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Abstract
Background: The enzymes responsible for the synthesis of poly-ADP-ribose are named poly-
ADP-ribose polymerases (PARP). PARP-2 is a nuclear protein, which regulates a variety of cellular
functions that are mainly controlled by protein-protein interactions. A previously described non-
conventional bipartite nuclear localization sequence (NLS) lies in the amino-terminal DNA binding
domain of PARP-2 between amino acids 1–69; however, this targeting sequence has not been
experimentally examined or validated.

Results: Using a site-directed mutagenesis approach, we found that lysines 19 and 20, located
within a previously described bipartite NLS, are not required for nuclear localization of PARP-2. In
contrast, lysine 36, which is located within a predicted classical monopartite NLS, was required for
PARP-2 nuclear localization. While wild type PARP-2 interacted with importin α3 and to a very
weak extent with importin α1 and importin α5, the mutant PARP-2 (K36R) did not interact with
importin α3, providing a molecular explanation why PARP-2 (K36R) is not targeted to the nucleus.

Conclusion: Our results provide strong evidence that lysine 36 of PARP-2 is a critical residue for
proper nuclear targeting of PARP-2 and consequently for the execution of its biological functions.

Background
Poly-ADP-ribosylation reactions occur both in multi- and
unicellular organisms and play a major role in a wide
range of biological processes, such as maintenance of
genomic stability, transcriptional regulation and cell
death (reviewed in [1,2]). The enzyme responsible for the
synthesis of poly-ADP-ribose was named poly-ADP-ribose
polymerase (PARP) (reviewed in [1,2]). For a long time,

PARP-1 was thought to be the only enzyme with poly-
ADP-ribosylation activity in mammalian cells; however,
primary cells derived from parp-1 knockout mice can still
synthesize poly-ADP-ribose polymers after DNA damage
[3]. This led to the identification of five novel poly-ADP-
ribosylating enzymes, indicating that PARP-1 belongs to a
family of at least six members ([4-6] and reviewed in
[1,2]). PARP-2 and PARP-1 can homo- and heterodimer-
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ize and display partially redundant functions as indicated
by the embryonic lethality of the parp1-parp2-double gene
disruption ([7] and reviewed in [8]).

Mouse PARP-2 was described as a 66 kDa nuclear protein
with poly-ADP-ribosylating activity [9]. The amino-termi-
nal region of PARP-2 (aa 1–90), containing the DNA
binding SAP domain, has no significant homology with
any other PARP [1]. However, it is rich in basic amino
acids (27% Lys or Arg), which are likely to be involved in
DNA binding (reviewed in [1]). On the other hand, these
basic residues could be involved in the nuclear and/or
nucleolar targeting of the protein [10]. Previous studies
suggested that the nuclear localization signal (NLS) of
mPARP-2 is indeed located in the amino-terminal part
between aa 1–69 of the protein [9,11]. Meder et al. postu-
lated a bipartite NLS for PARP-2, but did not provide fur-
ther experimental evidences to support their hypothesis
[11]. Interestingly, the amino-terminal region of human
and mouse PARP-2 shows higher sequence variability
compared to the highly conserved carboxy-terminal cata-
lytic region (62% identity between the amino-terminus of
mPARP-2 and hPARP-2). In cells, PARP-2 has been
described to regulate different processes via protein-pro-
tein interactions mediated by its amino-terminal domain
(aa 1–208; reviewed in [1]).

Karyopherins, including both importins and exportins,
consitute a conserved family of mobile targeting receptors
that mediate the bidirectional trafficking of macromole-
cules across the nuclear envelope [12,13]. Most karyo-
pherins interact directly with cargo molecules that contain
nuclear import and export signals. However, importin α
functions as an adaptor that links classical NLS (cNLS)-
containing proteins to importin β, which, in turn, docks
the ternary complex at the nuclear-pore complex (NPC).
The importin α/β heterodimer is predicted to target hun-
dreds of proteins to the NPC and facilitate their transloca-
tion across the nuclear envelope [14]. The importin α
gene family has undergone considerable expansion dur-
ing the course of eukaryotic evolution. Whereas the yeast
S. cerevisiae genome encodes a single importin α, the
human genome encodes six genes that fall into three phy-
logenetically distinct groups [15].

