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Abstract

Background: The cyclin-dependent kinase inhibitor p27 is a putative tumor suppressor that is
downregulated in the majority of human prostate cancers. The mechanism of p27 down-regulation
in prostate cancers in unknown, but presumably involves increased proteolysis mediated by the
SCFSKP2 ybiquitin ligase complex. Here we used the human prostate cancer cell line LNCaP, which
undergoes G| cell cycle arrest in response to androgen, to examine the role of the SKP2 F-box
protein in p27 regulation in prostate cancer.

Results: We show that androgen-induced GI cell cycle arrest of LNCaP cells coincides with
inhibition of cyclin-dependent kinase 2 activity and p27 accumulation caused by reduced p27
ubiquitylation activity. At the same time, androgen decreased expression of SKP2, but did not affect
other components of SCFSKP2, Adenovirus-mediated overexpression of SKP2 led to ectopic down-
regulation of p27 in asynchronous cells. Furthermore, SKP2 overexpression was sufficient to
overcome p27 accumulation in androgen arrested cells by stimulating cellular p27 ubiquitylation
activity. This resulted in transient activation of CDK2 activity, but was insufficient to override the
androgen-induced G| block.

Conclusions: Our studies suggest that SKP2 is a major determinant of p27 levels in human
prostate cancer cells. Based on our in vitro studies, we suggest that overexpression of SKP2 may be
one of the mechanisms that allow prostate cancer cells to escape growth control mediated by p27.
Consequently, the SKP2 pathway may be a suitable target for novel prostate cancer therapies.

Background

A plethora of circumstantial evidence implicates downreg-
ulation of the cyclin-dependent kinase (CDK) inhibitor
p27 in prostate cancer. While greater than 85% of termi-
nally differentiated secretory cells in normal human pros-
tate display strong nuclear staining for p27, all cases of
high-grade prostatic intraepithelial neoplasia, invasive
carcinoma, and pelvic lymph node metastases studied by
DeMarzo et al. showed down-regulation of p27 [1]. In ad-

dition, low p27 expression correlates with higher mean
Gleason scores, a number of prognostic morphological
features, and decreased survival [2-4]. Thus, p27 may be
a prostate tumor suppressor.

In support of this notion, the p27 protein has been iden-
tified as a target of viral oncoproteins [5,6]. However, un-
like traditional tumor suppressors, the p27 gene rarely
shows homozygous inactivation in cancer cells [7-9], a
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finding that points towards alternative mechanisms of
P27 inactivation.

p27 specifically inhibits CDKs, which mediate entry into
S phase [10,11]. The level of p27 is higher in quiescent
than in proliferating cells, and this increase in p27 abun-
dance is required for an effective cell cycle exit [12]. The
cell cycle-dependent variations in p27 levels are not re-
flected by similar changes in p27 mRNA [13]. Many ag-
gressive prostate cancers display decreased p27 protein
levels in the presence of high p27 mRNA [14], suggesting
that p27 depletion may result from ectopic proteolysis. In
fact, p27 depletion in several cancers was shown to result
from increased proteolysis via the ubiquitin/proteasome
system [15-18].

This system employs a cascade of enzymatic reactions that
covalently attach a ubiquitin chain to substrate proteins,
thereby targeting them to the proteasome [19]. The ubiqg-
uitin transfer reaction involves three enzymes: E1, which
mediates the ATP-dependent activation of ubiquitin, and
E2, or ubiquitin conjugating enzyme (UBC), which, to-
gether with an E3 ubiquitin ligase, transfers ubiquitin to
the target protein.

Biochemical studies identified SCFSKP2, an E3 that medi-
ates p27 ubiquitylation in vitro[20,21]. This complex con-
sists of at least four proteins: SKP1, CUL1, HRT1 (=RBX1/
ROC1), and SKP2. SKP2 contains a so-called F-box, which
mediates binding to SKP1, and C-terminal leucine-rich re-
peats that recognize p27. CULL, in turn binds to SKP1,
and together with HRT1, mediates the interaction with the
ubiquitin-conjugating enzyme CDC34/UBC3. CKS1, a
small protein that associates with CDKs and greatly stim-
ulates p27 ubiquitylation, was recently identified as a
forth SCFSKP2 component [22,23].

Two rate-limiting steps for p27 ubiquitylation were de-
fined: (1.) phosphorylation of p27 by CDK2 at threonine
187 [24-26], and (2.) binding of phosphorylated p27 to
SKP2 [20,21]. SKP2 is down-regulated in resting cells with
stable p27, but strongly up-regulated in cells, which
progress into S phase [27,28]. In some tissue culture cells,
overexpression of SKP2 is sufficient to induce p27 degra-
dation and S phase entry [29-32], and can cooperate with
ras in transformation [33,34]. Significantly, overexpres-
sion of SKP2 has been observed in many cancer cell lines
[28,35] as well as in primary cancer specimens and many
of these tumors also display down-regulation of p27
[33,36-38].

