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Abstract

Background: Epigenetic regulation is known to affect gene expression, and recent research shows that aberrant
DNA methylation patterning and histone modifications may play a role in leukemogenesis. In order to highlight the
co-operation of epigenetic mechanisms acting during the latter process it is important to clarify their potential as
biomarkers of granulocytic differentiation.

Results: In this study we investigated epigenetic alterations in human hematopoietic cells at a distinct
differentiation stages: primary hematopoietic CD34+ cells, KGT myeloid leukemic cells, whose development is
stopped at early stage of differentiation, and mature neutrophils. We focused on the epigenetic status of cell cycle
regulating (p15, p16) and differentiation related (E-cadherin and RARB) genes. We found that the methylation level in
promoter regions of some of these genes was considerably higher in KG1 cells and lower in CD34+ cells and
human neutrophils. As examined and evaluated by computer-assisted methods, histone H3 and H4 modifications,
i.e. H3K4Me3, H3K9Ac, H3K9AC/S10Ph and H4 hyperAc, were similar in CD34+ cells and human mature neutrophils.
By contrast, in the KG1 cells, histone H3 and H4 modifications were quite high and increased after induction of
granulocytic differentiation with the HDAC inhibitor phenyl butyrate.

Conclusions: We found the methylation status of the examined gene promoters and histone modifications to be
characteristically associated with the hematopoietic cell progenitor state, induced to differentiate myeloid KG1 cells
and normal blood neutrophils. This could be achieved through epigenetic regulation of E-cadherin, p15, p16 and
RARB genes expression caused by DNA methylation/demethylation, core and linker histones distribution in stem
hematopoietic cells, induced to differentiation KG1 cells and mature human neutrophils, as well as the histone
modifications H3K4Me3, H3K9Ac, H3K9AC/S10Ph and H4 hyperAc in relation to hematopoietic cell differentiation to
granulocyte. These findings also suggest them as potentially important biomarkers of hematopoietic cell
granulocytic differentiation and could be valuable for leukemia induced differentiation therapy.
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Background

Epigenetic changes are reversible and interfere with many
key biological functions, including regulation of gene ex-
pression through chromatin remodeling, DNA methyla-
tion/demethylation and microRNA. Moreover, many of
these changes have been linked to the pathogenesis of hu-
man diseases and cancers [1].

Aberrant DNA methylation is frequent in myeloid ma-
lignancies, particularly in the myelodysplastic syndrome
(MDS) and acute myelogenous leukemia (AML). Pro-
moter CpG methylation correlates with silencing of
tumor-suppressor genes in specific pathways, which are
also the targets for mutations or other mechanisms of in-
activation [2]. Epigenetic contributions to myeloid patho-
genesis appear more complex and deregulations occur at
multiple disease stages. Accordingly, therapeutics directed
towards epigenetic mechanisms, involving for instance
DNA methyltransferase (DNMT) and histone deacetylase
(HDAC) inhibitors, have had some clinical success when
applied to MDS and AML [2-6].

DNA methylation and histone tail modifications are
characteristic epigenetic signatures in physiologic devel-
opment that become abnormal in neoplasia. Thus, silen-
cing of critical genes by DNA methylation or histone
deacetylation can contribute to leukemogenesis as an alter-
native to deletion or loss-of-function mutations. In AML,
aberrant DNA methylation has been observed in several
of functionally relevant genes, such as p15, pl6, p73,
E-cadherin, ID4 and RAR[2. It was shown for instance
by Hopfer and coauthors [7] that associations between
aberrant promoter methylation and DNMT expression
predict high-risk MDS for all lineages and during erythro-
poiesis. Moreover, hypermethylation of p15, p16, p73, sur-
vivin, CHK2, RARB and DAPK genes were associated with
elevated DNMT isoform expression.

Abnormal activities of histone tail-modifying enzymes
have also been seen in AML, frequently as a direct result
of chromosomal translocations. It is now clear that these
epigenetic changes play a significant role in development
and progression of AML, and thus constitute important
targets of therapy [8,9]. Interactions between histone
modifications and DNA methylation are less well stud-
ied. Although genome-wide studies have suggested that
there is a negative correlation between H3K4Me3 and
DNA methylation, and a positive one between H3K9Me3
and DNA methylation, insights into the understanding of
these connections have just recently advanced [10-12].

