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Abstract
Background: Liver fibrosis is the common sequel of chronic liver diseases. Recent studies have
identified hepatic stellate cells as the primary cell type mediating hepatic fibrogenesis. It has been
demonstrated that hepatic stellate cells undergo a process of activation during the development of
liver fibrosis. During the activation process, hepatic stellate cells acquire myofibroblast-like
phenotype featuring the expression of smooth muscle alpha actin. Interferons have been employed
for the treatment of viral hepatitis. However, it is unclear what is the effect of interferons on the
prevention and treatment of liver fibrosis. Moreover, it is not clear whether there are any
differences among interferon alpha, interferon beta, and interferon gamma in the treatment of liver
fibrosis. Therefore, our objective in current study is to investigate the effects of rat interferon-α,
interferon-β, and interferon-γ on the proliferation and activation of rat hepatic stellate cells.

Results: Rat interferon-β and interferon-γ significantly inhibited rat hepatic stellate cell
proliferation while rat interferon-α did not affect the cell proliferation under the same culture
condition. Inhibition of cell proliferation was confirmed by both WST-1 cell proliferation assay and
5-bromo-2'-deoxy-uridine incorporation assay. Similar results were observed regarding interferons
regulation of hepatic stellate cell activation. Both rat interferon-β and interferon-γ reduced smooth
muscle α-actin abundance after 6 days treatment, but rat interferon-α did not alter smooth muscle
α-actin level.

Conclusions: Our results indicate that rat interferon-α and interferon-β have different biological
effects on rat hepatic stellate cells and suggest that there are different signaling events between
interferon-α and interferon-β in hepatic stellate cells.

Background
Liver fibrosis is the common sequel of chronic liver injury
of variable origin (viral infection, metabolic diseases and
toxin). Recent studies have identified hepatic stellate cells
(HSCs) as the primary cell type mediating hepatic fibrosis

[1,2]. In normal liver, HSCs are the site of storage and me-
tabolism of vitamin A [3,4]. During hepatic fibrogenesis,
HSCs proliferate and undergo a process of activation, de-
veloping a myofibroblast-like appearance. Activated HSCs
appear to lose lipid droplet, increase rough endoplasmic
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reticulum, and express smooth muscle alpha actin (SMA)
[5–7]. Activated HSCs also increase the synthesis of extra-
cellular matrix components that form the major part of
the fibrotic liver [8,9].

Interferons were first discovered as anti-viral soluble pro-
tein and at present, interferon-α is the main medication
for the treatment of viral hepatitis [10,11]. Interferons
consist of type 1 interferon, which includes interferon-α, -
β and -ω, and type II interferon, which is interferon γ. Sev-
eral subtypes are observed in human interferon. Interfer-
on-α has at least 14 subtypes, interferon-β has 3 subtypes
and interferon-γ has 5 subtypes [12,13]. Biological activi-
ties of interferons are initiated by the interaction of inter-
ferons with cell surface type 1 and/or type II interferon
receptors. This interaction brings together two receptor
subunits. These two receptor subunits are not pre-associ-
ated on the cell surface but rather are induced to be asso-
ciated in the presence of ligand [14]. The formation of the
heteromeric receptor results in the formation of a func-
tionally active receptor that leads to the activation of cyto-
plasmic proteins and interferon signaling [15]. IFN-α and
IFN-β appear to utilize type 1 IFN receptor complex and
activate similar intracellular signaling pathways [16,17].
IFN-γ seems to activate type II IFN receptor. Ligand-in-
duced association of both types of IFN receptor results in
the phosphorylation of the receptors by Janus kinases
[18–20], which subsequently results in the activation of
STATs (signal transducers and activators of transcription)
proteins by additional phosphorylation events [21,22].
Such events lead to the formation of IFN-inducible tran-
scription factors that bind to IFN response elements pre-
sented in IFN-inducible gene [23].

