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Abstract
Background: Biological experiments increasingly yield data representing large ensembles of
interacting variables, making the application of advanced analytical tools a forbidding task. We
present a method to extract networks of correlated activity, specifically from functional MRI data,
such that: (a) network nodes represent voxels, and (b) the network links can be directed or
undirected, representing temporal relationships between the nodes. The method provides a
snapshot of the ongoing dynamics of the brain without sacrificing resolution, as the analysis is
tractable even for very large numbers of voxels.

Results: We find that, based on topological properties of the networks, the method provides
enough information about the dynamics to discriminate between subtly different brain states.
Moreover, the statistical regularities previously reported are qualitatively preserved, i.e. the
resulting networks display scale-free and small-world topologies.

Conclusion: Our method expands previous approaches to render large scale functional networks,
and creates the basis for an extensive and -due to the presence of mixtures of directed and
undirected links- richer motif analysis of functional relationships.

Background
A growing number of biological experiments are produc-
ing datasets consisting of large numbers of interacting var-
iables, from genomics to neural networks to eco-systems,
giving rise to the nascent field of systems biology. The
eminent challenge of this discipline is how to simplify the

analysis of these high dimensional dynamical systems
while retaining their relevant features. In particular,
despite the rich, complex dynamics of the brain, and the
highly interconnected and non-linear nature of its infor-
mation processing capabilities, the bulk of the literature
on brain imaging involves slight variations on the main
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theme: the identification of the degree of correlation
between the activation of a local brain area and external
markers. A variety of attempts have been made trying to
go beyond this paradigm, including ICA, Volterra kernels
and supervised classification techniques [1-4]; however,
the applicability of these multi-variate methods has been
restricted to networks with only a few hundred vertices.

Recently, a different approach was introduced [5,6], based
on the analysis of the structure of pair-wise correlations
between voxels in fMRI, embedding it in a graph structure
whose nodes are the voxels and edges between them are
defined by the covariance exceeding a threshold. With this
relatively simple approach, we were able to demonstrate
that the resulting networks have universal statistical topo-
logical properties, like scale-free connectivity and small-
worldness [7], shared with other biological networks.
Moreover, the spatial distribution of these networks is
determined by the specific task the brain is engaged in, as
opposed to capturing a task-independent network with
little functional sensitivity. Similar ideas have been used
to analyze and discriminate a variety of functional and
dysfunctional brain states, and indeed have confirmed
our initial results [8-10].

Another approach to capture the dynamics of complex
systems is the causality analysis pioneered by Granger.
The essence of this approach is to identify possible causal
relationship between the variables of a system by analyz-
ing how much the time course of one variable contributes
to that of another one, based on an auto-regressive model.
The method has been applied with success to neural data
in the context of a few electro-physiological recordings,
and to small numbers of brain areas represented by aggre-
gates of several voxels [11,12]. One aspect of Granger's
method and its derivatives that makes it superior to a sim-
ple covariance analysis is that it takes care of the transitiv-
ity and symmetry of the covariance: if a variable A
determines the dynamical behavior of variable B, and B in
its turn drives C, the covariance will find symmetric
"links" A ↔ B, B ↔ C and A ↔ C; similarly, if A drives B
and C but the latter two do not influence each other, the
covariance will still find B and C to be linked. Multivariate
methods based on Granger's causality are able to break
the symmetry and the transitivity, and therefore provide a
more accurate description of the internal dynamics of the
system. These methods have nevertheless several limita-
tions arising from the need of a very large number of sam-
ples, as the auto-regressive model requires a matrix whose
dimensions are (M × T)2, where M is the number of brain
areas, and T the number of time units looking into the
past [13,14].

In the present work, we try to circumvent both the limita-
tions of covariance-based analysis and auto-regression-

based causality analysis. We extend our previous findings
by attempting to capture a larger signature of the dynam-
ics of the brain by including directionality in the edges of
the network, based on the concept of delayed covariance.

