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Abstract

Background: The platelet cytoskeleton mediates the dramatic change in platelet morphology that
takes place upon activation and stabilizes thrombus formation. The Arp2/3 complex plays a vital
role in these processes, providing the protrusive force for lamellipodia formation. The Arp2/3
complex is highly regulated by a number of actin-binding proteins including the haematopoietic-
specific protein HS| and its homologue cortactin. The present study investigates the role of HSI
in platelets using HSI-- mice.

Results: The present results demonstrate that HS| is not required for platelet activation, shape
change or aggregation. Platelets from HS |-~ mice spread normally on a variety of adhesion proteins
and have normal F-actin and Arp2/3 complex distributions. Clot retraction, an actin-dependent
process, is also normal in these mice. Platelet aggregation and secretion is indistinguishable
between knock out and littermates and there is no increase in bleeding using the tail bleeding assay.

Conclusion: This study concludes that HS| does not play a major role in platelet function. It is
possible that a role for HSI is masked by the presence of cortactin.

polymerisation [6]. Concomitant activation of the Arp2/3
complex, a seven-membered protein complex which

Background
The platelet is highly dependent upon its actin cytoskele-

ton for proper functioning. Dramatic re-arrangements of
the actin cytoskeleton mediates spreading on matrix pro-
teins and is required for normal thrombus formation
[1,2]. At rest, the discoid shape of a platelet is maintained
by a microtubule coil, a spectrin-based skeleton immedi-
ately below the plasma membrane, and a network of 2000
- 5000 actin filaments held rigid by the cross-linking pro-
teins filamin and a-actinin [3-5]. Following Ca2?+ eleva-
tion, the actin-severing protein gelsolin is released from
barbed ends leading to relaxing of the discoid shape and
a large increase in the number of free barbed ends for

nucleates actin filaments, leads to a massive increase in
the F-actin content of platelets. This provides the protru-
sive force for filopodia and lamellipodia formation that
gives the platelet its characteristic spread morphology [7].

The Arp2/3 complex is regulated by a number of proteins
which allow for tight spatial and temporal regulation of
its activity, including haematopoietic lineage cell-specific
protein 1 (HS1) and its homologue cortactin (for reviews
see [8,9]) (Figure 1A). HS1 is expressed in cells of a hae-
matopoietic lineage, whereas cortactin is ubiquitously
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Domain organisation of HSI--and genotyping of
knockout mice. (A) Schematic representation of mouse
cortactin and HSI proteins. N — terminal acidic domain, R,
R2, etc — Cortactin repeats, CC — coiled coil helical domain,
PRD — proline rich domain, SH3 — C-terminal Src homology
domain. Numbers indicate amino acid number. (B) Genotyp-
ing of HSI knockout mice by PCR. WT — wild type, HSI*/-—
heterozygote, HS|--— homozygote. (C) Western blot of
platelet extracts from WT and HS|-- mice probed with o-
HSI (top panel) and a-tubulin (bottom panel).

expressed. Both proteins are regulated by tyrosine phos-
phorylation and have Arp2/3-binding, F-actin binding
repeat, coiled coil, proline rich and C-terminal SH3
domains. However, cortactin has 6.5 F-actin binding
repeats [8], whereas HS1 only has 3.5 and this changes the
way in which the protein interacts with Arp2/3-induced F-
actin arrays [10]. Similarly, the tyrosine residues which are
phosphorylated are not conserved between the two pro-
teins indicating that there are differences in their regula-
tion [11,12].

HS1 is tyrosine phosphorylated downstream of T- and B-
cell receptor activation [13] and following thrombin-
stimulation of platelets [14]. Subsequent to phosphoryla-
tion in platelets, HS1 translocates to the plasma mem-
brane [14] where it is postulated to be involved in the
morphological changes observed during apoptosis
[14,15]. In B- and T-cells, tyrosine phosphorylation is
involved in the migration of HS1 to lipid rafts where it is
proposed to mediate actin assembly [16]. HS17/-mice have
normal lymphocyte development but are deficient in the
proliferative response induced by immunoreceptor
engagement. Gomez et al [17] have shown that in HS1-/-
T-cells the immune synapse, an F-actin and Arp2/3 con-
taining structure [18], begins to form but is disorganised
and does not persist. These studies indicate that HS1 may
play a role in both signalling to actin assembly following
signal perception and in maintenance of dendritic actin
arrays downstream of Arp2/3 activation. In this study we
utilised an HS1 gene knockout mouse (HS17/-) to ask
whether HS1 contributes to signalling by the platelet col-
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lagen receptor, GPVI, which signals through the same
pathway as that used by immunoreceptors and also by
other classes of platelet surface receptors.