Although it is generally considered that IFN-α and IFN-β
utilize a common receptor complex, a number of observa-
tions suggest that differences may occur in the abilities of
IFN-α and/or IFN-β to induce certain biological effects.
These include the preferential induction of an IFN-specific
gene [24,25], different growth inhibitory effects [26], and
erythropoietic effects [27]. One possible explanation for
the different signaling events between IFN-α and IFN-β
would be the existence of IFN-β specific receptor associat-
ed phosphoprotein (BRAP), which appears to be tyrosine
phosphorylated and to be associated with IFNAR1 (inter-
feron alpha-receptor 1) [28,29].

Results
Primary rat hepatic stellate cells were isolated and cul-
tured for 9 days before the cells were detached and sub-
cultured for the study of interferon regulation of prolifer-
ation and activation. Figure 1 shows the morphology of
sub-cultured HSCs at days 3 (Figure 1A) and 12 (Figure
1B) under phase contract microscope. The fluorescent im-
ages of SMA expression in rat HSCs were presented in Fig-

ure 1C and 1D for sub-cultured 3-day and 12-day HSCs
respectively. At day 12, all HSCs displayed myofibroblast
phenotype and expressed SMA. The expression of SMA
and desmin proteins at different times (1, 3, 6, 9, and 12
days) of the sub-cultured HSCs was shown in Figure 2.
SMA gradually increased from day 1 to day 12 and
reached a maximum level at day 12 while desmin abun-
dance did not elevate as much as observed on the SMA.
The result indicated that HSCs fully differentiated into
myofibroblast-like phenotype after 12 days sub-culture in
vitro. We then examined the effect of IFN-α, IFN-β and
IFN-γ on cell proliferation and DNA synthesis in sub-cul-
tured HSCs. Figure 3 showed the effect of IFN-α, IFN-β
and IFN-γ on proliferation of subcultured HSCs by WST-1
cell proliferation assay. As shown in Figure 3A, IFN-α did
not affect sub-cultured HSC proliferation and it also did
not affect Bromo-2'-deoxy-urindne (BrdU) incorporation
in HSCs (Figure 3D). In contrast, both IFN-β and IFN-γ
significantly inhibited subcultured HSC proliferation and
BrdU incorporation. IFN-β inhibition of HSC prolifera-
tion was observed at day 6 (32% decrease relative to con-
trol) and still could be observed at day 9 (18% decrease
relative to control) (Figure 3B). IFN-γ also inhibited HSC
proliferation at day 9 (40% decrease relative to control)
(Figure 3C). Both IFN-β and IFN-γ significantly inhibited
BrdU incorporation in HSCs (about 10 % decrease rela-
tive to control for both IFN-β and IFN-γ) (Figure 3D).
Moreover, both IFN-β and IFN-γ reduced the cell number
after 7 days treatment (500 U/ml IFB-β = 4.5 × 105 ± 0.10
× 105 cells/ml vs. control = 5.2 × 105 ± 0.12 × 105 cells/ml,
p < 0.01; 500 U/ml IFN-γ = 4.8 × 105 ± 0.1 × 105 cells/ml
vs. control = 6.0 × 105 ± 0.15 × 105 cells/ml, p < 0.01) The
inhibitory effect of IFN-β on HSC proliferation was not
dose dependent (Figure 4) while the effect of INF-γ on
HSC proliferation seemed to correlate with the dose.
However, the statistically significant difference of inhibi-
tion was only observed at the highest concentration of
INF-γ employed.

We then examined the effect of IFNs on the expression of
SMA, which is a phenotypic marker of activated HSCs.
Western blot analysis indicated that both IFN-β and IFN-
γ decreased SMA expression in sub-cultured HSCs when
they were exposed to the cytokines for 3 or 6 days (Figure
5A), but IFN-α did not affect SMA abundance after the
same length of treatment. However, when sub-cultured
HSCs were exposed to the cytokines for 9 days, both IFN-
α and IFN-β reduced SMA level in a small attitude while
IFN-γ did not alter the abundance of SMA. Analyses of the
blots by densitometric scanning revealed that IFN-β and
IFN-γ reduced the SMA level by 76% ± 3% and 73% ± 7%
respectively after HSCs were incubated with 500 U/ml
IFN-β and IFN-γ for six days (Figure 5B). In addition, we
also observed that water alone did not affect the expres-
sion of SMA in 6-day rat HSCs (Figure 6A) as well as trans-
Page 2 of 8
(page number not for citation purposes)



BMC Cell Biology 2002, 3 http://www.biomedcentral.com/1471-2121/3/9
forming growth factor beta1, bone morphogenetic
protein 2 and bone morphogenetic protein 4 promoted
the expression of SMA in rat HSCs (Figure 6B).