In our previous work, we defined a functional network by
considering all functional voxels {vi} as possible nodes;

their covariance determines whether a binary functional
link (or edge) exists between them: cij = (vi(t) - i)(vj(t) -

j) , where i = (vi(t)t and  = (vi(t) - i)2, such

that if the correlation between i and j exceeds a threshold,
a functional link is considered, and none otherwise: if cij

> CT then dij = 1, else dij = 0. We extend here this approach

by considering the delayed or lagged covariance: cij(τ) =

(vi(t - τ)- i)(vj(t) - j) . We reason as follows: if

there is a significant peak of the covariance between i and
j at zero lag, then there is a potential binary symmetric
link between them, as before. However, if the significant
peak is not at zero lag, then we will consider that the pre-
ceding voxel, and only it, has a directed link pointing to

the succeeding one. That is, if cij(τ = 0) > CT then dij = dji =

1; else if cij(τ > 0) > CT then dij = 1 and dji = 0; else dij = 0.

In other words, two voxels whose activity is highly corre-
lated and simultaneous are considered to be symmetri-
cally linked; a voxel that is highly correlated with the
future of another one will be considered as a "source", and
the latter as a "sink". This approach clearly can break the
symmetry of the covariance, but as described cannot deal
with the problem of the transitivity described above. Tak-
ing into consideration the relatively poor temporal resolu-
tion of fMRI, we reasoned that for the time being we could
only in earnest tackle one of the confounding sources of
undirected links, namely the explanation of a zero-lag
covariance (i.e. undirected link) between two voxels by
the presence of a common source, of which they are both
targets. That is, after identifying all sources and sinks,
every potential undirected link that can be explained by a
common source is removed. We also considered possible
reductions of triangulations of directed links (as in A → B,
B → C, A → C), but we did not find this approach to have
a significant impact, presumably due to the low temporal
resolution of the signal (data not shown, see the Methods
section).

Results
We analyzed a dataset discussed in the literature [6], con-
sisting of subjects undertaking a simple self-paced finger-
tapping task, for the purpose of exploring the potential of
our method. The task is composed of three variants, which
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were designed to be relatively similar, in the hope that the
method could discriminate subtle differences in the pat-
terns of brain activation. The variation between the tasks
is based on the cue utilized to signal the start and stop of
the finger-tapping. In the first task, a small featureless vis-
ual cue presented in the center of the screen; in the second
task the cue is a short auditory tone; in the third one a vis-
ual cue similar to the first one is presented, the only differ-
ence being its larger size.

After standard functional pre-processing (see Methods),
and delayed covariance analysis as explained above, the
resulting networks were studied using the tools of statisti-
cal network theory. The first observation is that most links
are undirected, comprising on average of 50% to 60% of
total links; this is compatible with the notion that most
neural interactions result from fast, local and presumably
symmetric connections, whose subtle dynamics are for
the most part beyond the present reach of functional MRI.
However, directed links account for a significant number
of the observed correlations between voxels, suggesting
that our approach can indeed be fruitful in terms of cap-
turing ongoing dynamics.

Although directed links have less statistical power than
undirected ones, their degree distribution still shows a
power-law behavior. This is exemplified in Fig. 1A, where
the histogram of source (blue) and sink (red) degrees, i.e.
out- and in-directed links, averaged over all subjects and
tasks, is represented. Observe that the distribution is very
similar for both classes of links, and approaches a power-
law with an exponent of 3/2, which is even more evident
when all links are considered for each node (black). This
result is in line with our previous findings, as it reinforces
the notion of information hubs dominating the flow of
information in the brain. The effect of removing some of
the undirected edges is to reduce the scaling from an expo-
nent near 2 as estimated with our previous approach. Fig-
ure 1B depicts the result of analyzing the small-world
topology of the functional networks. The panel represents
the clustering vs. average minimal path for all the studied
cases (open circles), the equivalent random networks (red
crosses), and the equivalent regular lattices (blue x's).
Observe that the clustering of the functional networks is
several orders of magnitude larger than that of the equiv-
alent random networks, and comparable to that of the
equivalent regular lattices. The average minimal path of
the functional networks, while larger than that of the ran-
dom networks, is still smaller than that of the equivalent
regular lattices. In comparison with our previous study,
the main topological features are preserved: for the same
threshold (0.7), there is an increase from 12.9 to 16.3 in
the average path due to the removal of undirected links
explained by a common source; interestingly, the cluster-
ing coefficient increases from 0.12 to 0.18, presumably

due to triangulations that could not be detected before.
Similarly, a comparison with our previous finding regard-
ing the assortative nature of functional brain networks
shows that indeed this property does not change when
directed links are included. Figure 1C represents the total
degree of each node vs. the average degree of the first
neighbors, i.e. nodes reachable through in-, out- and
undirected edges. Again, we find a correlation between
these two degrees, in contrast with all other biological net-
works investigated to date, which implies a lack of hierar-
chical organization in the networks: a hierarchical
network would display a negative correlation, such that
nodes with high degree (or hub nodes) tend to be con-
nected with low degree nodes (or peripheral nodes). A
more detailed study, analyzing differences between in-
and out-hubs, will be reported in future publications.