Results and discussion

Genotyping

Wild type mice were identified by the production of a 1.2
kb PCR fragment using primers HS1-3'KO-S and HS1-KO-
end-3' (Figure 1B). HS1-/-genotypes were detected by
amplification of a 1.1 kb fragment resulting from inser-
tion of the Lac-Z cassette into the gene [13] using primers
HS1-3'KO-S and Lac-Z-3' (Figure 1B). Confirmation that
HS1 protein was not expressed in these mice was obtained
by western blotting using a rabbit polyclonal antibody
raised against HS1 [17] (Figure 1C).

Platelet spreading and actin organization

As an F-actin and Arp2/3 binding protein, HS1 is pre-
dicted to play a role in the F-actin and Arp2/3 dependent
processes of platelet shape change and spreading. To test
this, the surface area of spread platelets was measured at
45 min after addition to immobilized agonists. Spreading
of HS1-/- platelets on CRP, collagen, fibrinogen or a com-
bination of fibrinogen and thrombin was indistinguisha-
ble to that of wild type (WT) platelets both in terms of
morphology and surface area (Figure 2A and2B). Spread-
ing on fibrinogen alone was dominated by the presence of
filopodia, whereas under all other conditions it was dom-
inated by the presence of lamellipodia (Figure 2A &2C).
In T-cells, it has been shown that the early signaling events
downstream of the T-cell receptor that lead to formation
of the immune synapse are intact in HS1/- mice, but that
there is defective signaling to actin assembly and in main-
tenance of T-cell receptor signaling [17]. With this in
mind, we monitored spreading at a later time point of 90
min, but again saw no change in platelet morphology on
all surfaces relative to controls (not shown). In the case of
platelets that had spread on fibrinogen alone, lamellipo-
dia had begun to fill in the gaps between the filopodia and
this accounts for the small increase in surface area relative
to the 45 min time point; however, this was the same for
both WT and HS1-/- (data not presented). We have also
observed platelet spreading in real time and again saw no
difference between HS17/- and WT in the dynamics of
spreading (not shown).

To further analyse spreading, HS1-/- platelets were immu-
nostained for the Arp2/3 complex and F-actin. HS1-/-
platelets displayed normal actin organization following
spreading on fibrinogen, namely bright foci of F-actin and
filopodia, that was indistinguishable from wild type plate-
lets (Figure 2C). The Arp2/3 complex in these platelets, as
identified using an antibody to the 34 kDa subunit, was
localized primarily to the actin foci and to the cytoplasm.
When platelets were spread on fibrinogen in the presence
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Analysis of platelet spreading and F-actin organization. Washed platelets (2 x 107 platelets/ml) from WT and HSI--
mice were added to cover slips coated with collagen (100 pg/ml), CRP (10 pg/ml) or fibrinogen (100 pig/ml) + thrombin (1 U/
ml) and allowed to settle for 45 or 90 min at 37°C. Spread platelets were fixed in formalin and imaged using DIC. Representa-
tive images of platelets at 45 min are shown in (A). Mean platelet area was measured. No significant difference was observed
between WT and HS|-- platelets on any surface at 45 min (B). Platelets spread on fibrinogen + thrombin for 45 min (C) were
labeled with o-p34 for Arp2/3 complex (top panel), and rhodamine phalloidin for F-actin (middle panel). The merged images
are shown in the bottom panel. (D) Spread platelets were also labeled with a-cortactin (top panel) and rhodamine phalloidin
(middle panel). Merged images are shown in the bottom panel. Protein extracts from WT and HS|-- mice were blotted (E) for
cortactin, WASp, Scar/WAVEI, Scar/WAVE 2 and N-WASp. Blots were also probed for tubulin to check loading. Scale bars =

5 uM.

of thrombin, cells from both genotypes contained actin-
rich stress fibers and the Arp2/3 complex was localized
predominantly to the peripheral edge of the lamella (Fig-
ure 2C) although some foci of Arp2/3 were also observed
in the cytoplasm. Again, no difference was observed
between the WT and HS1+/- platelets. Spread platelets were
also immunostained for cortactin (Figure 2D) to establish
whether a lack of HS1 altered the distribution of cortactin.
No differences were apparent between the two samples
when spread on fibrinogen + thrombin or collagen indi-

cating that cortactin distribution is normal in these cells.
Together these data indicate that, in platelets, the re-
organization of F-actin and Arp2/3 complex which under-
pins cell spreading does not require the activity of HS1.