Here, we used the androgen-sensitive human prostate
cancer cell line LNCaP [39] as a model system to address
the role of SKP2 in androgen-mediated cell cycle control.
This cell line undergoes reversible G1 arrest in response to
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androgens [40-44]. The G1 arrest is accompanied by p27
upregulation [42,43,45], however the pathway leading to
p27 upregulation is unknown. We show that androgen-
induced p27 upregulation is paralleled by p27 stabiliza-
tion and SKP2 downregulation. SKP2 overexpression is
sufficient to overcome androgen-mediated p27 accumula-
tion, indicating that it is a major mediator of androgen-
mediated cell cycle control.

Results

Androgen-induced G| arrest correlates with inhibition of
cyclin E kinase activity

Consistent with our previous studies, the synthetic andro-
gen 7o0-170-dimethyl-19-nortestosterone (mibolerone,
MIB) inhibits the proliferation and suppresses the trans-
formed phenotype of LNCaP cells ([46] and Fig. 1A). No
cytotoxic or apoptosis-inducing activity was associated
with this growth inhibition ([46], and data not shown).
To determine whether MIB caused arrest in a particular
phase of the cell cycle, MIB treated cells were examined by
flow cytometry. MIB induced a time-dependent accumu-
lation of cells in G1 at the expense of both S and G2/M
phases (Fig. 1B). Consistent with G1 arrest, MIB induced
inhibition of cyclin E-associated H1 kinase activity (Fig.
1C). This inhibition correlated with increased recovery of
the CDK2 inhibitor p27 in cyclin E immunocomplexes
isolated from MIB-treated LNCaP cells (Fig. 1D). Similar
finding were previously obtained with the synthetic an-
drogen R1881 and the natural androgen dihydrotestoster-
one (DHT) [42,43]. The latter study also showed that p27
is quantitatively bound to cyclin E complexes in DHT-
treated cells, indicating that p27 upregulation was suffi-
cient to saturate and inhibit cyclinE/CDK2 complexes
[43].

M IB-induced cell cycle arrest and CDK2 inhibition coin-
cide with upregulation of p27 and downregulation of SKP2
Consistent with increased recovery of p27 in cyclin E com-
plexes, MIB caused a concentration and time-dependent
increase in steady-state p27 protein levels (Fig. 2A,2B).
This increase was reversible, as p27 levels were gradually
restored to near control levels after removal of MIB and
addition of a 500-fold molar excess of the antiandrogen
cyproterone acetate (CA) (Fig. 2C and 2D). Simultaneous
administration of MIB and CA partially prevented p27 ac-
cumulation, indicating that it was mediated by the andro-
gen receptor (AR) (Fig. 2D).

Since the level of SKP2 is a rate-limiting determinant of
p27 levels [20,21,29], we examined the effect of MIB on
SKP2 protein levels. SKP2 levels were down-regulated
nearly four-fold by MIB at concentrations and with kinet-
ics that closely paralleled p27 accumulation (Fig. 2A,2B).
In addition, downregulation of RB1 and accumulation in
the underphosphorylated form paralleled SKP2 down-
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MIB induces G1 cell cycle arrest and inhibition of CDK2 activity (A) LNCaP cells were grown in the absence or pres-
ence of 10 ng/ml MIB and harvested after the times indicated. Cell numbers were determined by counting in a hemacytometer.
(B) LNCaP cells were maintained in the absence or presence of 10 ng/ml MIB for the indicated times, and cells were harvested
for flow cytometry. (C) Cyclin E immunoprecipitates were retrieved from LNCaP cells treated with 10 ng/ml MIB for 72 h and
examined for associated H| kinase activity in vitro. The precipitated amount of cyclin E (top) and the associated kinase activity
(H1-P) are shown (bottom). (D) Cell lysate was prepared from LNCaP cells maintained in the absence or presence of 10 ng/ml
MIB for 72 h. Lysates were precipitated with cyclin E antibodies and immunoprecipitates were examined for co-precipitation of
p27 by immunoblotting (lanes | and 2). The asterisk denotes the immunoglobulin heavy chains. Total cell lysates are shown in

