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Abstract

Background: The Adenomatous polyposis coli (APC) tumour suppressor is found in multiple
discrete subcellular locations, which may reflect sites of distinct functions. In Drosophila epithelial
cells, the predominant APC relative (E-APC) is concentrated at the apicolateral adherens junctions.
Genetic analysis indicates that this junctional association is critical for the function of E-APC in Wnt
signalling and in cellular adhesion. Here, we ask whether the junctional association of E-APC is
stable, or whether E-APC shuttles between the plasma membrane and the cytoplasm.

Results: We generated a Drosophila strain that expresses E-APC (dAPC2) tagged with green
fluorescent protein (GFP-E-APC) and we analysed its junctional association with fluorescence
recovery after photobleaching (FRAP) experiments in live embryos. This revealed that the
junctional association of GFP-E-APC in epithelial cells is highly dynamic, and is far less stable than
that of the structural components of the adherens junctions, E-cadherin, a-catenin and Armadillo.
The shuttling of GFP-E-APC to and from the plasma membrane is unaltered in mutants of
Drosophila glycogen synthase kinase 3 (GSK3), which mimic constitutive Wingless signalling.
However, the stability of E-APC is greatly reduced in these mutants, explaining their apparent
delocalisation from the plasma membrane as previously observed. Finally, we show that GFP-E-
APC forms dynamic patches at the apical plasma membrane of late embryonic epidermal cells that
form denticles, and that it shuttles up and down the axons of the optic lobe.

Conclusions: We conclude that E-APC is a highly mobile protein that shuttles constitutively
between distinct subcellular locations.

Background

The Adenomatous polyposis coli (APC) protein is an
important tumour suppressor in the colonic epithelium
[1]. A key function of this highly conserved protein is to
antagonize Wnt signalling, by constitutively downregulat-
ing the transcriptional activity of B-catenin/Armadillo, a
key effector of the Wnt signalling pathway [2]. Loss of this
function is thought to be critical in the initiation of color-

ectal tumorigenesis as it causes a transcriptional switch in
the intestinal epithelium towards actively dividing crypt
progenitor cells [3-5]. APC proteins are highly conserved
among vertebrates and flies, and flies encode two APC
proteins with overlapping roles in Wnt signalling during
development [6,7].
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Association of GFP-E-APC with AJs of embryonic epithelial
cells. Side view of epidermis of a ~6 hour old embryo expres-
sion ubiquitous GFP-E-APC, stained with antibody against (a)
GFP and (b) a-catenin to mark the apicolateral AJs; note the
co-incidence of GFP-E-APC and a-catenin staining (arrows).

However, APC proteins have additional functions in con-
nection with the actin and microtubule cytoskeletons that
appear to be separate from their function in controlling
Wnt signalling [8,9]. One of these functions is a role of
APC in facilitating cellular adhesion, as indicated by stud-
ies in Drosophila tissues [10] and in mammalian colorec-
tal cancer cells [11]. This function in cellular adhesion is
likely to be conferred by the subcellular pool of APC pro-
tein that is associated with adherens junctions (AJs) in
Drosophila [12,13] and in polarised mammalian cells
[14]. The mechanism by which APC facilitates cellular
adhesion is unknown.

In order to explore this mechanism, we asked whether
Drosophila E-APC (also called dAPC2) might have a
structural role at AJs. If so, E-APC would be expected to be
stably associated with AJs, similarly to the structural com-
ponents of the adhesive complex. As in mammalian epi-
thelia [15,16], the main functional components of this
complex in Drosophila are the transmembrane protein E-
cadherin, a calcium-dependent trans-membrane adhesion
molecule, and the catenins (Armadillo and o-catenin)
that link E-cadherin to the actin cytoskeleton at the cyto-
plasmic side [17-22]. We thus conducted photobleaching
experiments on live embryos expressing E-APC or struc-
tural A] components tagged with green fluorescent protein
(GFP) [23-25], to compare their relative mobility. These
experiments revealed that GFP-E-APC is less stably associ-
ated with AJs than their structural components. We also
found that GFP-E-APC is remarkably mobile in neurons.