Discussion
The present study investigated the effect of IFN-α, IFN-β,
and IFN-γ on the proliferation and SMA expression of rat
hepatic stellate cells cultured on uncoated plastic dish. Rat
hepatic stellate cells have been documented to exhibit
proliferation and morphological change in experimental
hepatic fibrosis [30] or in human liver specimens ob-
tained from patients with fibrotic liver disease [31,32].
IFN-α is an effective drug for the treatment of patients
with hepatitis B virus or C virus infection. The antiviral ef-
ficiency of IFN-α is almost the same as IFN-γ; however,

Figure 1
Morphology of sub-cultured rat HSCs and expression of
SMA in HSCs. HSC morphology under phase-contrast micro-
scope at days 3 and 12 was shown at panels A and B respec-
tively. The expression of SMA in HSCs at the same days was
presented in panels C and D.

Figure 2
Expression of SMA and desmin in sub-cultured HSCs.
Hepatic stellate cells were isolated from Sprague-Dawley rat
and cultured for 9 days. Cells were then incubated with
trypsin and sub-cultured for days indicated. The upper panel
represents abundance of SMA while the lower panel repre-
sents abundance of desmin.

Figure 3
Interferons regulation of rat hepatic stellate cell proliferation.
Sub-cultured hepatic stellate cells were incubated with 500
U/ml of interferons for the days indicated. Cell proliferation
was performed by WST-1 cell proliferation and BrdU incor-
poration assays. Panel A exhibits the effect of IFN-α on cell
proliferation. Panel B indicates the effect of IFN-β on cell
proliferation. Panel C displays the effect of IFN-γ on cell pro-
liferation. Panel D exhibits the IFNs effect on BrdU incorpo-
ration in rat HSCs. The data represent mean ± SEM. HI
represents heat-inactivation. * indicates p < 0.05 and ** indi-
cates p < 0.01.
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IFN-α has fewer side effects than IFN-γ. In the other as-
pect, IFN-γ has anti-fibrogenic effect as it is documented
that IFN-γ inhibits collagen synthesis in several cell types
[33–36]. Moreover, IFN-γ delays phenotypic trans-differ-
entiation of rat hepatic stellate cells in vitro [37]. Further-
more, IFN-γ reduces SMA expression in human HSCs,
arterial smooth muscle cells and dermal myofibroblasts
[38,39]. Our results with IFN-γ were consistent with these
reports. We also observed that IFN-γ reduced SMA expres-
sion in cultured rat HSCs. Several clinical studies have
suggested that IFN-α has anti-fibrogenic activity. Most of
the studies were conducted in patients with chronic hepa-
titis C. This suggests that IFN-α may reduce the histologi-
cal fibrosis index of the Knodell score in responders,
which may be consequent to the antiviral properties of the
drug [10,11,40]. Furthermore, some studies point to a di-
rect anti-fibrogenic effect of IFN-α, independent of its an-
tiviral property [41]. In these studies, IFN-α decreased
collagen concentration and SMA index in not only re-
sponders but also non-responders or relapsers. An in vitro
study confirmed these results by documenting that IFN-α-
2c inhibits human hepatic stellate cell proliferation and
collagen product at the concentration (10000 U/ml) high-
er than a single therapeutic dose [42] (peak plasma con-
centrations range between 40 U/ml to 150 U/ml [43,44]).

