transmembrane receptor ~ considered reliable indicators of pathway activity. Most
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biological effects of Hh signaling appear to be mediated
through transcriptional regulation of Hh target genes,
although a non-transcriptional response was recently
identified [2,3].

Null mouse models have been critical in determining the
role of Hh signaling in the growth and morphogenesis of
tissues and organs. These models have also proved valua-
ble in gleaning the function of individual Hh signal medi-
ators in pathway regulation. In cell-based assays, Glil
over-expression has been found to induce Hh target gene
expression. The finding that Glil/- mice develop nor-
mally, [4] however, infers that Glil function is dispensa-
ble for normal development. Gli2/- mice exhibit neural
tube defects and demonstrate diminished Hh target gene
expression in several tissues [5-7]. This supports findings
from cell-based assays [8] that Gli2 functions as a critical
target gene activator. Increased target gene expression in
tissues derived from Gli3 null mice relative to tissues from
wild type mice [9,10] suggests that Gli3 functions to
repress transcription.

Numerous studies have utilized transgenic MEFs to inves-
tigate diverse gene and protein properties. However, the
experimental utility of primary cells is limited by a finite
propagation and culture period. We showed previously
that mouse embryonic fibroblasts (MEFs) from Gli null
mice provide a tractable cell-based system in which to
quantitatively examine the regulation of Hh target gene
expression by the Gli transcription factors [11]. We now
describe the generation of immortalized Gli null MEFs
(iMEFs) and characterize their transcriptional and migra-
tory response to Hh ligand stimulation.

Methods

Animals

This work was conducted with the approval of the Univer-
sity of Wisconsin Animal Care and Use Committee. Gli1¥4
and Gli294 mice were generously provided by Alexandra
Joyner and maintained on an outbred CD-1 background.
Gli3X4 mice were obtained from Jackson Laboratories (Bar
Harbor, ME) and were maintained on a C57/C3H back-
ground. Primary MEFs [11] were derived from crosses of
Gli1¥#4and Gli244 transgenic mice and GIli3X% mutant mice.
Gli19? and Gli24# transgenic mice were produced by
homologous recombination replacing exons 2-5 and 3-
5, respectively with neo cassettes [4,12]. Gli3%X6 mutant
mice from Jackson Laboratories (Bar Harbor, ME) lack
Gli3 expression due to a deletion mutation in the 3' end
of the gene [13].

Cell immortalization

Primary MEFs were grown as described previously (Lipin-
ski et al., 2006) in 10% fetal calf serum (FCS) DMEM
[with L-glutamine, 4.5 g/L glucose, without sodium pyru-
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vate] with 1% Pen/Strep and propagated following the
3T3 protocol for spontaneous immortalization [14]. 3.0 x
105 cells in 4.0 mls media were plated in 60 mm plates
and passed at three day intervals. After 8—12 passes, pro-
liferation rates decreased and cells were allowed to grow
to confluence before subsequent passing. After 15-25
passes, proliferation rates increased, suggesting spontane-
ous immortalization. Following, cells were grown for an
additional 10-12 passes to ensure stable immortalization.
The absence of expression of Gli1, Gli2, and Gli3 in corre-
sponding null iMEF cell lines was confirmed by Real
Time-RT-PCR of isolated cDNA [11] as well as standard
genotyping of genomic DNA [4,12].

Generation of stable over-expresser cell lines by retroviral
gene delivery

A pIRES shuttle vector carrying coding sequences for hShh,
hGli1, ANmGIi2, hSmo* and independently translated GFP
[15] was used to retrovirally infect WT iMEFs. iMEFs were
plated at subconfluence in DMEM with 10% FCS 100 mm
plates. Cells were then incubated with viral-conditioned
media at 4°C for 6 hrs. Following a 72 hr propagation
period, GFP-sorting was used to isolate over-expressing
populations.