Results and discussion

We used the GAL4 system to express GFP-E-APC through-
out the embryo, and found that its subcellular distribu-
tion is very similar to that of endogenous E-APC in fixed
embryos. In particular, GFP-E-APC is concentrated under-
neath the plasma membrane in apicolateral regions of
embryonic epithelial cells (Fig. 1a; Fig. 2b). These regions
form the zonula adherens (ZA) which contains the AJs
[26]; they can also be visualised with antibody staining
against a-catenin [27] (Fig. 1b), and we observe a remark-
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ably close coincidence of GFP-E-APC and a-catenin. Sim-
ilar results were obtained by Akong at el. who examined
the same GFP-E-APC transgene in the embryo [7], and
who also showed that GFP-E-APC is distributed similarly
as endogenous E-APC in larval neuroblasts [28].

Next, we conducted fluorescence recovery after photob-
leaching (FRAP) experiments in live embryos, to examine
how stably GFP-E-APC is associated with adherens junc-
tions. We bleached the fluorescence in a defined square
centred over the junctional region of an epithelial cell
with a short laser pulse, and examined the recovery of the
fluorescence within this square over time (Fig. 2a). This
revealed a relatively fast rate of recovery of most of the flu-
orescence within a few minutes (Fig. 3a) [see additional
file 1]. Quantitative analysis shows that nearly 80% of the
initial fluorescence is recovered within ~220 seconds
(with a half-time value of ~60 seconds) (Fig. 4a,4e). This
indicates that the association of E-APC with the ZA is
dynamic rather than stable. The fluorescence recovery
observed in these FRAP experiments could be due to
movement of E-APC between the cytoplasm and the
plasma membrane, but also to sideways movement along
the plasma membrane (see also below).

We also conducted FRAP experiments with structural AJ
components, namely E-cadherin-GFP, Armadillo-GFP
and a-catenin-GFP. In these cases, we can only recover a
small fraction of the initial fluorescence within the time
frame of the experiment (Fig. 4a,4b,4c,4d,4e; note that
these experiments cannot be extended beyond ~6 min-
utes, due to the extensive cell shape changes during this
developmental stage). Furthermore, the rate of recovery is
slower than that observed with GFP-E-APC, with esti-
mated half-times of >3 minutes (o-catenin-GFP and of E-
cadherin-GFP; Fig. 4b,4d,4e). This also appears to be true
for Armadillo-GFP (Fig. 4c,4e), though we cannot esti-
mate its half-time of recovery with confidence, given that
its fluorescence levels are considerably lower than that of
the other GFP-tagged protein examined in this study.

We conclude that E-APC is significantly more mobile than
the structural A] components. This suggests that E-APC
shuttles either within the cortex, along the zonula adher-
ens, or that it shuttles from the cytoplasm to the plasma
membrane (as previously proposed; [29]). Interestingly,
the observed rates of recovery of GFP-E-APC were much
slower than the estimated rate of free diffusion (e.g. [30];
the rate of recovery of GFP alone was <10 seconds, i.e. too
fast to be measured by our experimental setup). This
suggests that the movements of GFP-E-APC are primarily
determined by the kinetics of its binding to ligands. One
of these could be Axin which associates with E-APC in
Drosophila cells to from large dot-like structures [31].
Similarly, Axin associates with APC in mammalian cells to
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Figure 2

FRAP protocol for the analysis of live Drosophila embryos expressing GFP-E-APC. (a) Sketch of the microscopy and data anal-
ysis used to determine the mobility of GFP-E-APC in epithelial cells of live embryos. (b) Consecutive face-on views of a live ~6
hours old embryo (stage | |) expressing GFP-E-APC, with squares marking specific sections of the AJs at cell interfaces; the set
of yellow squares in the right-hand image illustrate the cell shape changes that took place during the 5 minutes between the
two optical sections shown. White bar in this and subsequent figures, 5 um.
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Figure 3