Hematopoietic stem cells characteristically display
self-renewal and differentiation into mature distinct
hematopoietic lineages; defining the latter and under-
standing of the processes that control their differenti-
ation and self-renewal or cause their malignancies are
thus of great interest. Human hematopoietic progeni-
tor CD34+ cells collected from healthy human blood,
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KG1 cells representing blocked differentiation at an
early stage of hematopoietic development, and mature
human neutrophils can accordingly be used in epige-
nomic surveys. CD34+ cells provide a valuable model
system where progression from quiescent to cycling to
differentiated states can be linked to changes in chro-
matin rearrangements. Changes in histones H3 and H4
modifications being associated with chromatin activa-
tion, ie. H3K4Me3, H3K9Ac, H3K9Ac/S10Ph and H4
hyperAc, and reactivation of methylation-silenced genes
could be distinct in hematopoietic primary CD34+ cells,
KG1 cells and mature neutrophils. We employed compu-
tational analyses of confocal images to evaluate such his-
tone modifications changes in these cell populations.

We disclosed that the rates of methylation in promoter
regions of genes involved in the control of differentiation
(E-cadherin, RARf) and cell cycle progression (p15 and
p16) were considerably lower than that of unmethylation
in CD34+, neutrophils and KG1 cells. As evaluated by
computer-assisted methods the H3 and H4 modifications
H3K4Me3, H3K9Ac, H3K9Ac/S10Ph and H4 hyperAc
were similar for CD34+ cells and human mature neutro-
phils. The KG1 cells displayed elevated levels of those
modifications with an increase after treatment with
HDAC inhibitors (HDACI). To conclude, our findings
could be important for identification and evaluation of
new biomarkers and targets for leukemia differenti-
ation therapy.

Results and discussion

Methylation of p15, p16, E-cadherin, and RARP genes in
hematopoietic cells during granulocytic differentiation
Here we chose to examine the methylation status in
specific promoter regions of genes involved in cell
cycle regulation (p15, p16) and granulocytic differenti-
ation (E-cadherin and RARp) during hematopoietic cell
development. As distinct cellular models we employed
human hematopoietic progenitor CD34+ cells collected
from healthy human blood, the human myeloid leukemia
cell line KG1, whose development is stopped at early stage
of differentiation, and mature human neutrophils.

As presented in Figure 1, the hematopoietic progenitor
CD34+ cells and mature neutrophils (NF) presented
similar demethylation levels of both cell cycle- and
differentiation- regulating genes. However, there were
lower p15, E-cadherin, RAR beta and higher p16 meth-
ylations in human neutrophils than in hematopoietic
progenitor CD34+ cells. The promoters of all genes in-
vestigated were methylated in KG1 cells. Incidentally,
it is known that the INK4 family of proteins p14, pl5
and pl6 function as cell cycle inhibitors by being in-
volved in the inhibition of G1 phase progression. Methy-
lation of the pl5 promoter is a major gene silencing
mechanism in hematological malignancies, while p14 and
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Figure 1 p15, p16, E-cadherin and RARB gene methylation
status during hematopoietic cell development. The methylation/
unmethylation status was evaluated through genomic DNA bisulfite
conversion of examined gene promoter regions, as described in
“Materials and Methods". The products of methylated (Met) and
unmethylated (UnMet) p15, p16, E-cadherin and RARB were
electrophoresed on 3% agarose gel, stained with ethidium bromide,
and photographed. Representative images from one of three
experiments showing similar results are shown.
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p16 promoter methylations often occur in solid tumors, as
well as in leukemia and lymphoma [13,14]. Mizuno and
coworkers [15] demonstrated that DNMT genes were
constitutively expressed, although at different levels, in
T lymphocytes, monocytes, neutrophils, and normal
bone marrow cells. Altered expression of DNMT in
hematopoietic cells could cause an aberrant methyla-
tion/demethylation status of genes in these cells. Using
methylation-specific PCR, it was observed that the p15
gene was methylated in 24 of 33 (72%) cases of pa-
tients with AML. Recently we have also shown, that
the DNMT inhibitor (DNMTI) zebularine alone or in
sequential combination with retinoic acid (RA) de-
creased expression of DNMT1 in KG1 and NB4 cells,
caused partial demethylation of E-cadherin and reex-
pression of pan-cadherin but not the tumor suppressor
p15 [16]. We have also demonstrated [17] that DNMTI
RG108 changed E-cadherin promoter methylation sta-
tus and the levels of the transcript and protein in NB4
cells. When promyelocytic leukemia cells were treated
with RG108 and sodium-4-phenylbutyrate (PB) as single
agents and in combination with RA we found [17-19] that
these treatments cause increased levels of histone H4
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acetylation and methylation of histone H3K4Me3. Both
modifications represent an active chromatin state that
leads to opening of chromatin structure and induces gran-
ulocytic differentiation of human promyelocytic leukemia
cells.