lanes 3 and 4.
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Figure 2

Effect of MIB on p27, SKP2, and other cell cycle regulators (A) LNCaP cells were incubated with 10 ng/ml MIB for the
indicated periods. Cell lysate was harvested and expression of the indicated proteins was assessed by immunoblotting with
respective antibodies. Tubulin is shown as a loading control. SKP2 and p27 protein levels were quantitated using a demonstra-
tion copy of the Totallab software from Nonlinear Dynamics. (B) LNCaP cells were incubated with the indicated concentra-
tions of MIB for 72 h, followed by preparation of total cell lysate and immunoblotting with antibodies against p27, SKP2, and
tubulin. The effects of androgen on p27 and SKP2 were maximal at | ng/ml MIB. (C) LNCaP cells were maintained in the pres-
ence of | ng/ml MIB for 96 h after which the medium was replaced and 750 ng/ml of the antiandrogen cyproterone acetate
(CA) was added. Cell lysates were prepared after the indicated times, and p27 and SKP2 levels were assessed by immunoblot-
ting. (D) LNCaP cells were incubated with | ng/ml MIB and/or 750 ng/ml CA for 72 h and cell lysates were prepared. Expres-
sion of the indicated proteins was assessed by immunoblotting. Tubulin levels are shown as loading controls. (E) LNCaP cells
were incubated with | ng/ml MIB and/or 750 ng/ml CA for 72 h and cells were fixed for flow cytometry. Cell cycle profiles and
the fraction of cells in each cell cycle phase are shown. (F) LNCaP cells were maintained in the absence or presence of 10 ng/
ml MIB for 72 h. Cells were fixed and double-stained with antibodies against p27 (red) and SKP2 (green). Cell nuclei were
counterstained with DAPI.
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regulation (Fig. 2A). In contrast, only minor changes were
detected in the expression of the SKP2-associated SCFSKP2
subunits HRT1, CUL1, and SKP1 (Fig. 2A). MIB-depend-
ent SKP2 down-regulation was efficiently counteracted by
CA (Fig. 2C and 2D), again indicating an involvement of
the AR. Cyclin A, but not cyclin E levels were also sup-
pressed by MIB in an AR-dependent manner, while the
levels of the COP9/signalosome subunit CSN5/JAB1 and
tubulin remained constant (Fig. 2D). Finally, consistent
with SKP2 and p27 being integral components of andro-
gen-mediated growth control of LNCaP cells, CA also effi-
ciently reversed the MIB-induced G1 cell cycle arrest (Fig.
2E).

To confirm the effect of MIB on p27 and SKP2 at the level
of individual cells, we performed immunofluorescence
staining. In untreated controls, most cells displayed
strong staining for SKP2 with few cells positive for p27
(Fig. 2F). The nuclear staining patterns of SKP2 and p27
appeared mutually exclusive. (Fig. 2F). In contrast, the
majority of MIB-treated cells showed strong p27 expres-
sion, while only few cells were positive for SKP2.

MIB-induced p27 upregulation correlates with increased
p27 protein stability and decreased ubiquitylation
Northern blot analysis revealed that MIB-induced SKP2
downregulation at the protein level is reflected by quanti-
tatively similar changes in steady state RNA levels (Fig
3A). In contrast, p27 mRNA levels were upregulated by
MIB only two-fold (Fig. 3A). This suggested that the effect
of MIB on p27 RNA levels can not fully account for the ac-
cumulation of p27 protein (compare Figs. 2B and 3A)

We therefore determined the effect of MIB on p27 half-
life. Protein synthesis was inhibited by cycloheximide in
control cells and in cells pretreated with MIB for 72 h.
Cells were harvested after various times and the effect on
p27 protein levels was assessed by immunoblotting. Us-
ing this assay, we determined a p27 half-life of 4 h in con-
trol cells, which was increased to more than 6 h in MIB
treated cells (Fig. 3B). This experiment likely overesti-
mates p27 half-life in untreated cells, as SKP2 was itself
downregulated by CHX (data not shown). Nevertheless,
the data suggest that p27 upregulation in response to MIB
is partially mediated by changes in protein stability.

To confirm this conjecture, we used an in vitro assay to de-
termine p27 ubiquitylation activity in LNCaP cell lysate.
Similar to previously described protocols [21,22,30], cell
lysates were prepared by hypotonic lysis of untreated
LNCaP cells or cells treated with MIB for 96 h. Ubiquityla-
tion substrate was prepared by in vitro transcription and
translation of p27 in the presence of 35S-methionine. A
point mutant of p27 (p27T187A), in which the critical
CDK2 phosphorylation site in position 187 was replaced
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by alanine [24] was also prepared. Both substrates were
incubated with recombinant cyclin E/CDK2 complexes in
the presence of ATP, ubiquitin, and LNCaP cell lysate.
Conversion of p27 into polyubiquitylated high molecular
weight species was monitored by autoradiography of 35S-
labeled p27 following gel electrophoresis. Polyubiquityla-
tion of wildtype, but not mutant p27 was observed in un-
treated LNCaP cell lysate (Fig. 3C). This activity was
completely abolished in MIB-treated cells (Fig. 3C), sug-
gesting that p27 accumulation results from reduced p27
ubiquitylation.