FRAP of GFP-E-APC and GFP-tagged A proteins in early embryonic epithelial cells. Face-on views of live ~6 hours old embryos
(stage | 1) expressing (a) GFP-E-APC, (b) E-cadherin-GFP, (c) Armadillo-GFP, (d) a-catenin-GFP, with white squares marking
sections of cell interfaces that were bleached, and red squares marking unbleached control sections. Pre-bleaching images are
shown on the left; subsequent images on the right show recovery of fluorescence within white squares 15, 75 and 300 seconds

after bleaching [see additional file I].
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Figure 4

Quantitative evaluations of FRAP experiments. Plots of the relative fluorescence in white squares compared to grey squares in
Fig. 3 as a function of time; error bars indicate the range of values from >12 different experiments. (a-d) FRAP of individual
GFP-tagged proteins in wild-type embryos, as indicated; (e) combined data of (a-d); (f) Comparison of FRAP of GFP-E-APC in
wild-type and sgg mutant embryos (note that we were unable to distinguish between null mutant and paternally rescued
embryos; however, the rescue activity of the paternal allele is minimal as both types of embryos are highly abnormal).

form large molecular weight protein complexes [32]. Our
observations argue against a structural role of E-APC in
cellular adhesion. However, they are consistent with a cat-
alytic role of E-APC in facilitating cellular adhesion, for
example by maintaining the junctional pool of Armadillo
[10,29,33]. In support of this, recent evidence suggests
that there is rapid exchange of B-catenin within the junc-
tional cadherin complex, and that APC is required for this
process [34].

In late embryonic stages, GFP-E-APC forms striking
patches underneath the apical plasma membrane of epi-
dermal cells that are in the process of forming denticle
extrusions (Fig. 5). These striking 'pre-denticle' patches are
also seen in embryos stained with antibody against E-
APC, and overlap with actin patches [25]. They may thus
represent an actin-dependent association of E-APC as that
seen in the cortex of earlier epithelial cells and at the ring

canals between nurse cells within the egg chambers
[25,33]. FRAP experiments revealed that the presence of
GFP-E-APC in these pre-denticle patches is also dynamic,
with an estimated half-time of fluorescence recovery of
200-300 seconds (Fig. 5). Again, E-APC is therefore
unlikely to have a structural role in these patches.

It has been reported that E-APC and Armadillo are
required for anchoring mitotic spindles in the cortex of
dividing blastoderm cells in the early Drosophila embryo
[25]. We cannot measure the kinetics of GFP-E-APC asso-
ciation with the cortex in these early embryonic cells,
because of insufficient expression levels at this stage.
However, assuming that these kinetics do not change rad-
ically during embryonic development, our observations
from the later embryos (Fig. 3,4,5) suggest that E-APC has
a catalytic role in capturing microtubules in the cellular
cortex, rather than providing a structural tether [25].
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FRAP of GFP-E-APC patches in late embryonic epithelial cells. Face-on views of ~17 hours old embryo (stage 17) expressing
GFP-E-APC, showing patches of GFP-E-APC at the apical plasma membrane of epidermal cells forming denticles (pre-bleach
and subsequent images labelled as in Fig. 3). Note the fast recovery of the fluorescence in these patches after photobleaching.

We also expressed GFP-E-APC in eye imaginal discs, to
examine its subcellular distribution within a larval epithe-
lial sheet. We thus noticed striking puncta of green fluo-
rescence within the axons of the optic stalk that connects

these discs to the larval brain (Fig. 6). These puncta resem-
ble the E-APC/Axin-GFP dots that we observe in embry-
onic cells [31] and in these axons (not shown), and also
the E-APC/Armadillo dots that Peifer and colleagues
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observed in early embryos [25]. They may thus represent
the Axin destruction complex [31]. We performed FRAP
experiments, bleaching a 6 um wide strip perpendicularly
across the axons and monitoring the recovery of the fluo-
rescence into the bleached section. This revealed that the
GFP-E-APC puncta are remarkably dynamic: they re-
appear within the bleached area within a minute, with an
estimated half-time of ~100 seconds (Fig. 6) [see addi-
tional file 2]. Many of these puncta seem to re-appear
from other focal planes, so we cannot be absolutely cer-
tain that they represent movement of existing puncta.
However, some of the puncta re-appearing in the
bleached area can clearly be traced as moving puncta
within the same focal plane (e.g. see isolated axon, left-
hand side of [additional file 2]). The movement of these
GFP-E-APC puncta may be due to tracking (e.g. along
microtubules), although we cannot see uni-directionality
of movement (i.e. the movement appears to be up and
down the axons). The movement we observe in these
axons is somewhat reminiscent of that observed with a
GFP-tagged truncation of Xenopus APC that misses its C-
terminus (thus resembling the overall structure of E-APC):
this truncation, despite lacking the putative microtubule-
interacting domain within its C-terminus, forms large
puncta that can track along microtubules in Xenopus tis-
sue culture cells [35].