Interestingly, the networks hold enough information
about the dynamics of brain states so that even a global
measure of their properties can discriminate between
tasks. Figure 2 shows the result of comparing different
topological measures of the three resulting networks
(small visual cue, auditory cue, large visual cue tasks) for
6 different subjects. The first observation in this regard is
that the total number of nodes identified by the method
(Panel 2A) is not a good indicator of the identity of the
task, or of the subject for that matter; this is to be expected,
as the number of nodes depends dramatically on the cho-
sen threshold. The average degree, or connectivity (Panel
2B), does not seem to provide much information either;
this is clearly a very local measure of the structure of the
network, for the most part unrelated to the flow of infor-
mation. We observed a tendency towards discriminating
between the tasks when we computed the average mini-
mal path of the networks (not shown), defined as the
minimal number of links needed to reach a node from
another one, averaged over all nodes. This tendency,
though, is not consistent across subjects, as the auditory
cue task is in some cases large and small in others. How-
ever, we were able to improve this measurement by con-
sidering the normalized mean path, as the mean path of
the network over that of the equivalent Erdös random net-
work, displayed in Panel 2C (see Methods). Observe that
for 5 out of the 6 subjects, the auditory task is consistently
larger (i.e. has a bigger normalized mean path) that the
equivalent visual cue tasks. Non-parametric statistical
analysis on the rank of the normalized mean path ( a >

sv and a > lv) yields a p-value of 0.017. This indi-

cates that the subtle differences in activation elicited by
the tasks have a measurable effect in the overall structure
of correlations and flow of information of the networks.


  
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This tendency was probably amplified by the fact that
only the giant component of the network was considered
for the purpose of measuring the average minimal path.
The giant component is defined as the largest connected
sub-network of a graph; we observed that in all cases this
component was at least one order of magnitude larger in
size that the runner-ups. In other words, we targeted a core
of correlated activity and disregarded much smaller sub-
networks that could otherwise be relevant. It is also worth
mentioning that the directional nature of the links enters

explicitly the computation of the mean path, as a link A →
B means that there is no direct access from B to A.

A remarkable regularity displayed by these networks is the
tendency for nodes to be mostly "sources" (i.e. heavy out-
hubs) or "sinks" (heavy in-hubs). That is, nodes with a
large number of out-links tend to have relatively few in-
edges, and vice versa, although, interestingly, this is not a
strictly enforced rule. Moreover, in-hubs tend to have rel-
atively few undirected links, whereas out-hubs tend to be
also undirected hubs. This seems to be counter-intuitive at
face value, as one may naïvely think that the hubs are bal-
anced; however, they need not be so, as one would expect
in, for instance, tracffic hubs. In other words, there are no
conserved quantities at the hub level to be balanced.
These results are summarized in Fig. 3. The tendency for
nodes to be either in- or out-hubs is particularly clear in
Panel D, where the maximum between the in-degree and
the out-degree is plotted against the absolute value of
their difference, showing a strong correlation.

Discussion
Topological regularities of functional brain networks have
been described before in the literature, including our own
work, but they were based on a narrower window on the
properties of the underlying dynamical system (i.e. zero-
lag correlation), and could not provide for discernibility
of subtly different brain states. The finding that hybrid
networks with directed and undirected links can be dis-
criminated based on global topological measures is very
relevant to theoretical approaches to brain function, as it
is a formalization of the collective properties of complex
systems.