Cell treatment and Real Time RT-PCR

iMEFs were plated in Multiwell Primaria™ 24 well plates
(Falcon, Franklin Lakes, NJ) at 2.0 x 105 cells per well in
400 pl media. Cells were allowed to attach overnight and
media were replaced with DMEM containing 1% FCS + 1
nM octylated Shh peptide (Curis/Genentech). At 24 hrs
RNA was harvested and gene expression was determined
by real time RT-PCR as described, [11] using gene specific
primers as listed: GAPDH: 5'-AGCCTCGTCCCG
TAGACAAAAT-3' and 5'-CCGTGAGTG GAGTCATACT-
GGA-3', Ptcl: 5'-CTCTGGAGCAGATTTCCAAGG-3' and
5'-TGCCGCAGTTCTITTGAATG-3', Glil: 5'-GGAAGTC-
CTATTCACGCCITGA-3' and 5'-CAACCITCITGCT-
CACACATG TAAG-3', Gli2: 5'-CCTTCTCCAATGCCT
CAGAC-3' and 5'-GGGGTCTGTGTACCT CTTGG-3', Gli3:
5'-AGCCCAAGTATTATT CAGAACCITTC-3' and 5'-
ATGGATAGG GATTGGGAATGG-3'.

Migration assays

Cells were grown to 70% confluence in 6-well plates and
labeled with 10 puM CellTracker Green (Invitrogen) in
serum-free medium for 1 hr. The dye was fixed by adding
10% FCS for 1 h, and subsequently cells were washed and
detached with 5 mM ethylenediaminetetraacetic acid
(EDTA) in PBS. After complete detachment, cells were
resuspended in serum-free medium, pipetted through a
70 uM cell strainer (BD Falcon, Franklin Lakes, NJ), and
100 pl suspension was transferred to 8 uM pore size HTS
FluoroBlok Cell Culture Inserts from BD Falcon which
were inserted in fitting 24-well plates. In the bottom wells,
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600 pl medium was supplemented with indicated chem-
oattractant. Promptly, fluorescence values representing
the number of cells on the bottom side of the insert were
read four times every two minutes on a Series 4000
CytoFluor Multi-Well Plate Reader (Perseptive Biosys-
tems, Framingham, MA). The raw fluorescence data were
corrected for background fluorescence. No-attractant con-
trols were subtracted at each measured time point to cor-
rect for any effects not due to active migration to the
chosen attractant. Migration start points were set to zero.
For comparison of the different cell lines from multiple
experiments, total migration of wild type cells was set to
one. For migration assays, Shh peptide (R&D Systems)
was used at given concentrations. Preincubation with
inhibitors was performed during 10 minutes following
detachment and inhibitors were also added to the bottom
wells to exclude chemorepellent artifacts. Transfection of
iMEFs with SuFu overexpression construct (a kind gift of
Dr. Toftgard) was performed with Effectene transfection
reagent (Qiagen, Hilden, Germany) according to manu-
facturer's recommendations 16 h before start of migration
assay. Western blot analysis revealed a 10-fold increase in
SuFu levels following transfection (not shown).

WT Gli1-/-

Gli1-/-2-/- Gli3-/-

Figure |
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Results and discussion

MEF immortalization, morphological characterization,
and ploidy analysis

Gli3+/+ (WT), Gli1+/-, Gli2-/-, Gli3+-, Gli1/-2--, and Gli2-/-3--
primary MEFs were propagated by described 3T3 proto-
cols for spontaneous immortalization [14]. Each non-
clonal immortalized cell line demonstrated a fibroblast-
like morphological appearance in monolayer culture
although individual lines exhibited subtle morphological
differences (Figure 1). Each iMEF line was determined to
be tetraploid by flow cytometry analysis (data not
shown).

Characterization of iMEF transcriptional Hh
responsiveness

iMEFs were treated + Shh ligand, and Hh target gene
expression was determined by real time RT-PCR. Figure
2A shows the expression of reliable Hh target gene Ptc1
following stimulation with Shh or vehicle and Figure 2B
shows the fold induction (Shh/Veh) of Ptc1 expression.
Gli3-/- iMEFs demonstrated elevated basal and Shh-
induced expression of Ptc1 (p = 0.03 and p = 0.02 respec-
tively) relative to WT cells. Shh ligand stimulation
induced Ptcl expression in each iMEF line except that
lacking expression of both Gli2 and Gli3, which are essen-
tial for a transcriptional Hh response. While loss of Glil
alone had no effect on target gene expression, Ptc1 induc-