Here, we observed that specific promoter regions of
genes involved in granulocytic differentiation (E-cadherin
and RARf) are highly unmethylated both in hematopoietic
progenitor CD34+ cells and mature neutrophils (Figure 1).
It is known that E-cadherin is functionally involved in the
differentiation process of cells along the erythroid lineage
[20], in CD34+ stem cells and in bone marrow stroma cell
[21], and plays a crucial role in cell-cell aggregation during
development and could promote intercellular interactions
during hematopoiesis. In neutrophils certain promoter re-
gions of E-cadherin are highly unmethylated (Figure 1),
which relates to differentiation stage of hematopoietic
cells.

Corn and others [22] have shown that E-cadherin was
aberrantly methylated in 4 of 4 (100%) leukemia cell lines,
in 14 of 44 (32%) acute myelogeneous leukemias, and in
18 of 33 (53%) acute lymphoblastic leukemias. Methyla-
tion was associated with loss of specific E-cadherin RNA
and protein in leukemia cell lines and primary leukemias.
Following treatment with different DNMTIs like 5-aza-2'-
deoxycytidine [22] or zebularine [16], leukemia cell line
expressed both the E-cadherin transcript and protein.

RARf is an RA-regulated tumor suppressor gene si-
lenced by aberrant DNA methylation in acute promyelo-
cytic leukemia (APL) and other human malignancies
[23,24]. In human leukemia HL-60 and K562 cell lines
RARf gene is silenced [25]. Moreover, using the HDA-
ClIs and DNMTIs (TSA, VPA and 5-Aza-CdR, respect-
ively) has been shown to restore the expression of
silenced RARB [26,27]. In our study we observed that the
RARp methylation/unmethylation ratio in KG1 cells was
balanced and constitutes around 50%, whereas in human
hematopoietic progenitor cells CD34+ and mature neutro-
phils RARS promoter regions were methylated only to
about 25%.

Our results demonstrate that demethylations in spe-
cific promoter regions of p15, p16, E-cadherin and RARf
are common phenomena in normal hematopoietic cells
and corroborate a hypothesis that methylation of these
genes occurs in leukemogenesis.

Distribution of histones, histone variants and
modifications during hematopoietic cell granulocytic
differentiation toward mature neutrophils

Core histones H2A, H2B, H3 and H4 wrap DNA and
affect chromatin condensation levels through both his-
tone and DNA modifications. The chromatin structure
plays an essential role in gene regulation during cell de-
velopment, proliferation, differentiation and apoptosis,
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and core histones as well as linker histone H1 variants
could be important factors for the maintenance of stem
cell pluripotency, DNA condensation and gene expres-
sion regulation [28-30]. Indeed, some of histone variants,
ie. H3.3, H2A.Z, H2A.X and macro H2A play precise
roles in chromatin structure regulation [31].

In our study we examined core histone and linker his-
tone H1 distributions in hematopoietic CD34+ stem cells,
control and induced to granulocytic differentiation mye-
loid leukemia KG1 cells and mature human neutrophils.
Isolated histones were fractionated in an AUT system and
stained (Figure 2) or after fractionation sub-fractionated
with SDS/PAGE (Figure 3). In Figure 2 we show that
linker histone H1 expression decreased during differenti-
ation and is in a low level in mature human neutrophils.
Terme and co-workers [30] have demonstrated that H1
variants are differentially expressed during cell differenti-
ation; here pluripotent cells (ES and iPS4F1) have lower
levels of the histone variant H1.0 and higher levels of the
H1.3 and H1.5 variants, whereas others, ie. H1.2 and
H1.4, did not display any significant changes.