It is feasible that other activators of the Arp2/3 complex
are able to compensate for the loss of HS1 in platelets. We
probed western blots of platelet protein extracts for cort-
actin, WASp, Scar/WAVE1 and Scar\WAVE2 to determine
if there was any up-regulation of these proteins. The
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expression of cortactin, Scar/WAVE2 and WASp was the
same in both WT and HS1+/- platelets indicating that there
was no compensatory up-regulation of these proteins
(Figure 2E). We did observe a small reduction in the level
of Scar/WAVE1 in HS1+/- platelets compared to WT. How-
ever, we do not feel that this would be likely to have any
significant effect as previous studies have shown that
platelets from Scar/WAVE1 null mice have a relatively
mild phenotype specifically downstream of GPVI signal-
ing [19] and in the current study, no difference in the
response of WT and HS1-/- platelets to CRP was observed.
We have also demonstrated that there is no platelet defect
in the Scar/WAVE1 heterozygote (unpublished data).
Western blots were also probed for N-WASp. No band was
observed on these blots indicating that N-WASp, if
present in platelets, is expressed at low levels (below the
detection limit of this antibody on western blot) and that
alack of a HS1+/- phenotype is not due to an increase in N-
WASD expression.

The processes of clot retraction and thrombus stability
which follow initial thrombus formation are known to be
dependent on actin and myosin [2,20]. Accordingly we
tested whether clot retraction was impaired in the absence
of HS1 using platelet rich plasma from wild type and
mutant mice. Images of representative clots taken at 15
min time intervals are shown in Figure 3A. The % of
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Figure 3

Clot retraction assays in WT and HS1--PRP. (A) Time
course of clot contraction and (B) the volume of serum
excluded at each time point. No significant difference was
observed between WT and HS |-~ platelet rich plasma at any
time point (n = 3).
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serum remaining in the tube after the clot was removed
was measured for each time point. Whilst there appears to
be a slight delay in clot retraction at 30 min, over the three
replicates performed we observed no significant differ-
ence between the genotypes at any of the time points
taken (Figure 3B). Nevertheless, clots formed in PRP from
HS1-/- mice were still able to retract to a similar level to
that observed in WT PRP.

Platelet aggregation and secretion

The number of platelets was measured following removal
of whole blood from terminally-narcosed mice. WT mice
had a mean platelet number 0of 496 + 36 x 103/mm?3 whilst
HS17/-mice had a mean of 423 + 36 x 103/mm?3. There was
no significant difference (P = 0.124) between these two
numbers demonstrating that HS1-/- is not essential for
platelet formation.

In view of the fact that the actin assembly contributes to
activation of PLCy 2 downstream of the major platelet sig-
naling receptor for collagen, the immunoglobulin GPVI
[21], we investigated platelet aggregation and secretion
responses to collagen and the GPVI-specific agonist CRP
alongside responses to thrombin using WT and HS17/-
platelets. Representative traces for aggregation to maximal
and threshold concentrations of each of the three agonists
are shown in Figure 4A, B, and 4C. Essentially, no signifi-
cant difference in the pattern or extent of aggregation was
observed between the two genotypes for all three agonists
(Figure 4D, E &4F). Secretion of ATP from these platelets
was monitored simultaneously with aggregation using
luciferin luminescence. Again, no difference was observed
in ATP secretion between WT and HS1-/- platelets in
response to the three agonists (Figure 4G, H &4I). This
data, in conjunction with the spreading data presented
above, indicates that abrogation of HS1 does not impair
the ability of platelets to respond to stimuli and to suc-
cessfully transduce the signals required for shape change,
aggregation and secretion.

Role of HSI in thrombus formation in vivo and in vitro
We extended our studies to flow-based test systems to fur-
ther investigate possible differences between WT and HS1-
/- platelets. The ability of platelets to adhere and form
aggregates under high shear rates (1000s!) was tested
using in vitro flow experiments. No difference was
observed between WT and HS1-/- blood in the visual
appearance of the aggregates formed during these experi-
ments (Figure 5A &5B). Analysis of surface area coverage
of platelets in 10 random field of view quantified using
fluorescently labeled platelets (Figure 5C &5D) confirmed
that there was no significant difference between the geno-
types (P = 0.669, ns).
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Figure 4

Aggregation and secretion response of WT and HS -~ platelets. (A) — (C) Representative aggregation traces for WT

and HSI-
aggregation and ATP secretion of WT and HSI-"

platelets in response to maximal and threshold concentrations of thrombin, collagen and CRP. (D — ) Percentage
platelets was determined after 2 min stimulation with varying concentrations

of thrombin (D & G), collagen (E & H) and CRP (F & I). For % aggregation the mean + SEM of 3 different mice is presented. For