GSK3 is inhibited during Wnt signalling [2], and GSK3
mutants in Drosophila (shaggy/zeste white3, or sgg,
mutants) therefore mimic constitutive and sustained
Wingless signalling [36]. The normal level of Wingless sig-
nalling in the embryonic epidermis does not appear to
change the subcellular distribution of bulk E-APC protein
[12], although it does cause a re-location of Axin-GFP/E-
APC complexes to the plasma membrane [31]. However,
a reduction of cortical E-APC has been observed in early
sgg mutant embryos [12,25]. Likewise, in older sgg mutant
embryos, the levels of membrane-associated GFP-E-APC
are also noticeably reduced (Fig. 7a,7b,7c). However, this
does not appear to be due to a change in mobility of GFP-
E-APC since the kinetics of fluorescence recovery between
wild-type and sgg null mutant embryos were comparable
(Fig. 4f). Instead, it is due to a reduction of the overall E-
APC protein levels in these mutants: Western blot analysis
of 2-16 hour old embryos revealed that the total levels of
GFP-E-APC protein were much lower in sgg mutant
embryos compared to the wild type (Fig. 7d). The same is
true for endogenous E-APC whose levels are also substan-
tially reduced in sgg mutants (Fig. 7e). This indicates that
sgg is required for the stability of E-APC protein, and it
suggests that sustained Wingless signalling may destabi-
lise E-APC. Similarly, phosphorylation by GSK3 is
required for the stability of mammalian Axin, a functional
binding partner of APC [37], and the levels of Drosophila
Axin in embryos are also reduced after prolonged Wing-
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less signalling [38]. Destabilisation of the main compo-
nents of the Axin complex (Axin and APC) during Wnt
signalling may be a positive feedback mechanism result-
ing in the amplification of the signalling level.

The subcellular distribution of E-APC and its accumula-
tion at the adherens junctions is unchanged in other
mutants of the Wingless signalling pathway (including
wg, axin, dsh and signalling-defective arm mutants; [31]; F.
Hamada, X. Yu and M. B., unpublished observations). We
thus did not expect any of these mutants to affect the
shuttling behaviour of GFP-E-APC to and from the plasma
membrane. In support of this, preliminary FRAP experi-
ments indicated that the kinetics of fluorescence recovery
are unaffected in dsh null mutant embryos (not shown).
Taken together with our results from the sgg mutants, this
suggests that the kinetic association of GFP-E-APC with
the plasma membrane is unaffected by Wingless
signalling.

Conclusion

Our FRAP experiments provided evidence that E-APC is a
cytoplasmic shuttling protein whose association with the
adherens junctions is highly dynamic. The speed of its
shuttling to and from the plasma membrane appears to be
constitutive and does not require GSK3 activity. The
dynamic association of E-APC with the plasma membrane
is consistent with a catalytic role of E-APC, and argues
against a structural or tethering role in the cell cortex.