However, to move beyond a simply phenomenological
description of such systems, we are compelled to bridge
the gap between emergent global behavior and local func-
tional properties. One possibility is to interpret the results
depicted in Fig. 2C in terms of the spatial organization of
the networks. To do so, and given the limitations of repre-
senting the full complexity of the networks, we resorted to
a simplified approach that captures only part of this com-
plexity but serves as a possible guide for reasoning. Figure
4 represents the networks by link density maps, where the
nodes are depicted in their original spatial location, and
the links are mapped using a color-coded representation
of the degree (or number of connections). The degree of
undirected links is shown for the same subject in the small
visual task in Panel A, and the auditory cue task in Panel
B. Observe that the density maps are very similar in both
conditions. The out-degree, i.e. sources of directed links, is
depicted in Panels C for the visual cue task and Panel D

(A) Degree distribution of linksFigure 1
(A) Degree distribution of links. The black trace corresponds to the degree for all the links (directed and undirected), the blue 
one to the degree of sources (out-directed links) and the red trace to sinks (in-directed links), averaged over subjects. 
Observe that (a) both directed link degree distributions are very similar, and (b) there is a scale-free trend, more marked when 
all links are considered. The dotted line corresponds to a power-law of 3/2. (B) Small-world topology of the networks. Clus-
tering and average minimal path for functional networks (open circles), equivalent Erdös random networks (red crosses) and 
equivalent regular lattices (blue x's). Data points correspond to different subjects and tasks. (C) Assortative mixing of directed 
networks. The horizontal axis represents the total degree of each node, and the vertical axis the average degree of the first 
neighbors; all the data points correspond to one single subject.
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for auditory. In this case, the differences between the
maps are much more compelling; however, it is to be
expected that precisely in a class of tasks where the varying
factor is a short cue, the main source of functional differ-
ences will be "sources of information", in a manner of
speak. A thorough analysis of the regional discernibility of
the method is beyond the scope of the present publica-
tion, focused on topological properties of the networks.
This would require a systematic topographic comparison
of topological features (such as degree distribution) across
subjects and tasks, beyond the scope of this manuscript.

The other novel, and certainly unexpected, result is the
one summarized in Figure 3: the nodes of the networks
tend to be either in- or out-hubs of directed links. The
interpretation of this finding is not straightforward; at the
neuronal level, we would expect a more balanced relation
between "driving" and "driven" connections subtending
hypothetical closed circuits across the brain during the
completion of a task. However, this interpretation cannot
proceed at the level of resolution that the technique pro-
vides. In purely speculative terms, this finding points to a
role for very large neuronal patches, possibly entire func-
tional areas, in driving other large patches at a relatively
slow time scale, compatible with that of the task. Under
this preliminary interpretation, the observed in-hub/out-
hub exclusion would be an emergent feature of neuronal
ensembles, amplified by the highly non-linear (i.e.
binary) process of rendering directed links. We are cur-
rently studying different alternatives to clarify these ideas,
most prominently ensemble modeling.

Conclusion
Building on our previous work on graph theoretic analysis
of functional magnetic resonance imaging data, we have

introduced a novel method to capture more of the com-
plex dynamical interactions of brain networks. We find
that this approach yields networks with similar topologi-
cal properties as those described previously, i.e. they dis-
play scale-free connectivity, non-hierarchical architecture
and small-world topology, even when considering only
the giant component for the analysis and strictly enforcing
directionality in the computation of the average mean
path. However, the topological information contained in
directed and undirected links is enough to reveal subtle
brain state differences, consisting of a very short auditory
or visual cue to trigger a relatively much longer finger-tap-
ping motor sequence. Initial results suggest that these top-
ological differences are concurrent with distinct patterns
in the spatial distribution of hubs of directed links, i.e. the
location of in- and out-hubs. These findings point in the
direction of a functional dissection based on the density
and architecture of directed connections, and more specif-
ically on the spatial patterns of topological motifs, similar
to approaches already advanced in the study of genetic
networks [15,16]. This is the subject of current investiga-
tion in our group.

Finally, we conclude that the computational feasibility of
the approach (see Methods), even when dealing with
10,000 to 20,000 independent variables, renders it appli-
cable to other similarly large biological networks, like
gene-expression patterns generated by cDNA microarrays
[17].