Histone H3 is an important epigenetic target because of
its diverse modification states. In our study we showed
that H3.1 and H3.2 are slightly decreased in CD34+ and
NF in comparison to KG1 cells represented differentiating
hematopoietic cells (Figures 2 and 3). The histone H3
variant H3.3 level did decline only in mature human neu-
trophils (Figures 2 and 3), where an active gene expression
was reduced. It has been shown that H3.3 containing nu-
cleosomes are enriched in active chromatin [32]. Jin and
Felsenfeld [33] have demonstrated that H3.3 may play a
direct role in activation of the chicken folate receptor (FR)
and B-globin genes. As shown in Figures 2 and 3 histones
H2A and H2B did not exibit apparent differences in all
types of examined cells. By contrast the acetylation of his-
tones H3 and H4 was striking in KG1 cells induced to
granulocytic differentiation by HDACI PB and RA [34],
but not with DNMTI RG108 (Figure 2).

Our findings suggest that core histones and their vari-
ants as well as the linker histone H1 distribute diversely
during granulocytic differentiation of hematopoietic cells
and that their distribution reflects the differentiation sta-
tus of hematopoietic cells.

H3 and H4 modifications highlight active chromatin as
being important in hematopoietic differentiation

For evaluation of histone modifications and active chromatin
formation during granulocytic differentiation we investigated
the modification status of H3K4Me3, H3K9Ac, H3K9Ac/
S10Ph and H4 hyperAc histones in human hematopoietic
progenitor CD34+ cells, untreated and treated with PB
as a HDACI or RG108 as a non-nucleoside DNMTI
human myeloid leukemia KG1 cells, and mature hu-
man neutrophils.

Page 4 of 12

4 — Aci
S ——Ac0

N A BR H1

Ac2 H3‘H3.3

H2B

S8BBe
—Ac4 H4

—Ac3
—Ac2

— Acl

saBe—:

Figure 2 Histone distribution in hematopoietic cells. Histones
were isolated from untreated (KG1_C), and treated for 24 h with
25 pM RG108 (KG1_RG) or 6 h with 4 mM PB (KG1_PB) KG1 cells,
human mature neutrophils (NF) and hematopoietic CD34+ stem
cells. Isolated histones were fractionated in an AUT system as
described in the section “Materials and Methods". Representative
images from one of three experiments showing similar results

are shown.

In Figures 4, 5, 6 and 7 we present confocal images of
the fluorescence intensity of histones H3K4Me3 (Figure 4),
H3K9Ac (Figure 5), H3K9Ac/S10Ph (Figure 6) and H4
hyperAc (Figure 7) together with ratios of the median
values of the fluorescent intensities. Total fluorescence in-
tensity for each cell type grouped by class (CD34+,
KG1_C, KG1_PB, KG1_RG, NF) was used for the compu-
tation of median values. The hematopoietic progenitor
CD34+ cells and neutrophils showed very similar histone
modification levels (Figures 5, 6 and 7), except for
H3K4Mes3; the latter is present in transcriptionally active
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Figure 3 Histone variants and their modifications during hematopoietic cell development. Histones were isolated from hematopoietic
CD34+ stem cells, myeloid leukemia untreated (KG1_C), and treated with 4 mM PB for 48 h (KG1_PB) KG1 cells, and human mature neutrophils
(NF). Isolated histones were fractionated in the AUT system (AUT) as described in the section “Materials and Methods" and then analysed with
antibodies against total histone H3 (Anti-H3) or AUT strips were fractionated in SDS/PAGE (SDS). Histones (H1, H2A, H2B, H4), their variants (H3.1,
H3.2, H3.3) and histone H4 acetylation forms (Ac 0, 1, 2, 3, 4) are respectively marked in the images. Representative images from one of three
experiments showing similar results are shown.