The nuclear targeting signal in the simian virus 40 (SV40)
large T antigen was characterized more than 20 years ago
[16,17]. Since then, several pathways for nucleocytoplas-
mic transport have been described, of which the classical
nuclear import pathway is the best characterized. cNLSs
are typified by either a single cluster of basic amino acids
(monopartite NLS) or two clusters of basic amino acids
separated by a 10–12 amino acid linker (bipartite NLS).
The SV40 large T antigen (PKKKRKV) and nucleoplasmin
(KRPAATKKAGQAKKKK) cNLSs are the prototypic mon-

opartite and bipartite cNLS [18,19]. Through alanine
scanning of the Myc, monopartite SV40, and artificial
bipartite SV40 cNLS, Hodel and colleagues found that the
binding affinity of a cNLS for importin measured in vitro
correlated with the steady state nuclear accumulation and
import rate of the corresponding cNLS cargo in vivo
[20,21].

Here, we demonstrate that lysine 36 in the DNA binding
domain (DBD) of PARP-2, which lies within a predicted
cNLS motif, is required for complex formation with the
importin proteins and subsequent nuclear import of
PARP-2.

Results
Lysine 36 and/or lysine 37 of PARP-2 are required for 
nuclear translocation of PARP-2
Previous experiments with GFP-fusion proteins revealed
that the nuclear targeting signal of PARP-2 may be local-
ized between aa 1–69 ([11] and Fig. 1A). This region of
the protein was previously postulated to contain a bipar-
tite cNLS; however, this sequence would be an atypical
bipartite cNLS as the linker separating the two basic
regions is longer than the typical 10–12 amino acid linker.
This region does contain a predicted monopartite cNLS
that closely matches the canonical SV40 cNLS sequence.
To assess whether these sequences are important for
nuclear translocation of PARP-2, mutant forms of PARP-
2, K19/20R, K36/37R, and K19/20/36/37R, were gener-
ated by replacing the lysine residues with arginine resi-
dues to maintain the positive charge of the amino acids
(Fig. 1B). To exclude the possibility that these amino acid
changes altered the stability of the mutated PARP-2, wild
type and all mutant forms were expressed as HA-tagged
proteins in 293T cells and detected by immunoblot using
an anti-HA antibody (Fig. 1C). Immunoblot analysis
revealed that all mutants were expressed at a level compa-
rable to wild type PARP-2.

The PARP-2 mutants were transiently transfected and
localization was assayed by microscopy of PARP-2 pro-
teins. While wild type PARP-2 and the K19/20R mutant
localized in the nucleus, the K19/20/36/37R and K36/37R
mutants exclusively localized in the cytoplasm (Fig. 2A).
To investigate whether substitution of K36 and K37 with
other amino acids altered the localization of PARP-2, sim-
ilar experiments were repeated with different amino acid
susbstitutions. Overexpression of PARP-2 with K19/20,
K36/37 or all four residues mutated to glutamate or
methionine showed that K → E or K → M substitution of
K36/37, but not of K19/20 altered the localization of
PARP-2 to a similar extent as the K → R substitution (Fig.
2B and 2C), suggesting that K36 and/or K37 are required
for the nuclear translocation of PARP-2, whereas K19 and
K20 did not seem to play a role in this process.
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The putative NLS of PARP-2 contains several conserved lysine residuesFigure 1
The putative NLS of PARP-2 contains several conserved lysine residues. A) Three lysines in the putative NLS of 
PARP-2 are conserved between different mammalian species. Sequences were obtained from NCBI and alignments were per-
formed using ClustalW2. B) Schematic illustration of PARP-2 K → R mutant proteins used in this study: K19, K20, K36 and 
K37 were changed to arginine using site-directed mutagenesis. Double and quadruple mutants were generated. C) HA-tagged 
wild type (wt) PARP-2 or the indicated double or quadruple mutants were expressed in HEK293T cells and expression was 
analyzed by western blot using a monoclonal anti-HA antibody. 100 μg of whole cell extracts were used, endogenous PARP-1 
levels served as loading control.
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Lysine 36 and/or lysine 37 of PARP-2 are required for nuclear localizationFigure 2
Lysine 36 and/or lysine 37 of PARP-2 are required for nuclear localization. A) HEK293T cells were transfected with 
HA-tagged wild type (wt) PARP-2 or with the indicated mutants. Cells were fixed with methanol for subsequent detection of 
HA-tagged proteins by immunofluorescence using an anti-HA antibody and a FITC-conjugated anti-mouse antibody. Represent-
ative confocal images are presented. B) Lysines 19, 20, 36 and 37 of PARP-2 were changed to glutamic acid or methionine as 
indicated. C) The nuclear localization is independent of the charge but dependent on the structure of the NLS. As for Fig. 2A, 
HEK293T cells were transfected with HA-tagged wild type (wt) PARP-2 or with the indicated K → E and K → M mutants and 
overexpressed proteins were detected as described for Fig. 2A. Representative confocal images are presented.
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Leptomycin B does not change cellular localization of 
PARP-2 mutant K36/37R
Next, we investigated whether the cytoplasmic localiza-
tion of the mutated PARP-2 protein K36/37R is caused by
an abrogated nuclear import or by an accelerated nuclear
export of a transiently nuclear localized PARP-2 mutant.
Cells were transfected with wild type or mutant PARP-2
and subsequently treated with Leptomycin B (LMB), a
well-characterized inhibitor of CRM-1-mediated nuclear
export [22-24]. Treatment with LMB did not induce any
changes in the cellular localization of the PARP-2 mutant
K36/37R (Fig. 3), indicating that K36 and/or K37 are
more likely to impact nuclear import of PARP-2 than a
classical NES-mediated export process.