Gli2-/-

Gli2-/-3-/-

Gli-null iMEF morphology in monolayer cell culture. Indicated iMEFs were grown to confluence in monolayer culture

and imaged at 40x magnification.
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Figure 2

Transcriptional Hh-responsiveness of generated iMEFs. Indicated iMEFs were plated at confluence and treated + Shh
ligand. After 24 hrs, expression of Ptc/ was determined by Real-Time RT-PCR. A. Basal and Shh-induced expression of Ptc/.
Values represent the mean + SEM of 3-5 replicate experiments, * indicates P < 0.05 (paired t-test). B. Ptc/ expression plotted
as fold induction (Shh/Veh). Values represent the mean * SEM of three replicate experiments. The letters above the bars
denote the groups produced by the ANOVA pair-wise differences. Genotypes sharing a letter are not statistically significant at
p < 0.05 (Fisher's LSD).
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tion was reduced in both GIli2-/- and Gli1-/-2-/- iMEFs rela-
tive to WT.

Characterization of iMEF non-transcriptional Hh
responsiveness

While Hh signaling effects are thought to be exerted pri-
marily through transcriptional regulation, a novel path-
way was recently identified which is Smo-dependent but
does not require transcription [2,3]. This alternative path-
way triggers cytoskeletal rearrangement, driving a cellular
migratory response toward Hh ligand. When activation of

http://www.biomedcentral.com/1471-2121/9/49

this pathway was investigated in wild type iMEF cells, a
dose-dependent migratory response to recombinant Shh
was observed (Figure 3A). In the absence of Shh ligand
(no-attractant control), a low level of baseline migration
was observed and subsequently subtracted from the
migratory responses in all other experiments.

The generated Gli null iMEFs provide a valuable tool to
assess transcription factor dependence of specific biologi-
cal responses. When Gli3+/+ (WT), Gli1/-2-/-, and Gli2-/-3-/-
iMEF cells were allowed to migrate to 2 pg/ml Shh pep-
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Figure 3

Non-transcriptional Hh-responsiveness of the generated iMEFs. A. Example of a migration assay using wild type (Gli3*/
*) iMEFs in a Transwell system with varying concentrations of Shh as chemoattractant. Fluorescence was read every two min-
utes and expressed as relative fluorescence unit (RFU). B. Example of a migration assay using wild type (Gli3*/*), Glil--2--and
Gli2-"-3--iMEFs with 2 ug/ml Shh as chemoattractant. No-attractant condition was subtracted and migration starting points
were set to t = 0. Robust migration was observed for each cell line. C. Total migration data from several experiments as per-
formed for B, pooled and expressed as fraction of wild type iMEF migration (Gli3*/*, set to |, n = 5). To determine whether the
migration response was significantly different relative to wild type, a 95% confidence interval was calculated based on the mean
and standard deviation of the observations. Reported significant differences thus have a P value of < 0.05.
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tide, migration was observed for each genotype (Figure
3B). Remarkably, increased migration to Shh was
observed for the null cells (Gli1/-2-/- and Gli2-/-3-/-) that
was inversely correlated with their respective transcrip-
tional Hh-responsiveness (Figure 3C). This inverse corre-
lation may be explained by competition for shared
pathway components between the two different signal
transduction mechanisms but no data to suggest such a
competition have so far been presented.

To confirm that the observed migration of Gli2-/-37/-iMEFs
to Shh peptide is Hh-pathway specific, we used the Smo
agonist purmorphamine as chemoattractant. Robust
migration was observed that was comparable in magni-
tude to migration to Shh as well as the positive control,
FCS (Figure 4A). Conversely, treatment with the Smo
inhibitor cyclopamine abrogated the migration response
to Shh peptide. These data indicate that the migratory
response of Gli2-/-3-/- iMEFs is Smoothened dependent
and thus Hh-pathway dependent. An artifactual response
to endotoxin contamination of Shh peptide [16] was
excluded by demonstrating the inability of the lipopoly-
saccharide (LPS) inhibitor polymixin B (PMB) to reduce
the cellular migratory response to Shh peptide.