chromatin and in neutrophils its level was reduced
(Figure 4). Moreover, it was diminished in control KG1
cells (Figure 4) in comparison with CD34+ cells. H3K9Me3
deregulation in AML is related preferentially to a decrease
of the modifications in core promoter regions. Muller-
Tidow and coworkers [35] have shown that a decrease in
H3K4Me3 levels at CREs was associated with increased
CRE-driven promoter activity in vivo in AML blasts. There
are also widespread changes of H3K9Me3 levels at gene pro-
moters in AML [35]. Paul and coworkers [36] observed that
reactivation of p15INK4b expression in AML cell lines and
patient blasts using 5-aza-2'-deoxycytidine (decitabine) and
Trichostatin A (TSA) increased H3K4Me3 and maintained
H3K27Me3 enrichment at p15INK4b. These data indicate
that AML cells with p15INK4b DNA methylation have
an altered histone methylation pattern compared to

unmethylated samples and that these changes are re-
versible by epigenetic drugs.

We have demonstrated previously [16] that the DNMTI
zebularine induced regional chromatin remodeling by local
histone H4 hyperacetylation and histone H3K4 methylation
in promoter sites of methylated E-cadherin and unmethy-
lated p21 in promyelocytic leukemia NB4 cells. In this study
we also saw increased H3 and H4 acetylated forms both in
control and in treated with HDACI and DNMTI KG1 cells.
Moreover, PB as a HDACI and RG108 as a DNMTI did not
induce KG1 cell differentiation albeit they changed the range
of histones H3 and H4 modifications. The elucidation of the
epigenetic changes in normal hematopoietic cells and mye-
loid leukemia cells induced to differentiate will contribute
towards the clarification of the histone modifications dy-
namics in myeloid cell lineage development.
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Figure 4 Histone H3K4Me3 modification levels in hematopoietic cells. A - Representative confocal images of fluorescence intensity of
histone H3K4Me3 in CD34+ cells (CD34+), KG1 control (KG1_C), KG1 cells treated for 48 h with 4 mM PB (KG1_PB) or 25 uM RG108

(KG1_RG) and human mature neutrophils (NF) from two of three experiments showing similar results; B - 3D profile of fluorescent intensity of
corresponding bottom image from (A); C - Ratios of median values of fluorescent intensities are presented. Total fluorescence intensity of each cell
category (CD34+, KG1_C, KG1_PB, KG1_RG, NF) was used for computation of median values. Ratios represent fold-change (increased intensity - positive

(CD34+ cells). Data is the mean + SD from three independent experiments.

fold-change; decreased intensity - negative fold-change) of KG1_C, KG1_PB, KG1_RG, NF compared to CD34+. The Wilcoxon rank — sum test was used for
statistical analysis: *, P < 0.05; **, P < 0.01; NS — no significant change. The bars represent fold enrichment of the modified histones relative to the control

These histone modifications are capable of affecting
chromatin structure and gene transcription regulation.
Consequently, epigenetic modifiers can be governed in
order to regulate repressed genes in leukemia cells. The
evaluation of histones H3 and H4 modifications (H3K4Me3,
H3K9Ac, H3K9Ac/S10Ph and H4 hyperAc) could be instru-
mental for finding new leukemia biomarkers on an epige-
nome basis.

Conclusions

Evaluation of the methylation status of specific promoter
regions of pl15, p16, E-cadherin and RARf genes, core
and linker histones distribution, histones H3 and H4
modifications (H3K4Me3, H3K9Ac, H3K9Ac/S10Ph and
H4 hyperAc) during hematopoietic cell differentiation
can provide a new basis for identifying chromatin epi-
genetic modulators as targets in the regulation of
hematopoiesis and for leukemia induced differentiation
therapy.

Methods

Cell culture

The human myeloid cells KG1 were cultured in RPMI
1640 medium supplemented with 10% fetal bovine
serum, 100 U/ml penicillin, and 100 pg/ml streptomycin
(Gibco, Grand Island, NY) at 37°C in a humidified 5%
CO, atmosphere. In each experiment, logarithmically
growing cells were seeded into 5 ml of medium at a
density 5 x 10> cells/ml. In the treatment experiments,
cells were exposed to the HDACI 4 mM PB or DNMTI
25 pM RG108 the time indicated.