Lysine 36 but not lysine 37 of PARP-2 is required for 
nuclear localization of PARP-2
In order to further investigate the requirement for K36
and K37 in the nuclear localization of PARP-2, K → R sin-
gle mutants were created at each position. Interestingly,
similar experiments performed with the wild type and the
single mutants of PARP-2 possessing K36R and K37R sub-
stitutions revealed, that both mutants were stably
expressed at levels comparable to wild type PARP-2 and
that only lysine 36 was important for the nuclear accumu-
lation of PARP-2 (Fig. 4A and 4B). In contrast to earlier
reports [11], no nucleolar staining was observed under the
tested conditions. These experiments identified K36 as an
important residue for the nuclear localization of PARP-2
in vivo.

Lysine 36 but not lysine 37 of PARP-2 is critical for nuclear localizationFigure 4
Lysine 36 but not lysine 37 of PARP-2 is critical for 
nuclear localization. A) HA-tagged wild type (wt) PARP-2 
or the indicated single mutants were expressed in HEK293T 
cells and expression was analyzed by western blot using a 
monoclonal anti-HA antibody. 50 μg of whole cell extracts 
were used, endogenous PARP-1 levels served as loading con-
trol. B) HEK293T cells were transfected with HA-tagged 
wild type (wt) PARP-2 or with the PARP-2 mutants K36R 
and K37R. HA-tagged proteins were detected by immunoflu-
orescence as described for Figure 2A. Representative images 
are presented.
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Leptomycin B does not alter localization of the PARP-2 mutant K36/37RFigure 3
Leptomycin B does not alter localization of the 
PARP-2 mutant K36/37R. HEK293T cells were trans-
fected with HA-tagged wild type (wt) PARP-2 (upper panel) 
or with the mutant K36/37R (lower panel) and treated with 
Leptomycin B (LMB) to inhibit nuclear export, followed by 
immunofluorescence as described in Fig. 2. Representative 
images are presented.
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Lysine 36 is important for binding to importin α3
One possibility to confirm the functional cNLS targeting
sequence is to perform interaction studies with the classi-
cal NLS import receptor, importin α. In order to test
whether PARP-2 interacts with importin α, we performed
GST pull-down experiments with different recombinant
purified GST-fusion proteins of human importin α (α1,
α3, α5 and α7; Fig. 5A) and cell extracts containing over-
expressed wild type or different mutated PARP-2 proteins.
PARP-2 was detected in the bound fraction following the
pull-down assay by western blot analysis. Wild type PARP-
2 formed a complex with importin α3 and to a very weak
extent also with importin α1 and importin α5, but not
with importin α7 (Fig. 5B). Experiments with purified
wild type and mutated PARP-2 (K36/37R, K36R and
K37R) revealed that the mutant proteins K36/37R and
K36R did not bind importin α3, while the K37R mutant
did bind, suggesting that K36 is a critical residue of PARP-
2 essential for its interaction with importin α3 and its
nuclear translocation (Fig. 5C and 5D).

Discussion
PARP-2 regulates different cellular functions. Here, we
provide both biochemical and functional evidence that
substitution of lysine residue 36 efficiently inhibits local-
ization of PARP-2 to the nucleus. Functional analyses
revealed that lysine 36 is important for complex forma-
tion with importin α3.