ATP secretion, mean + SEM from | representative experiment is shown (WT — Black bars, HSI--—
platelets for any of the agonists tested.

difference was observed between WT and HSI--

White bars). No significant

We also tested the bleeding time using a tail bleeding
assays on HS17/- (n = 10) and WT (n = 12) mice. For these
studies, the tail was laid flat and the volume of blood that
dripped from the tail following removal of a 3 mm por-
tion was recorded. The data collected was expressed as vol-
ume of blood lost in 10 min (Figure 6). No significant
difference was observed between the two genotypes in the
volume of blood lost in 10 min (P = 0.852, ns) demon-
strating that absence of HS1 does not result in a bleeding
disorder.

After this work was submitted, Kahner et al [22], pub-
lished a paper which described tyrosine phosphorylation
of HS1 in human platelets downstream of GPVI. This
manuscript also described a mild bleeding phenotype for
the HS17/- mice using tail bleed and FeCl; in vivo injury
models. Further, this study also reported a small increase
in the time taken for platelets to change shape in response
to convulxin and PAR-4 agonists although aggregation
appeared normal. They also observed reduced dense gran-
ule secretion in null mice. It is feasible that these relatively
small differences could be due to HS1's role in actin
dynamics, although the authors do not discuss their
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In vitro flow assays. Whole blood from WT (A) or HSI--
(B) mice was flowed over collagen at a shear rate of 1000 s-!
for 4 min. Aggregates were fixed in formalin and imaged using
DIC. Flow experiments were also carried out with DIOC,
labeled platelets (representative image shown in C) and the
mean surface area of aggregates was calculated from fluores-
cence images (D). Means + SEM are plotted (n = 3). No sig-
nificant difference was observed between surface area
coverage of WT and HS|-- platelets (P = 0.669). Scale bars =
20 uM

results in relation to the actin cytoskeleton and indeed do
not propose a mechanism for this defect. There is no clear
explanation for the differences observed in the present
study, although it should be emphasized that the rela-
tively mild nature of the phenotype described by Kahner
et al [22] emphasizes that the role of HS1, if any, is rela-
tively mild. It is possible that differences between the two
studies could be related to subtle differences in the genetic
composition of the mice due to in-breeding (and there-
fore the presence of modifier genes), although it should
be noted that both studies were performed on C57BL/6
background and the results were compared to those
obtained on littermate controls.

The absence of a phenotype for HS1-/- platelets is surpris-
ing in light of the work by Kahner et al [22], bearing in
mind that it has a relatively limited tissue expression pro-
file [23] and that it undergoes tyrosine phosphorylation
in activated platelets [14]. It is possible that cortactin and
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Figure 6

Bleeding time measurements in WT and HS |- mice.
HS -~ mice show no significant difference in bleeding as
determined by volume of blood lost in 10 min following
removal of the terminal 3 mm of the tail (P = 0.852). Closed
circles represent individual data points, horizontal bars the
mean and vertical bars the SEM. (n = 12 for WT and 10 for
HSI1-+).

HS1 could be functionally redundant as they share a very
similar domain structure and that cortactin is highly
expressed in megakaryocytes and platelets [24]. In con-
trast, B and T-cells, which show a distinct phenotype in
the absence of HS1, express a low level of cortactin. It is
therefore important to extend this work to platelets defi-
cient in cortactin and in both cortactin and HS1.

Methods

Mice

HS17/- mice were a kind gift from Drs Takeshi Watanabe
and Diasuke Kitamura (Kumamoto University, Japan).
Mice were back-crossed into the C57BL/6 background and
bred as heterozygotes. All experiments were performed on
mice aged 6 - 10 weeks of age using litter-matched con-
trols (designated WT). Observation of the mice revealed
no obvious defects in development and HS1-/- mice were
visually undistinguishable from WT or heterozygote mice.
Genotyping of mice was carried out by PCR on genomic
DNA extracted from ear clippings taken at 3 weeks after
birth. Primers HS1-3'KO-S (5'-GAGAGGAAAGGTA-
GACACCAG-3') and HS1-KO-end-3' (5'-GGCATGGAT-
GGCTGCTGGAC-3') were used to identify wild type mice.
HS1-/- mice were identified using primers HS1-3'KO-S and
reverse primer Lac-Z-3' (5'-CATGCITGGAACAAC-
GAGCGC-3'). All animals were maintained using housing
and husbandry in accordance with local and national
legal regulations.
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Preparation of murine platelets

Blood was drawn from CO, terminally-narcosed mice
under anesthetic from the hepatic portal vein and taken
into ACD at a ratio of 1:10 or, for aggregation studies per-
formed in platelet rich plasma (PRP), into sodium citrate.
Platelet numbers in whole blood were determined using
an ABX Micros 60 (ABX Diagnostics, Montpelier, France).
PRP and washed platelets were prepared as previously
described [19].