Overexpression of SKP2 induces F-box-dependent p27
ubiquitylation

Considering the inverse correlation between p27 and
SKP2 protein levels, we asked whether ectopic SKP2 can
forge p27 down-regulation in LNCaP cells. To test this, we
generated recombinant adenoviruses driving the expres-
sion of SKP2 (Ad-SKP2) or a mutant of SKP2 lacking the
F-box (Ad-SKP2-AF). Infection of asynchronous LNCaP
cells with SKP2 virus led to time-dependent downregula-
tion of p27 (Fig. 4A).

To determine whether SKP2 downregulation is a neces-
sary step in MIB-induced p27 upregulation, LNCaP cells
were blocked with MIB for 72 h, followed by infection
with Ad-SKP2 or Ad-SKP2-AF for various periods. Immu-
noblotting revealed that SKP2 overexpression can effi-
ciently downregulate p27 levels in the continuous
presence of MIB (Fig. 4B). In contrast, overexpression of F-
box deleted SKP2 did not result in a decline of p27 (Fig.
4B).

To determine whether SKP2 induces p27 ubiquitylation,
cell lysate was prepared from MIB-exposed cells infected
with Ad-SKP2 and Ad-SKP2-AF, and supplemented with
phosphorylated p27, ATP, and ubiquitin. SKP overexpres-
sion for 24 or 48 h dramatically increased p27 ubiquityla-
tion activity present in these cell lysates (Fig. 4C, lane 5
and 7). This increase was not observed with mutant
p27T187A as substrate and upon overexpression of SKP-
AF (Fig. 4C, lanes 9 and 11).

Overexpression of SKP2 is not sufficient to overcome an-
drogen-mediated G| arrest

To test whether SKP2-mediated p27 degradation is suffi-
cient to overcome the MIB-induced G1 cell cycle arrest,
LNCaP cells were arrested with MIB for 72 h, followed by
infection with SKP2 adenovirus. Cells were harvested and
analyzed by flow cytometry after various periods. The mu-
tant SKP2-AF was used as a negative control. Although, in
three independent experiments, the fraction of cells in S
phase was significantly (p = 0.009) higher in MIB-arrested
cells overexpressing SKP2 (7.93%, +/-0.32) than in SKP2-
AF overexpressing cells (4.02%, +/-1.41) at a time when
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Ef%ect of MIB on p27 protein stability and ubiquitylation (A) LNCaP cells were maintained in the presence of | ng/ml
MIB and/or 750 ng/ml CA for 72 h. Total cellular RNA was isolated and p27 and SKP2 RNA levels were determined by North-
ern blotting as described in Materials and methods. Glycerol aldehyde phosphate dehydrogenase (GAPDH) RNA levels are
shown as loading controls. Ribosomal RNA is indicated as size markers. The ethidium bromide (EtBr) stained gel before trans-
fer is show to demonstrate the integrity of the RNA. Blots were quantitated using a phosphoimager and RNA levels normal-
ized to the GAPDH reference are shown in a block diagram (right). (B) LNCaP cells maintained in the absence or presence of
10 ng/ml MIB for 72 h were treated with cycloheximide (CHX, 100 ug/ml) to inhibit protein synthesis. Samples were taken
after the indicated times, and p27 abundance was determined by immunoblotting. Blots were scanned and data normalized to
the signal of tubulin were blotted in the diagram. (C) In vitro ubiquitylation of p27. Wildtype p27 or a point mutant in which
threonine 187 was replaced by alanine (p27-T187A) was radiolabeled with 35S-methionine by coupled in vitro transcription/
translation. The labeled substrate was incubated with total protein lysate prepared from LNCaP cells maintained in the absence
or presence of 10 ng/ml MIB for 72 hours. The reaction also contained ATP and ubiquitin as described in Materials and meth-
ods. Polyubiquitylated p27 species generated in the reaction are indicated (p27-Ub,).

p27 downregulation was already apparent (24 h), the ma-
jority of cells remained tightly arrested in G1 over the en-
tire 72 h course of the experiment (Fig. 5A).

This finding is in contrast to serum starved rat fibroblasts
and human U87 cells arrested in G1 by overexpression of

PTEN, in which SKP2 overexpression can drive S phase en-
try. [29,30,32,33]. In both cases, SKP2 overexpression
leads to induction of cyclin A and CDK2 kinase activity.
We therefore asked whether SKP2-mediated p27 down-
regulation in MIB arrested LNCaP cells was able to actual-
ly bring about CDK2 activation.
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We first determined the effect of SKP2 overexpression on
MIB-induced RB1 downregulation and accumulation in
the dephosphorylated state (see Fig. 2A), which is carried
out by CDK2 in vivo[47]. Immunoblotting revealed that
RB1 suppression in the hypophosphorylated state was ef-
ficiently reversed by SKP2 overexpression for 24 or 48 h
(Fig. 5B). In addition, cyclin A expression was partially re-
stored (Fig. 5B). However, both effects were largely anni-
hilated after 72 h of SKP2 overexpression. In contrast,
cyclin E levels, while not initially affected by MIB, were de-
creased after 72 h of SKP2 overexpression (Fig. 5B). In
contrast, CDK2 and tubulin levels remained stable at all
time points of SKP2 overexpression (Fig. 5B).