Lysine residues are central components of classical NLS
motifs (reviewed by [25]) as their positive charge medi-
ates the interaction with importin receptors [26]. Here we
provide evidence that K36 of PARP-2 is an important res-
idue required for the nuclear translocation of PARP-2 and
for complex formation with importin α3, as mutation of
this residue was sufficient to disrupt association with the
import machinery and subsequently alter PARP-2 nuclear
localization. Interestingly, lysine 36 is conserved between
mouse and human PARP-2, suggesting that the described
findings might also apply for the human counterpart.
Together, our data indicate that the nuclear import of
human and murine PARP-2 is mediated by a conserved
classical monopartite NLS but not through a bipartite NLS
as previously proposed [11].

The formation of the importin-α/β-cNLS cargo ternary
complex is the first step in the nuclear transport of hun-
dreds of different nuclear proteins, and, as such, is tightly
regulated [15]. The relationship of importin α/β with its
cNLS cargo is by necessity bipolar, because it forms highly
selective and tight complexes in the cytoplasm and then
switches to an extremely low affinity state in the nucleus
to release the cargo. When importin α is not bound to
importin β, an autoinhibitory sequence within the amino-
terminal domain apparently interacts with the NLS-bind-

ing pocket [27]. This interaction is not exceptionally
strong because cNLS cargos can still bind to importin α in
the absence of importin β, albeit with significantly lower
affinity. The order of importin α binding to cNLS cargo
and importin β is not known. The observed lack of impor-
tin α3 binding by the PARP-2 mutant (K36R) clearly indi-
cates that this lysine is required for the interaction with
importin α and subsequently for nuclear translocation.

Recently, it has become evident that importin α receptors
have independent roles in the assembly of macromolecu-
lar structures. Genetic analyses of yeast importin α
mutants identified several alleles that confer defects in
chromosome and nuclear segregation, altered mitotic
spindle structure and deficits in the ubiquitin-mediated
protein degradation pathway [28-31]. Mechanistic studies
on the roles of importin αs in mitosis, spindle assembly
and nuclear envelope biogenesis point more directly to
activities which are independent of the housekeeping
roles of importin α in nuclear transport. The observed
interaction of PARP-2 with importin α might thus not
only be important for its nuclear translocation but might
have an additional physiological function in maintaining
the integrity of the genome. Inactivation of the parp-2
gene in mice revealed that PARP-2 may be involved in the
surveillance and maintenance of genome integrity, indi-
cated by the sensitivity of these mice to ionizing radiation
[7].

Others have reported that PARP-2 is enriched within the
whole nucleolus and partially colocalizes with the nucle-
olar factor nucleophosmin/B23 [11]. Using partial cDNA
fragments in-frame with the carboxy-terminus of EGFP
the authors described a putative nuclear localization sig-
nal and a nucleolar localization signal within the amino-
terminal domain of PARP-2 (aa 1–69). Our studies
revealed that overexpressed PARP-2 was only found
equally distributed in the nucleus, but in contradiction to
this previous report, was never observed in the nucleolus
of the cell. This discrepancy could be explained by the dif-
ferent experimental approaches used. Meder et al. studied
the nucleolar localization of PARP-2 with GFP-fusion pro-
teins, while our studies were performed with non-GFP
tagged full-length proteins. Remarkably, PARP-1 nucleo-
lar accumulation was not observed when endogenous or
overexpressed PARP-1 localization was analyzed by a con-
ventional immunofluorecence protocol as described in
Methods using specific anti-PARP-1 antibodies (data not
shown). Only applying the fixation protocol described in
Meder et al. [11], which led to the decomposition of the
cell and loss of cytoplasm, revealed the reported nucleolar
staining of PARP-1, suggesting that the fixation protocol
influences the nucleolar localization of proteins or the
detection of proteins within the nucleolus.
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Lysine 36 of PARP-2 is necessary for the binding of PARP-2 to importin α3Figure 5
Lysine 36 of PARP-2 is necessary for the binding of PARP-2 to importin α3. A) Importins α1, α3, α5 and α7 were 
expressed as GST-fusion proteins in E. coli and purified with Glutathione Sepharose 4B beads. Expression was checked by SDS-
PAGE followed by Coomassie staining. B) PARP-2 binds mostly to importin α3 and to a lower extent to importin α1 and α5. 
Purified GST-importins were incubated with whole cell extracts from HEK293T cells, either untransfected or transfected with 
wild type HA-PARP-2, then western blot analysis was performed using an anti-HA antibody. C) Lysines 36/37 are required for 
the binding of PARP-2 to importin α3. Purified GST-importin α3 was incubated with whole cell extracts from HEK293T cells 
transfected with either wild type (wt) HA-PARP-2 or with the indicated double and quadruple mutants. Proteins were sepa-
rated by SDS-PAGE and analyzed by western blot using an anti-HA antibody. D) Lysine 36 but not lysine 37 is required for the 
binding of PARP-2 to importin α3. GST-importin α3 was bound to Glutathione Sepharose 4B and incubated with whole cell 
extracts from HEK293T cells expressing either wild type (wt) PARP-2 or the indicated single mutants. PARP-2 bound to 
importin α3 was detected using an anti-HA antibody.
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Recently, acetylation of lysine residues by histone acetyl-
transferases (HATs), such as p300/CBP (CREB-binding
protein) and PCAF (p300/CBP-associated factor), has
been proposed as a new mechanism for modulating cellu-
lar localization [32-36]. HATs trigger the transfer of an
acetyl group from acetyl coenzyme A to the epsilon-amino
group of a lysine residue not only on core histones but
also on about 40 transcription factors and on more than
30 other proteins [37]. We recently published that both
lysines 36 and 37 of PARP-2 are indeed acetylated in vitro
and in vivo and that acetylation influences both DNA
binding and auto-ADP-ribosylation of PARP-2 [38].