Methods

Fly strains

Fly lines transformed with UAS.GFP-E-APC (full length E-
APC tagged with GFP at its N-terminal end, inserted into
pPUAST [39]) were generated by R. Rosin-Arbesfeld (see
also [7,28]). The GAL4 driver lines arm.GAL4 and
GMR.GAL4 (FlyBase) were used to express GFP-E-APC
throughout the embryonic epidermis [31] and in the
larval eye disc, respectively. All fly strains were cultured at
25°C.

zw3M11-1 and dsh*26 mutant embryos lacking maternal and
zygotic gene function were generated as described [40].
We did not detect any differences in the subcellular local-
isation of GFP-E-APC or a-catenin between zygotic null
and paternally rescued sgg mutants (identified with an
RFP-marked X chromosome [41]). For Western blot
analysis, 10-16 hours old wild-type and sgg mutant
embryos were hand-picked (from timed egg collections)
under the dissecting microscope, and separated into GFP-
positive and GFP-negative embryos; unfertilised embryos
were discarded.
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Figure 6

FRAP of GFP-E-APC in the larval optical stalk. Optical sections through the optical stalk of a third instar larva, before and after
photobleaching, showing fluorescent puncta in individuatl axons, and the reappareance of these puncta (arrows) from both
sides of the bleached areas within minutes [see additional file 2]. Width of bleached strip, 6 um.

Analysis of fixed embryos and Western blots catenin [42]; goat anti-rat IgG Alexa Fluor 568, goat anti-
Antibody staining of fixed embryos and analysis by confo- ~ rabbit IgG Alexa Fluor 488 (Molecular Probes).

cal microscopy were described previously [12]. The fol-

lowing primary and secondary antibodies were used:  The following primary and secondary antibodies were
rabbit anti-E-APC [12], rabbit anti-GFP [14], rat anti-a-  used for Western blotting: rabbit anti-E-APC [12]; mouse
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Figure 7

Destabilisation of E-APC in sgg mutant embryos. (a, b) Face-on and (c) side views of ~14 hours old embryos (stage 16), fixed
and co-stained with antibodies against GFP and a-catenin as indicated, revealing junctional association of GFP-E-APC in (a)
wild-type and (b, c) sgg mutant embryos (similar in sgg null and paternally rescued embryos, see also Fig. 4f). (d, e) Western
blots of hand-picked 10—16 hours old wild-type and sgg mutant embryos (~100 embryos per lane), probed with antibodies
against (d) GFP or (e) E-APC, and a-tubulin as internal controls. Note that the levels of GFP-E-APC and of endogenous E-APC
are much reduced in sgg compared to wild-type embryos (sgg mutants represent a |:1 mixture of sgg null and paternally res-
cued embryos). The lower bands in upper panels (d, €) correspond to breakdown products of GFP-E-APC and E-APC, respec-
tively; their occurrence varies somewhat between preparations.

monoclonal anti-GFP IgG2a (Santa Cruz Biotechnology);  Live imaging of embryos

mouse anti-o-tubulin (clone B-5-1-2, Sigma), as internal ~ For live imaging, embryos were dechorionated in 50%
control; goat anti-mouse and anti-rabbit HRP IgG (Santa  bleach for 1-2 minutes and washed. Embryos were trans-
Cruz Biotechnology). The enhanced chemiluminescence  ferred to a moistened black filter (Schleicher and Schiill).
(ECL) Western blotting system (Amersham) was used for =~ Embryos were adhered to coverslips with heptane glue,
detection [43]. made by mixing heptane and clear sellotape (Sellotape
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Ltd). Embryos were mounted in Voltalef oil (10S). For
short term imaging (<30 minutes), embryos were
mounted on a glass slide with small coverslips as
supports. For longer term imaging, e.g. for bleaching of
pre-denticle patches, embryos were mounted in oil and
placed on Bio-foil gas permeable membrane (Sartorius
Ltd) mounted on a perspex frame [44].

Photobleaching of live embryos

FRAP experiments were performed using a Bio-Rad Radi-
ance confocal microscope with a 40x NA 1.3 objective
lense. Imaging was performed with a 488 nm argon laser
at 5% laser power and the following confocal settings: iris
at4 mm, 50% gain, zoom 10, scan speed 500 Ips, box size
512 x 512 pixels. These conditions were found to give
minimal photobleaching over the observed time.