A parallel experiment, revealed that CDK2 kinase activity
assayed in vitro using histone 1 as substrate was sup-
pressed by MIB, but partially restored by overexpression
of SKP2 for 24 and 48 h (Fig. 5C, left panel). This increase
was paralleled by a decrease in the amount of p27 associ-
ated with cyclin E (Fig. 5C, right panel). While this de-
crease was maintained throughout the course of the
experiment, CDK2 activation was attenuated again at 72 h
of SKP2 overexpression. In summary, SKP2 overexpres-
sion caused transient upregulation of cyclin A expression
and CDK2 activity, but was inefficient in promoting S
phase entry of MIB-arrested LNCaP cells.

Discussion

Androgen control of LNCaP cell proliferation

We have used the cell line LNCaP as a model to examine
the role of SKP2 in androgen control of p27 expression
and cell cycle progression in human prostate cancer cells.
LNCaP cells exhibit a complex, but characteristic biphasic
response to androgens: (1.) Stimulation of proliferation at
low androgen levels, and (2.) inhibition of proliferation
at higher levels such as those used in this study [41]. This
dichotomy was compared [43] to the situation in male ro-
dents, where castration leads to atrophy of the prostate
due to apoptosis. Re-administration of androgen induces
transient epithelial cell proliferation, presumably mediat-
ed by proteolytic downregulation of p27, until pre-castra-
tion cell numbers have been restored [48,49]. No further
proliferation ensues beyond this point, at which p27 lev-
els are increased again, despite the continuous presence of
androgen. This may reflect androgen activity in restoring
the glandular structure by promoting postmitotic differ-
entiation [48,49]. Consistent with this view, androgen ad-
ministration to intact rats resulted in suppression of
prostate epithelial cell proliferation and maintenance of
morphological gland integrity [50]. Based on these find-
ings, we propose that the effects of high doses of andro-
gens on SKP2 and p27 in LNCaP cells described here
reflect a differentiation and consolidation effect in vitro. If
this is the case, LNCaP cells, despite being highly aneu-
ploid derivatives of a metastatic lesion of an advanced
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cancer [39], may have retained some aspects of the nor-
mal biphasic mechanism of androgen control observed in
castrated rodents. This mechanism may also be retained
in other prostate cancers, thereby representing a potential
target for intervention.

Role of SKP2 in androgen control of p27 stability

Our data indicate that SKP2 is an integral component of
androgen control in LNCaP cells, as it is down-regulated
in an AR-mediated manner (Fig. 2B and 2C). In contrast,
all other known SCFSKP2 subunits examined were largely
unresponsive to androgen (Fig. 2A). Importantly, SKP2
overexpression is sufficient to reverse androgen-mediated
p27 accumulation and induce p27 ubiquitylation (Fig. 4B
and 4D). Based on the F-box dependency of these process-
es (Fig. 4C), we conclude that SKP2 directly triggers the
ubiquitylation and degradation of p27 in LNCaP cells, a
process which is attenuated by androgen-mediated SKP2
downregulation. This interpretation is consistent with
SKP2 being a proximal element in the previously identi-
fied androgen-mediated pathway of cell cycle inhibition
in LNCaP cells. As a direct consequence of SKP2 downreg-
ulation, p27 is upregulated and cyclin A is downregulated.
This results in inhibition of CDK2 activity, accumulation
of hypophosphorylated RB1, inactivation of E2F1 [45],
and cell cycle arrest.

While it may surprise that SKP2 overexpression alone is
sufficient to mediate p27 degradation in LNCaP cells, giv-
en the known requirement for p27 phosphorylation [24],
similar observations were made in rat fibroblasts, human
U87 cells, and primary rat hepatocytes [29-32]. In rat fi-
broblasts, these findings correlate with SKP2-induced up-
regulation of cyclin A and CDK2 kinase activity [29,32],
which could further augment p27 phosphorylation and
degradation, ultimately stimulating cells to enter S phase.