Conclusion
Taken together, our results provide evidence that PARP-2
accumulates in the nucleus and that lysine 36, which is
located within a monopartite cNLS, is important for bind-
ing of PARP-2 to importin α3 and for the nuclear translo-
cation of PARP-2.

Methods
Plasmids
Mammalian expression vectors for wild type PARP-2 and
all mutants used in this study were obtained by cloning
the corresponding PCR products into pphCMV-HA.
PARP-2 mutants were generated by a site directed muta-
genesis procedure and confirmed by sequencing. Bacterial
expression vectors for human GST-importins α1, α3, α5
and α7 were provided by Dr. Riku Fagerlund (Depart-
ments of Viral Diseases and Immunology and Epidemiol-
ogy and Health Promotion, National Public Health
Institute, FIN-00300, Helsinki, Finland, [39]).

Expression and purification of recombinant proteins
GST-tagged importins were expressed in E. coli strain
BL21-D3-Gold. All purified proteins were analyzed by
Coomassie staining and confirmed by western blot analy-
sis using the corresponding antibodies.

Cell culture and transient transfections, treatment with 
LMB and immunofluorescence
HEK293T cells were grown in Hepes-buffered DMEM-
Glutamax-I (Invitrogen) containing 4.5 g/L glucose and
10% FCS US/certified (Invitrogen) and supplemented
with 50 U/ml penicillin, 50 μg/ml streptomycin (Invitro-
gen) and MEM non-essential amino acids (MEM NEAA,
Invitrogen). Cells were transfected using calcium phos-
phate procedures as described in [40]. For the experiments
with Leptomycin B (LMB), cells were treated with a final
concentration of 20 ng/ml LMB for 4–16 hrs. For detec-
tion of overexpressed proteins by immunofluorescence,
HEK293T cells were fixed for 10 minutes in ice-cold 100%
methanol in the absence of detergents and unspecific
binding sites were blocked with 2% BSA/0.1% Triton X-
100 prior to staining with primary and FITC-conjugated

secondary antibodies in the presence of 2% BSA/0.1% Tri-
ton X-100 according to the manufacturer's protocol (Cov-
ance) using confocal (Leica SP2, 40× oil-immersion, NA
1.25, zoom-in) or standard fluorescence microscopy
(Olympus Mx51, 100× oil-immersion, NA 1.3).

Western blot analysis and antibodies
Western blot analyses were performed as described previ-
ously [41]. Anti-myc-9E10 (sc-2027) antibodies were
obtained from Santa Cruz Biotechnology, anti-HA (MMS-
101P) was obtained from COVANCE. Antibodies against
mouse PARP-1 and PARP-2 were generated in house (the
generation of antibodies against mouse PARP-1 has been
described previously [42,43]).

In vitro interaction and GST pull-down assays
Purified recombinant proteins fused to GST were bound
to Glutathione Sepharose 4B according to the manufac-
turer's protocols (Amersham Biosciences). GST pull-down
assays were performed as described previously [41,42].
GST pull-down-buffers contain: 50 mM Tris [pH 8.0], 150
mM NaCl, 0.5% NP-40, 0.5 mM DTT, 1 mM PMSF, 100
μM bestatin, 3 μM pepstatin A, 5 μM leupeptin. Bound
proteins were dissolved by SDS PAGE and subsequently
analyzed by western blot.
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