In our current study, we did not observe that rat IFN-α in-
hibited rat hepatic stellate cell proliferation and SMA ex-
pression at the concentrations from 100 to 1000 U/ml. In
contrast to IFN-α, we showed that rat IFN-β significantly
inhibited rat hepatic stellate cell proliferation and SMA ex-
pression at the concentration of 500 U/ml. Although the
concentration was higher than the single therapeutic dose
of IFN-α used in clinical treatment, it is within the range
of drug accumulation after repeated administration,
which is by the factor of 2 to 5 of the single administration
[45]. Moreover, the difference between this study and oth-
ers regarding the effect of IFN-α on HSCs could also be
due to the different species employed in studies. In this
study, rats were employed while in the other study [42]
human HSCs were used. In addition, more than 14 sub-
types of human IFN-α have been identified and each sub-
type of IFN-α has different binding affinity to type 1 IFN
receptor [46]. At present, only one subtype of rat IFN-α
has been identified.

The effect of IFNs on rat HSC proliferation in this study
was low and marginal especially at early time points.
Since rat HSCs were cultured in 10% serum condition,

Figure 4
Dose dependent effect of IFNs on rat HSC proliferation.
Sub-cultured HSCs were incubated with three concentra-
tions of IFNs (100, 500 and 1000 U/ml) for 6 days. WST-1
cell proliferation reagents assayed cell proliferation. The data
represent mean ± SEM. HI represents heat-inactivation. *

presents p < 0.05 and ** indicated p < 0.01

Figure 5
Effect of interferons on SMA abundance in rat HSCs. Sub-cul-
tured HSCs were incubated with 500 U/ml of IFN-α, IFN-β
and IFN-γ for 3, 6, or 9 days. Panel A exhibits the typical
Western blot of SMA expression. Panel B represents densit-
ometric data of Western blot analysis. Active form of IFNs
was compared with heat-inactivated (HI) form of IFNs, which
were arbitrarily set at 1. The data represent mean ± SEM
from four experiments.
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proliferation of rat HSCs has been stimulated by the other
factors in serum. In other studies relating to HSC prolifer-
ation, serum-reducing condition has been employed
which utilized 0.1%-1% serum [47]. Dramatic differences
of cell proliferation and activation of HSCs were observed
in this culture condition. Recently we also observed that
when rat HSCs were cultured in 5% serum condition or
serum-free condition for a short period, IFNs and other
cytokines could dramatically affect cell proliferation and
expression of SMA in rat HSCs (data not shown).

Our results also showed the first time that IFN-α and IFN-
β induced different biological effects on rat hepatic stellate
cells. The different biological effects of IFN-α and IFN-β
have been documented in human glioma cells [26] and in
the selected Tyk2-deficient cell lines [48,49]. In these cells,
growth inhibition and gene expression are responsive to
IFN-β but not to IFN-α. The mechanism of the differences

between IFN-α and IFN-β biological effects is still un-
known. However, it is known that type 1 IFNs bind to un-
associated type 1 IFN receptor and assemble two chains of
IFNAR1 and IFNAR2. The assembled type 1 IFN receptor
will be phosphorylated by associated kinases, which
would lead to intracellular signaling events. One differ-
ence between IFN-α and IFN-β at the receptor level is that
there is a phosphoprotein selectively involved in IFN-β
signaling [24,25]. Two different research groups demon-
strated this tyrosine-phosphorylated protein to be
IFNAR2.2 [28,29]. By employing specific antibody against
IFNAR2.2, they documented that IFNAR2.2 is present in
Daudi cells as a cell surface protein approximately 90–100
kDa, which is tyrosine-phosphorylated and associated
with IFNAR1 upon stimulation of cells with IFN-β but not
IFN-α. Their studies suggest that there are some differenc-
es in receptor interaction between IFN-α and IFN-β in
HSCs. However, it is still unclear why this phosphopro-
tein is not related with IFN-α and what IFN-β specific re-
sponses are associated with the IFN-β induced
phosphoprotein. Our results suggested that HSCs might
serve as the cell type to investigate the different responses
of IFN-α and IFN-β.

Conclusions
Rat interferon-α and interferon-β have different biological
effects on rat hepatic stellate cells and different signaling
events might exist between interferon-α and interferon-β
in hepatic stellate cells.