Unlike in rat fibroblasts and human U87 cells [29,30,32],
SKP2 overexpression is not sufficient to override andro-
gen-induced G1 arrest in LNCaP cells, despite a profound
effect on p27 levels (Fig. 5). Consistent with this finding,
ectopic SKP2 expression was not sufficient to maintain
high cyclin A levels, CDK2 activation, and RB1 phospho-
rylation for prolonged periods (Fig. 5B and 5C). The tran-
sient character of these responses may explain the failure
to cause efficient S phase entry in the presence of MIB, in
particular as co-expression of cyclins was previously
shown to synergize with SKP2 in stimulating CDK2 activ-
ity and S phase entry [30,31]. In addition, cyclin A is fre-
quently overexpressed in prostate cancers [51]. In future
experiments, it will be interesting to determine the effect
of combined overexpression of SKP2 and cyclin A and cy-
clin E on cell cycle progression of MIB-arrested cells.
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Figure 4

Ef%ect of SKP2 overexpression on p27 protein levels and ubiquitylation (A) Asynchronous LNCaP cells were infected
with adenovirus driving the expression of Myc epitope-tagged SKP2 (Ad-SKP2). Cell lysates were prepared at the indicated
times after infection and Myc-SKP2 and p27 expression were determined by immunoblotting with p27 and Myc antibodies.
Tubulin is shown as a loading control. (B) LNCaP cells kept in the presence of 10 ng/ml MIB for 72 h were infected with Ad-
SKP2 or Ad-SKP2-AF (lacking the F-box) for increasing periods (24, 48, and 72 h in lanes 3-5 and 6-8, respectively). Protein
lysates were prepared and assayed for the expression of the indicated proteins by immunoblotting. Overexpression of SKP2 is
demonstrated by blotting with SKP2 (second panel from top) and Myc (third panel from top) antibodies. The first lane contains
lysate from untreated controls. Tubulin is shown as loading control. (C) Effect of SKP2 on in vitro p27 ubiquitylation activity
reconstituted in LNCaP cell lysate. LNCaP cells were arrested with 10 ng/ml MIB for 72 h and infected with Ad-SKP2 or Ad-
SKP2-AF for 24 or 48 h as indicated. Cell lysate was prepared and employed in ubiquitylation assays using wildtype or TI187A
mutant p27 as substrate. Polyubiquitylated reaction products are indicated (p27-Ub,). The lower panel shows an immunoblot
of the lysates used for the ubiquitylation assays downregulation of p27 by SKP2, but not SKP2-AF in these lysates.

Page 8 of 13

(page number not for citation purposes)



BMC Cell Biology 2002, 3

Regardless of the outcome of such experiments, our data
firmly suggest that SKP2 is a central mediator of the an-
drogen response mechanism of LNCaP cells. However, we
do not believe that SKP2 is a direct transcriptional target
of the AR, as the kinetics of its downregulation were rather
slow (Fig. 2A), suggesting several intermediate steps cul-
minating in this event. Such a mediator could be AS3, a
gene induced by growth inhibiting levels of androgen
with kinetics that precede cell cycle arrest [52]. In addi-
tion, AS3 overexpression mimics androgen-mediated cell
cycle arrest in MCF7 cells stably expressing exogenous AR,
while anti-sense AS3 confers resistance to androgen-in-
duced growth arrest [53]. The function of AS3 is still un-
known, but the encoded protein has features of a
potential transcription factor [53].

While our study suggests that SKP2 is an important player
in p27 regulation in prostate cancer cells, recent studies
have also implicated another protein, CSN5/JAB1, in p27
regulation [54,55]. CSN5 is a subunit of the COP9/signa-
losome (CSN) complex [56-59], but also forms distinct
complexes apparently lacking CSN subunits [55,60-62].
Overexpression of CSN5 in NIH3T3 cells causes p27 ex-
port from the nucleus and ectopic degradation [54]. Nota-
bly, like SKP2 [33,36-38], CSN5 was found to be
overexpressed in cancers devoid of p27 [63]. However,
our studies did not reveal any effect of MIB on CSN5 ex-
pression. Future studies aimed at eliminating CSN5 activ-
ity will show whether it is involved in androgen-mediated
p27 control.

Finally, a recent report demonstrated SKP2-independent
proteolysis of p27 in lymphocytes derived from SKP2
knockout mice [64]. It is thus possible that p27 proteoly-
sis is subject to tissue-specific regulation. In prostate cells,
however, SKP2 seems to be a major determinant of p27
degradation, as it is down-regulated by androgen and its
overexpression is sufficient to mediate p27 ubiquitylation
and degradation. Recent studies involving androgen ad-
ministration to castrated rats have come to similar conclu-
sions [49].