Methods
The implementation of the delayed covariance calculation
is relatively straight-forward, although it can be challeng-
ing from a computational-resources point-of-view. In a
typical functional task, there are in the order of 20,000

Discrimination of tasks based on global topological propertiesFigure 2
Discrimination of tasks based on global topological properties. The first column of data points corresponds to the small visual 
cue task, the second to the auditory cue, and the third to the large visual cue in all panels. The upper row corresponds to 
female subjects, and the lower one to males. (A) Total number of nodes. (B) Mean degree of the networks. (C) Normalized 
mean path for each network. Observe the inverted V shape in 5 out of the 6 subjects, such that the normalized mean path of 
the auditory cue task is consistently larger than that of both visual cue tasks.
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voxels with significant zero-lag covariance, for functional
scans with a resolution of 64 × 64 × 36; for each of them
we need to compute a delayed covariance. This was imple-
mented in a 24-way shared-memory machine in an MPI
environment, taking approx. 2 hrs. for scans of 400 vol-
umes and a time window of 11 time points; the same
algorithm, also in MPI, takes 8 minutes in a 1024-way
IBM Blue Gene rack [18]. The weeding of confounding
undirected links, although not altogether simple from an
algorithmic point-of-view, runs extremely fast even in a
single processor machine. The weeding process results, on

average, in the weeding out of 15–20% of potential undi-
rected links, and the final networks have an average con-
nectivity (including directed and undirected links) of
approx. 15 to 20 links per node. In all cases, the threshold
for zero-lag covariance to determine a link was uniformly
set to 0.75, whereas that for non-zero-lag covariance was
set to 0.7, under the assumption that the various noise fac-
tors and the limited temporal sampling affect this meas-
ure more drastically. Whereas we cannot provide an
analytic criterion for choosing the threshold, the selection
was based on the following rationale: firstly, the threshold

Panel A: relationship between the in-degree and the undirected-degree for each node; observe that there is a negative correla-tion, i.e. in-hubs tend to have very few undirected links and vice versa (insets correspond to covariance between the plotted variables)Figure 3
Panel A: relationship between the in-degree and the undirected-degree for each node; observe that there is a negative correla-
tion, i.e. in-hubs tend to have very few undirected links and vice versa (insets correspond to covariance between the plotted 
variables). Panel B: same as Panel A, but for the out-degree of the nodes; in this case, there is a strong correlation between 
out-hubs and undirected-hubs. Panel C: relationship between out- and in-degree for each node. The plot makes evident that 
nodes tend to be either in-hubs or out-hubs, as the correlation between the degrees is basically insignificant; moreover, large 
hubs tend to lay on the axes, i.e. they have a bias to be pure "sources" (horizontal) or "sinks" (vertical). Another way to see this 
phenomenon is presented in Panel D, where the maximum between the in- and out-degrees is plotted against the absolute 
value of the difference between the same quantities. As the plot shows, nodes tend to cluster near the identity line, which cor-
responds to pure sources and sinks.
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should not be so low that the giant component encom-
passes the whole brain, as we expect to capture the core of
the activity; secondly, it should not be so high as to
encompass only the most active elements, which would

likely be identified by linear methods. In fact, we found
that a reasonable criterion is for the giant component to
include around 50% of all the nodes in the network; this
typically occurs within a range of thresholds that includes

Density maps of undirected and directed linksFigure 4
Density maps of undirected and directed links. The local degree of neutral or undirected connectivity is color-coded, such that 
high brightness signifies high degree. (A) Undirected links, small visual cue. (B) Undirected links, auditory cue. (C) Directed 
links, small visual cue. (D) Directed links, auditory cue. Observe the similarity between the undirected links maps for the two 
different tasks (A and B), while the directed links maps are remarkably different (C and D).
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the one we have selected, as illustrated in Fig. 5. The upper
left panel shows the relative size of the giant component
as a function of the threshold, for two visual cue tasks (cir-
cles) and auditory cue task (triangles) in one subject. All
the networks cross the 50% mark in a threshold interval
between 0.73 and 0.82; correspondingly, this is the inter-
val within which the discrimination of the tasks is most
accurate, as represented by the change of the mean path as

a function of the threshold, in the lower left panel of the
same figure. Further reassuring the robustness of the
method, the right panel represents the change of the
degree distribution with the threshold. Similarly to what
was previously reported [6] for networks based only on
zero-lag covariance, the scaling is very stable over a wide
range of thresholds; it is to be noted that this measured on
the entire network, as opposed to the giant component.