Materials and methods
Materials
Rat interferon α (specific activity = 1 × 108 units/mg), rat
interferon β (specific activity = 3 × 107 units/mg), rat in-
terferon γ (specific activity = 4.6 × 106 units/mg) were pur-
chased from PBL Biomedical Laboratories (New
Brunswick, NJ). To remove biological activity of rat inter-
ferons, the stock solution containing rat interferons was
boiled in water for 10 minutes to denature the proteins
(heat inactivation – HI). Cell proliferation reagent WST-1,
and 5-Bromo-2'-deoxy-uridine (BrdU) Labeling and De-
tection Kit II, collagenase D, pronase, DNase 1, and the
antibody against smooth muscle α-actin (SMA) were pur-
chased from Roche Molecular Biochemicals (Laval, QC).
Anti-mouse IgG immunoglobulin conjugated to horse-
radish peroxidase and Enhanced Chemiluminescence De-
tection Kit were purchased from Amersham Pharmacia
Biotech, Inc. (Baie d'Urfe, QC). All buffers and reagents
were purchased from Sigma (St. Louis, MO).

Rat hepatic stellate cells
Male Sprague-Dawley rats (450–550 gram body weight)
were provided by Central Animal Care of the University of
Manitoba and maintained under 12-hour light/dark cy-
cles with food and water ad libitum. In conducting the re-

Figure 6
Effect of interferons, transforming growth factor beta1, bone
morphogenetic protein 2 and bone morphogenetic protein 4
on SMA abundance in rat HSCs. Sub-cultured HSCs were
incubated with water only, 500 U/ml of different IFNs for 6
days and the abundance of SMA in HSCs was documented in
panel A, while sub-cultured HSCs were treated with 5 ng/ml
of transforming growth factor beta1, 5 ng/ml of bone mor-
phogenetic protein 2 and 5 ng/ml of bone morphogenetic
protein 4 for 4 days and the abundance of SMA in HSCs was
presented in panel B. HI indicates heat-inactivation.

- - -+ + +
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SMA 42kDa
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search described in this report, all animals received
humane care in compliance with the Institution's guide-
lines (Animal Protocol No. 98-053), which is in accord-
ance with criteria set by the Canadian Council on Animal
Care. Hepatic stellate cells were isolated by two steps of
collagenase and pronase methods [50]. Briefly, rat liver
was perfused with 0.125 mg/ml collagenase D, 0.5 mg/ml
pronase and 15 µg/ml DNase 1 in Hank balanced salt so-
lution (HBSS) supplemented with 10 mM HEPES, 4.2
mM sodium bicarbonate for 20 minutes and incubated
with 0.125 mg/ml collagenase D, 0.5 mg/ml pronase for
another 15 minutes with constant low speed stirring at
37°C. After removing hepatocytes, HSCs were separated
from other non-parenchymal cells by centrifugation on
11.3% Nycodenz with sodium chloride. HSCs were har-
vested from the interface between suspension buffer and
11.3% Nycodenz solution, washed and plated on uncoat-
ed plastic tissue culture dish (Costar) at a density of
25,000 cells/cm2. A good separation of rat HSC in our lab-
oratory could reach 2 × 107 cells per liver. Purity of HSC
preparation was assessed by their typical light microscopic
appearance, vitamin A specific autofluorescence. Purity of
HSCs was about 97%. Cells were cultured in DMEM sup-
plemented with 10% fetal bovine serum, 100 IU/ml pen-
icillin, 100 µg/ml streptomycin and 2 mM L-glutamine at
37°C in a humidified atmosphere of 5% CO2 and 95%
air. The first change of medium was made 24 hours after
seeding and the second change of medium was about 20
hours later. Sub-cultured HSCs (the first passage of prima-
ry HSCs) were obtained from 9 days old primary culture
of HSCs. Microphotography and fluorescent micro-
photography: Sub-cultured HSCs were imaged and photo-
graphed on an Olympus inverted-phase microscope (CK-
40) using a mounted Olympus 35-mm camera (Carsen
Group Inc. Markham, ON) and TMAX 400 Kodak black-
and-white film (Eastern Kodak Co., Rochester, NY). For
fluorescent microphotography, HSCs grown on uncoated
Nunc 8-well glass-slide dishes were rinsed with phos-
phate-buffered-saline, fixed in ice-cold paraformalde-
hyde, rinsed and stained with HOECHST mix for nuclei (5
mg/ml HOECHST 33258 and 0.5% Saponin in culture
medium containing 10% fetal bovine serum) and anti-
body against SMA at dilution of 1:100, followed by Cy3-
conjugated rabbit anti-mouse IgG at dilution of 1:250. A
fluorescence image was obtained by Olympus True Re-
search Microscope (Olympus AX70) with 60X oil-objec-
tive and ImagePro software (Carsen Group Inc. Markham,
ON).