Conclusions

Our data suggest that androgen-mediated SKP2 downreg-
ulation is responsible for decreased ubiquitylation and ac-
cumulation of p27 in LNCaP cells, an effect that is readily
overcome by overexpression of SKP2. We propose that fre-
quent p27 downregulation in prostate cancer may be
caused by SKP2 overexpression thus enabling escape from
normal androgen control. Finally, our in vitro studies val-
idate the SKP2 pathway as a potential target for therapeu-
tic intervention in cancers devoid of p27.
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Materials and methods

Plasmids and reagents

Human SKP2 and p27 cDNAs were kindly provided by H.
Zhang (Yale University) and P. Jackson (Stanford Univer-
sity). The genes were amplified by PCR and cloned into
pcDNA3 enabling in vitro transcription. The SKP2 mutant
lacking the F-box was constructed using the Quickchange
kit purchased from Stratagene. Probes for Northern blot-
ting were generated by PCR. The GAPDH probe was gen-
erated by reverse transcription and PCR from LNCaP m
RNA.

The synthetic androgen mibolerone (7c-17c-dimethyl-
19-nortestosterone) was purchased from Perkin Elmer
Life Sciences. The antiandrogen cyproterone acetate was a
gift from C. Sonnenschein (Tufts University). The reagents
were dissolved in absolute ethanol.

Antibodies: SKP2 (Zymed 32-3300, 1:250 for immunob-
lotting), SKP2 (Santa Cruz sc-7164, 1:500 for immunoflu-
orescence staining), p27 (Transduction Laboratories
K25030, 1:5000 for immunoblotting, 1:1000 for immun-
ofluorescence staining), cyclin A (Neomarkers Ab-6, MS-
1061, 1:100 for immunoblotting), cyclin E (Neomarkers
Ab-1, RB-012, 2 ug per immunoprecipitation) cyclin E
(Neomarkers Ab-2, MS-870, 1:200 for immunoblotting),
HRT1 (affinity-purified rabbit polyclonal, gift from R. De-
shaies, 1:1000 for immunoblotting), CUL1 (Zymed 71-
8700, 1:250 for immunoblotting), SKP1 (Transduction
laboratories 610530, 1:5000 for immunoblotting), JAB1/
CSN5 (GeneTex MS-Jab11-PX1, 1:1000 for immunoblot-
ting), RB1 (Pharmingen 554136, 1:500 for immunoblot-
ting), CDK2 (Santo Cruz Biotechnology sc-163, 2 ug per
immunoprecipitation, 1:500 for immunoblotting), Tubu-
lin (Sigma T5168, 1:2000 for immunoblotting).

Tissue culture

LNCaP-FGC cells were obtained from ATCC (order
number CRL-10995) and maintained in RPMI supple-
mented with 10% FBS as described [46]. We noticed that
LNCaP cells at low density grow best on 15 cm Falcon
3025 tissue culture dishes and that the effects of SKP2
overexpression were most pronounced when cells were
cultured on these dishes (data not shown).

Adenoviruses

For production of adenoviruses, the ADEASY system was
used (generously provided by B. Vogelstein). The com-
plete SKP2 cDNA or a mutant lacking the F-box (SKP2-AF)
were cloned into a modified pcDNA3 plasmid providing
an N-terminal Myc epitope tag and the human lamin B
leader sequence. The lamin B-SKP2 cassette was removed
and cloned into the pADTRACK]1 shuttle vector. The re-
sulting plasmid was transformed into BJ-ADEASY cells by
electroporation. Adenoviral DNA generated by recombi-
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Figure 5
Effect of SKP2 overexpression on cell cycle progression and CDK2 kinase activity (A) LNCaP cells were maintained

in the absence or presence of 10 ng/ml MIB for 72 h. MIB-treated samples were subsequently infected with Ad-SKP2 or Ad-
SKP2-AF for the indicated periods, after which cells were processed for flow cytometry. Percentage of cells in G1, S, and G2/M
phases was blotted in a diagram. Note that SKP2 overexpression is not sufficient to override MIB-induced GI arrest. The
experiment was independently performed three times. (B) LNCaP cells were arrested with 10 ng/ml MIB for 72 h followed by
infection with Ad-SKP2 for the indicated periods (24-72 h). Cell lysates were prepared and expression of the indicated pro-
teins was determined by immunoblotting. (C) CDK2-dependent histone | (H1) in vitro kinase activity and cyclin E/p27 interac-
tion were assessed in the same lysates used in (B). CDK2 immunoprecipitates were incubated with HI in the presence of 32P-
ATP and reaction products were separated by gel electrophoresis and detected by autoradiography (left panel). Parallel cyclin
E immunoprecipitates were examined by immunoblotting for the amount of precipitated cyclin E and co-precipitated p27 (right
panel). HI kinase activity and the amount of p27 coprecipitated with cyclin E were quantitated using Totallab software (graph
below blots). The input amount of HI is shown in the lower panel on the left.
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nation in BJ-ADEASY cells was isolated. Recombinant ad-
enoviral DNA was transfected into 293 cells using
standard calcium phosphate procedures. Virus was har-
vested from cells and amplified by infection of 293 cells.
Amplified virus was purified by cesium chloride gradient
centrifugation and tittered. An approximate multiplicity
of infection of 100 was used throughout.