While the Hh-inhibitory protein suppressor of fused
(SuFu) mitigates the Gli-mediated Hh transcriptional
response, it appears to have no effect on migratory
response [2]. Accordingly, when SuFu was overexpressed
in Gli2/-3-/- iMEFs, Shh-induced migration was not
changed (Figure 4B). The translation independence of the
migratory response was confirmed by demonstrating the
ineffectiveness of cycloheximide in altering the migration
response to Shh peptide.

To confirm the previously demonstrated requirement for
intact leukotriene synthesis machinery in the migratory
response to Shh [2,3], we used the lipoxygenase inhibitor
MK-886 to block leukotriene production. When Gli2-/-3-/-
iMEFs were preincubated with 5 uM MK-886 migration to
Shh was markedly reduced, indicating that in cells with-
out a functional transcriptional Hh signaling pathway,
leukotriene synthesis is required for Shh-mediated migra-
tion (Figure 4B).

As several studies have demonstrated that either Gli2 and
Gli3 are required for the Hh signaling transcriptional
response [9,11,17], the Hh-induced migration of Gli2/-3-/
- cells is affirmative evidence that the migratory response
is independent of Gli transcription factor activity. Also
important for this study, the observed migration data
indicate that the iMEFs have functional Hh-sensing
machinery and that the diminished Hh-responsiveness of
Gli1-/-2-/- and Gli27/-3-/-iMEFs is due to the absence of Gli

http://www.biomedcentral.com/1471-2121/9/49

proteins, rather than ablation of the Ptch1/Smo receptor
pair or other artifacts.

Stable over-expression of Hh components drives
constitutive pathway activation

Immortalized cells allow for retroviral-mediated, stable
expression of vectors for gene-knockdown or over-expres-
sion. We generated WT iMEFs with stable over-expression
of several pathway components and assessed pathway
activity by measuring the expression of Ptc1, a reliable Hh
target gene. We found that iMEFs over-expressing hShh,
hGli1, or constitutively active forms of mGli2 (ANmGIli2)
or hSmo (Smo*) demonstrated increased pathway activity
relative to iMEFs expressing only GFP (Figure 5). This
demonstrates that over-expression of pathway compo-
nents at multiple levels including ligand and transcription
factor is sufficient to drive constitutive pathway activity.

Conclusion

The full complement of Gli genes in most Hh ligand-
responsive cell models mitigates their utility in investiga-
tions of molecular regulation and biological activity of the
individual Gli transcription factors. Here we demon-
strated the unique transcriptional and non-transcriptional
responses of a battery of Gli-null iMEFs. Moving forward,
these cell lines should prove a useful tool in a wide range
of the Hh signaling field and have already been distrib-
uted to several investigators for a wide range of purposes
including; studies of transcriptional co-regulators and Gli-
binding partners; chemical pathway inhibitor site of
action studies; anti-Gli antibody specificity studies; and
several studies of Gli dependence in specific Hh-related
biological function.
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Hedgehog pathway specificity in migratory response of Gli2--3--iMEFs. A. Migration of Gli2-/-3-/-iMEFs was per-
formed using the Smo agonist purmorphamine or 20% FCS as attractants as well as 2 pg/ml Shh in the presence of no inhibitor
(control), the Smo antagonist cyclopamine or the LPS inhibitor PMB. Preincubation time with inhibitors following detachment
was 10 minutes. B. Migration responses of Gli2--3--iMEFs transfected with a SuFu or control vector or preincubated with the
leukotriene synthesis inhibitor MK-886 or translation inhibitor, cycloheximide. No-attractant condition was subtracted and
migration starting points were set to t = 0.
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Figure 5

Stable over-expression of several Hh components
drives constitutive pathway activity. WT iMEFs were
infected with retrovirus encoding, hShh-GFP, hGlil-GFP,
ANmGIi2-GFP, hSmo-GFP or an empty GFP IRIS vector. Stable
over-expresser cell lines produced by GFP sorting were
plated at confluence. Following 24 hrs, expression of Ptc/
was determined by Real-Time RT-PCR. Values represent the
mean + SEM of three replicate experiments, * indicates P <
0.05 (paired t-test) vs. GFP iMEFs.
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