DIC and fluorescence microscopy of spread platelets
Cover slips were incubated with a suspension of fibrino-
gen (100 pg mL1), collagen (100 pg mL1) or collagen
related peptide (CRP, 100 pg mL-1) overnight at 4°C. Sur-
faces were washed and then blocked with denatured BSA
(5 mg mL1) for 1 h at room temperature followed by sub-
sequent washing with PBS before use in spreading assays.
Platelets (2 x 107 mL-!') were layered on immobilized pro-
teins and allowed to adhere for 45 or 90 min at 37°C. Sur-
faces were then washed with PBS to remove non-adherent
cells before fixation with 10% formalin, neutral buffered,
for 10 min at room temperature. Platelet morphology was
imaged as previously described [19]. The platelet surface
area of spread platelets was computed using a java plugin
for the Image J software package as previously described
[25].

Immunolocalization of F-actin, Arp2/3 complex and cort-
actin was carried out as follows. Fixed platelets were made
permeable in 0.1% Triton X-100 in PBS for 5 min, washed
3x in PBS and then incubated in a-p34 or a-cortactin for
60 min at room temperature (1 in 500 dilution in PBS).
Coverslips were washed 3x in PBS and then incubated for
30 min with goat a-rabbit-488 or goat a-mouse-fitc and
rhodamine phalloidin (1 in 500 and 1 in 1000, respec-
tively). Samples were washed and mounted in Mowiol
and imaged using a Zeiss 63x oil immersion Plan-
Apochromat lens on a Zeiss Axioskop2 microscope. Dig-
ital images were captured by a Qicam Fast digital camera
(Qimaging corporation) using Openlab 4.0.3 software
(Improvision).

Clot retraction assays

Whole murine blood was anti-coagulated with sodium
citrate and PRP prepared as above. The platelet count was
adjusted to 3 x 108/ml with HEPES-Tyrodes containing
CaCl, (2 mM) and fibrinogen (2 mg/ml). 400 pl of this
mix was placed into an aggregometer tube and incubated
at 37°C for 5 min. 2 pl of mouse erythrocytes were added
for colour contrast. Thrombin (10 U/ml) was added and
mixed with a paper-clip and clot retraction was allowed to
proceed at 37°C for 1 hour with the paper-clip present. At
appropriate time points photographic images of retracting
clots were recorded and the clot was pulled out with the

http://www.biomedcentral.com/1471-2121/8/46

paper-clip and the remaining serum volume measured.
These experiments were performed blind.

Platelet aggregation studies

Platelet aggregation was monitored using 300 pL of 2 x
108 mL! of either PRP (for CRP and collagen) or washed
platelets (for thrombin). Stimulation of platelets was per-
formed in a Chrono-Log aggregometer (Chrono-Log,
Havertown, PA, USA) with continuous stirring at 1200
rpm at 37°C as previously described [21].

In Vitro Flow studies

For in vitro flow studies, mouse blood was prepared and
treated as described by Calaminus et al. [19]. Platelet
adhesion results are expressed as the percentage of surface
area covered by platelets.

Tail bleed assays

Experiments were conducted on 20-35 g male and female
WT (n = 12), and HS17/- (n = 10) mice. Mice were anaes-
thetized with isofluorane via a face mask throughout the
experiment and subsequently injected with the analgesic
buprenorphine (ip). The animal was laid flat on a box of
height 15 cm and the tail was laid horizontally along the
box with the tip (1 cm) protruding horizontally over the
edge. The terminal 3 mm of tail was removed using a
sharp razor blade and blood was collected in a graduated
3 ml blood tube containing 1.5 ml H,0. Mice were
allowed to bleed until they lost either 15% blood volume
(which was calculated prior to the experiment based on
the animal weight and assuming a blood volume of 70
ml/kg) or for 20 min. Data were presented as the volume
(ul) of blood lost in 10 min.

Data Analysis

Results are shown as mean + SEM from at least 3 experi-
ments unless otherwise stated. Statistical comparisons
were made using Student's test or a non-parametric test.
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