For each FRAP experiment, a pre-bleach image was
recorded by selecting a focal plane and taking a Z-series,
consisting of 3 0.5 um steps either side of the desired focal
plane (from -1.5 pm to +1.5 um). The LaserSharp software
was used to define several regions of interest (ROIs) for
bleaching. A maximum of one bleach ROI was placed in
any cell and several cells were always left unbleached. Typ-
ically, 3-5 ROIs were bleached in one field of view on one
embryo. These regions were bleached at 100% laser power
(scanning at 500 lps). 10 bleach scans were found to pro-
duce the best results for all constructs. After bleaching, a
Z-series was recorded every 15 seconds for 5 minutes. At
the time of these experiments, the LaserSharp software did
not contain a function for performing this type of 4D
bleaching experiment. This problem was overcome by
manually switching between imaging and bleaching set-
tings and manually saving pre bleach images and starting
the time course. As a result of this, there was usually a 30-
60 second delay between the pre-bleach image and the
post-bleach images.

Data analysis

Data sets were analysed with the Bio-Rad LaserPix soft-
ware. For each time point, the total pixel intensity distri-
bution was compared to the pre-bleach image to select the
corresponding region. The two images were then com-
pared by eye to confirm that they did correspond to the
same focal plane. The coordinates for the bleach ROIs
were used to accurately locate the bleach spots on the pre
bleach image, and the mean fluorescence intensity for
each ROI was calculated. Several equivalent sized ROIs
were also placed on unbleached cells to measure any
change in fluorescence due to photobleaching or
movement.

To track movement of the cells, an acetate sheet was
placed over the computer monitor and each ROI was
marked on it as well as the shapes of the cells surrounding
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it. By aligning the sheet with the appropriate cell shapes,
the ROI could be appropriately positioned for each time
point. This process was used to position each ROI on the
appropriate image for each time point.

Once all ROIs had been placed on the image, the mean
fluorescence intensities were calculated for each ROI, and
their positions were saved on a copy of the image (See Fig
2.1). Data was exported to Microsoft Excel for analysis.
Relative fluorescence was calculated for each bleach area
by dividing fluorescence at time (t) by pre-bleach fluores-
cence. The change in fluorescence was plotted on a graph
with Excel. For each construct tested, the data from
multiple bleach experiments from multiple embryos were
averaged to give the approximate rate of recovery.

Data sets were discarded for any of the following reasons.
First, if movement of the embryo in the Z axis took the
sample outside the range of the Z-series in any time point.
Second, if movement in the X/Y axis was sufficient to
move significant numbers of the bleach boxes outside of
the observed region. Third, if an ROI ever left the field of
view, all data points for that ROI was discarded. Fourth,
all data sets were discarded if the intensities of the control
ROIs changed dramatically at any point in the experi-
ment, or showed a large general increase or decrease.

Pre-denticle structures were bleached in a similar manner
to junctional E-APC described above.

Live imaging of the larval optic stalk

GFP-E-APC was expressed in eye imaginal discs by the
GALA4 system, using the driver line GMR.GAL4 (described
in FlyBase). Eye discs and brains were dissected from
crawling third instar larvae in PBS. Eye discs were teased
away from the brain and inverted to reveal the optic stalk.
Whole disc/brains were mounted in a drop of PBS under
a cover slip, supported by two smaller cover slips. Each
disc was observed for no more than 30 minutes.

Photobleaching of the larval optic stalk

FRAP experiments were performed using a Bio-Rad Radi-
ance confocal microscope and Bio-Rad LaserSharp soft-
ware, using the 100x NA 1.4 objective lens. A narrow strip
was bleached across the whole field of view by adjusting
the size of the scanning area. These experiments were per-
formed before a FRAP program was available for Laser-
Sharp so bleaching was performed manually, leading to
somewhat variable intervals between each stage of the
experiment. The region was bleached with the 488 nm
line of an argon laser for approximately 20 scans. Time
courses were recorded after each bleaching experiment for
5 minutes.
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Additional File 1

FRAP of GFP-E-APC in early embryonic epithelial cells. Example of a
FRAP experiment of GFP-E-APC, as described in Figure 3.

Click here for file
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2121-5-37-S1.mov]

Additional File 2

FRAP of GFP-E-APC in the larval optical stalk. Example of a FRAP exper-
iment of GFP-E-APC, as described in Figure 6.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-5-37-S2.mov]
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