Immunological techniques

Cell lysates for immunoblotting were prepared by scrap-
ing cells into heated 2 x SDS sample buffer. Samples were
boiled for 10 min, centrifuged, and separated by SDS gel
electrophoresis. Proteins were transferred onto Immo-
bilon P membrane (Millipore), blocked in 5 % nonfat dry
milk dissolved in tris-buffered saline / 0.1 % Tween and
probed with the various antibodies.

Cell lysates for immunoprecipitation were prepared in IP-
LB (25 mM Tris, pH 7.4, 150 mM NaCl, 0.5 % Triton
X100, 10 pg/ml leupeptin, 10 pug/ml pepstatin, 1 mM
PMSF, 17 ug/ml aprotinin). Cells were scraped into IP-LB
and incubated on ice for 30 min. Cell lysate was cleared
by centrifugation and the supernatant was incubated with
various antibodies (see plasmid and reagents section
above). Immunocomplexes were collected on protein A or
G beads, washed five times in IP-LB for 5 minutes each,
dissolved in 2 x SDS sample buffer, and separated by SDS
gel electrophoresis.

For immunofluorescence staining, LNCaP cells were plat-
ed onto poly-lysine coated glass coverslips. Cells were
fixed in 4 % para-formaldehyde in PBS and permeabilized
by washing in PBS / 0.1 % Triton X100. Coverslips were
blocked in PBS/ 0.1 % Triton X100 containing 5 % nonfat
dry milk for 45 min. Incubation with primary and second-
ary antibodies was in the same buffer for 45 min each. Af-
ter antibody incubations, coverslips were washed five
times in PBS / 0.1 % Triton X100, followed by mounting
on microscopy slides. Micrographs were taken with a Spot
CCD camera mounted on a Nikon E600 epifluorescence
microscope. Brightness and contrast of the images was ad-
justed in Adobe Photoshop 5.0.

Northern blotting

Isolation of total cellular RNA using a urea/LiCl protocol
and gel electrophoresis was performed as described previ-
ously [65]. Gels were transferred onto Amersham Hybond
N+ nylon membranes in 20 x SSC and prehybridized in 4
x SSC, 1 x Denhardt's solution, 0.5% SDS for 2 h at 68°C.
Complementary DNA fragments for SKP2, p27, and GAP-
DH were amplified by PCR and radiolabeled by random
priming. Filters were hybridized for 16 h at 68°C followed
by washing in 2 x SSC at 68°C. Membranes were exposed
to X-ray film for 2 to 12 h and scanned with a phosphoim-
ager for signal quantitation.

http://www.biomedcentral.com/1471-2121/3/22

HI kinase assay
Histone 1 kinase assays with cyclin E or CDK2 immuno-
precipitates were performed as described [65].

In vitro ubiquitylation assay

Cell lysates for ubiquitylation assays were prepared by hy-
potonic lysis on ice in 20 mM Hepes pH 7.5, 15 mM
MgCl,, 5 mM KCl, 1 mM DTT, 10 pg/ml leupeptin, 10 pg/
ml pepstatin, 1 mM PMSF, 17 ug/ml aprotinin as de-
scribed previously [30]. Lysates were cleared by centrifu-
gation and used without prior freezing. Radiolabeled
wildtype and T178A point mutant p27 were produced by
combined in vitro transcription and translation in rabbit
reticulocyte lysate containing 35S-methionine. The in vitro
translated proteins were incubated 2 h at 30°C in the pres-
ence of 1 mM ATP with recombinant cyclin E / CDK2
complexes produced from baculoviruses in insect cells. Al-
iquots of phosphorylated proteins were added to a reac-
tion containing 120 ug cell lysate, recombinant human
E1, 0.25 mg/ml ubiquitin, 1 uM ubiquitin aldehyde, 1 uM
okadaicacid, 20 pM MG132, and ATP regenerating system
(20 mM ATP, 10 mM creatine phosphate, 0.1 ug/ml crea-
tine kinase). After 90 min, the reactions were stopped by
addition of SDS sample buffer, and reaction products
were separated by SDS gel electrophoresis and detected by
autoradiography.

Abbreviations
SCF = SKP1/Cullin/F-box protein complex

UBC = Ubiquitin conjugating enzyme

MIB =
one)

Mibolerone (70-170-dimethyl-19-nortestoster-

SKP2 = S phase kinase associated protein 2
CDK2 = cyclin-dependent kinase 2
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