Cell proliferation assay
Cell proliferation was determined using both cell prolifer-
ation reagents WST-1 [51] and 5-Bromo-2'-deoxy-uridine
(BrdU) Labeling and Detection Kit II methods [52]. The
first passage HSCs (5 × 103) in 100 µl culture medium was
seeded into 96 well plates in complete culture medium.

After one day of culture in a 37°C-humidified incubator,
the medium was carefully removed, and 100 µl of fresh
medium containing different concentrations of rat IFN-α,
rat IFN-β and rat IFN-γ were added into the wells. The cells
were treated continuously with IFNs for the days indicated
and the medium containing IFNs were changed every oth-
er day. Cell proliferation was documented after 1, 3, 6 and
9 days of IFNs treatment. At the end of experiments, cells
were incubated with 10 µl of the cell proliferation reagent
WST-1 for 2 hours or 1 µl BrdU labeling reagent for 4
hours. The absorbance of the treated samples against a
blank control was measured using a THERMOmax micro-
plate reader (ELISA) (Molecular Devices Co., Menlo Park,
CA). The wavelength for measuring absorbance of the
WST-1 product was 420 nm and reference wavelength was
650 nm while measuring wavelength for BrdU was 405
nm and reference wavelength for BrdU was 492 nm ac-
cording to the filters available in the ELISA reader. Cell
proliferation was performed in eight wells and each exper-
iment was completely repeated on three occasions.

Western blot analyses of SMA
sub-culture HSCs on different days was lysed in 100 µl of
protein extract solution (1 mM Tris-HCl pH7.5, 1 mM
EDTA pH 8.0, 10 mM NaCl, 1% sodium dodecyl sulfate
(SDS), 1 mM PMSF and 0.25 M sucrose) [53]. The cell
membrane was broken by sonicating the cells for 1
minute with Sonicator (Vibra Cell, Sonics and Material
Inc. Danbury, CT) and cell debris was pelleted by centrif-
ugation at 14000 rpm at 4°C for 5 minutes. The protein
content of cellular lysates was calculated by the Lowry
method [54]. Twenty µg of protein was boiled for 5 min-
utes, separated on 12% sodium dodecyl sulfate-polyacry-
lamide (SDS-polyacrylamide) gel electrophoresis under
reducing conditions and transferred to Nitroplus-2000
membrane (Micron Separations Inc. Westborough, MA).
Non-specific antibody binding was blocked by pre-incu-
bation of the membranes with 5% skim milk in 1 x Tris-
buffered-saline (TBS) for one hour at room temperature.
Membranes were then incubated overnight at 4°C with
primary antibodies against SMA at dilution of 1:1000 in 1
x TBS containing 2% skim milk. After washing, they were
incubated with sheep anti-mouse IgG at 1:1000 dilutions
for 1 hour at room temperature. Bands were visualized by
employing the enhanced chemiluminescence kit per the
manufacturer's instruction.

Statistical analyses
To analyze differences in the treatment groups, we per-
formed the ANOVA and Fisher's PLSD test as Post hoc test
using StatView (version 5.0) software (SAS Institute Inc.
Cary, NC). Differences with p values below 0.05 were
judged to be significant.
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