Upper left: relative size of the giant connected component (GC) respect to the whole network (N), as a function of the thresh-oldFigure 5
Upper left: relative size of the giant connected component (GC) respect to the whole network (N), as a function of the thresh-
old. Lower left: mean path of the giant component as a function of the threshold. In both cases, circles represent visual cue 
task, and triangles auditory cue task networks. Right panel: degree distribution as a function of the threshold. Each color repre-
sents the distribution obtained with a different threshold, for for the same subject and task; observe the slight difference in the 
exponent respect to the average in Fig. 1A.
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component (blue) and the entire network (red).
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This robustness is also highlighted by the fact that the
clustering index, even though it changes as a function of
the threshold, remains significantly above what would be
expected from a random network, as depicted in Fig. 6,
right panel (blue circles); the average over the entire net-
work is even less sensitive (red). Finally, the left panel of
Fig. 6 shows a measure of how close the giant component
is to encompass half of the nodes of the entire network:
the plot represents a unimodal function of the ratio p =
GC/N that peaks at 1/2, IGC = p log2 p + (1 -p) log2(1 -p),
averaged over networks. Observe again that IGC is close to
the maximum of 1 for a range of thresholds that includes
the one we selected. In all cases, the threshold for non-
zero-lag was set 0.05 below that for zero-lag, for the rea-
sons explained above.

The weeding of confounding undirected or neutral links
was implemented as follows: if two nodes have an undi-

rected link, A ↔ B, but they have a common directed

source, A → B and A → C, then the undirected link is
removed. We considered directed triangulations with

commensurable time delays: A → B, B → C, A → C and

Δτ(A, B) + Δτ(B, C) = Δτ(A, C), such that the links B → C

or A → C could be confounds. The statistical significance
of these configurations was very low, and therefore we
decided not to include them in the present analysis. The
average minimal path or geodesic of a graph is defined as
the average over all nodes of the shortest distance from
one node to every other  = g(i, j), and it has a simple

interpretation as the "ease" of navigation of the network.
The p-value for the data in Fig. 2C was computed as p =

∏(6, 5)q5(1 - q) + ∏(6, 6)q6, where ∏(a, b) is the combi-
natorial number a!/b!(a - b)! and q is the probability for
the normalized mean path of the auditory cue network to
be bigger than that of the small and large visual cues, for
the null hypothesis: q = P( a > sv, a > lv) = 1/3.

The clustering is defined as the average of the ratio, for
each node, between how many of its neighbors share con-
nections amongst them, and the total possible number of

connections  = Ni/∏(ki, 2), where ki is the number of

neighbors of node i, and Ni is the number of connections

between the neighbors. This topological measure can also
be interpreted as the density of triangulations of the net-
work, as reflecting the presence of local structures. The
theory developed by Erdös establishes that the geodesic
path and clustering of a random network with N vertices
and average connectivity k are, respectively:  = log(N)/

log(k),  = k/N. The alternative null hypothesis is a regu-
lar lattice. The mean geodesic path and clustering for the
regular 1d-lattice in the original model proposed by Stro-

gatz and Watts can also be computed as  = N/2k and 
= 3(k - 1)/4(k - 2). Erdös random networks are constructed
so that an edge can be attached to any two nodes with
equal a priori probability, and display a binomial degree
distribution, low clustering and small mean path. For the
purpose of our analysis, we compared the functional net-
works with Erdös networks with the same number of
nodes and edges. The covariance in Fig. 3 is defined as cxy

= (x - )(y - ) . Pre-processing of the functional

data was implemented as in Ref. [6]: right-handed human
subjects were studied using a Siemens-Trio 3.0 Tesla imag-
ing system using a birdcage radio-frequency head coil.
Blood oxygenation level-dependent single-shot echo-pla-
nar T2-weighted imaging was obtained using scan repeat
time of 3000 ms, echo time of 30 ms, flip angle 90°, and
field 256 mm. The data were preprocessed for motion cor-
rection and spatial smoothing using the FSL package [19].
The link density maps were computed based on the degree
of each node, and were then, for the purpose of compari-
son, normalized to the anatomy of the subject using the
registration tool in FSL.
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