Separation of mononuclear cells from human blood

Mononuclear cells from whole-blood samples from do-
nors were obtained by buffy coat centrifugation from the
blood bank (Linkoping University Hospital, Sweden), see
also Ethics Statement. The buffy coat (50 ml) was mixed
with 1 vol of 0.9% NaCl and 2 vol of 2% dextran in 0.9%
NaCl and allowed the fluid separation for 40 min at 4°C.
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Figure 5 Histone H3K9Ac modifications during hematopoiesis. A - Representative confocal images of fluorescence intensity of histone
H3KOAC in CD34+ cells (CD34+), KG1 control (KG1_C), KG1 cells treated for 48 h with 4 mM PB (KG1_PB) or 25 uM RG108 (KG1_RG) and human
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image from (A); C - Ratios of median values of fluorescent intensities are presented. Total fluorescence intensity of each cell category (CD34+,
KG1_C, KG1_PB, KG1_RG, NF) was used for computation of median values. Ratios represent fold-change (increased intensity - positive fold-change;
decreased intensity - negative fold-change) of KG1_C, KG1_PB, KG1_RG, NF compared to CD34+. The Wilcoxon rank — sum test was used for statistical
analysis: ¥, P < 0.05; **, P < 0.01; NS — no significant change. The bars represent fold enrichment of the modified histones relative to the control
(CD34+ cells). Data is the mean + SD from three independent experiments.

i i i
KG1_RG NF

The upper layer was collected, centrifuged at 300 x g for
10 min at 4°C, the pellet suspended in cold Krebs-Ringer-
Glucose (KRG) solution without Ca** and slowly trans-
ferred onto a Lymphoprep (Axis Shield, Oslo, Norway)
gradient. After centrifugation at 450 x g for 30 min at 4°C,
cells from the mononuclear layer were collected, diluted
and washed in cold KRG without Ca®* by centrifugation
at 200 x g for 10 min at 4°C. Pelleted erythrocytes were
lysed in cold water for 30 sec following a brief addition of
1:3 vol of 3.4% NaCl and 0.55 vol of KRG without Ca®*.
Mononuclear cells were pelleted, resuspended and washed
twice in PBS by centrifugation at 220 x g for 10 min at
4°C.

Ethics statement

The study was conducted in accordance with the Declar-
ation of Helsinki. Human blood was collected at the
blood bank at Linkoping University Hospital by em-
ployees at the blood bank division and written consent
for research use of donated blood was obtained from all

donors. Since blood donation is classified as negligible
risk to the donors and since only anonymized samples
were delivered to the researchers, the research did not
require ethical approval according to paragraph 4 of
the Swedish Law (2003: 460; http://www.lagboken.se/
dokument/Lagar-och-forordningar/4060/Lag-2003_460-om-
etikprovning-av-forskning-som-avser-manniskor?id=64991)
on Ethical Conduct in Human Research.

Isolation of CD34+ cells

CD34+ cells were isolated with the CD34 MicroBead Kit
according to the manufacturer’s instructions (Miltenyi
Biotec, Germany). Briefly, mononuclear cells were di-
luted with Isolation buffer containing PBS supplemented
with 0.5% BSA and 2 mM EDTA (1:2), and cell clumps
were removed by filtering through 30 pM nylon mesh
(Miltenyi Biotec, Germany). Then cells were counted
and resuspended in Isolation buffer for the up to 10°
total cells. Cells were labeled by adding FcR Blocking re-
agent and CD34 MicroBeads for 30 min at 4-8°C. After
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Figure 6 Histone H3K9Ac/S10Ph modifications during hematopoiesis. A - Representative confocal images of fluorescence intensity of
histone H3K9Ac/S10Ph in CD34+ cells (CD34+), KG1 control (KG1_C), KG1 cells treated for 48 h with 4 mM PB (KG1_PB) or 25 uM RG108
(KG1_RG) and human mature neutrophils (NF) from two of three experiments showing similar results; B - 3D profile of fluorescent intensity of
corresponding bottom image from (A); C - Ratios of median values of fluorescent intensities are presented. Total fluorescence intensity of each cell category
(CD34+, KG1_C, KG1_PB, KG1_RG, NF) was used for computation of median values. Ratios represent fold-change (increased intensity - positive
fold-change; decreased intensity - negative fold-change) of KG1_C, KG1_PB, KG1_RG, NF compared to CD34+. The Wilcoxon rank — sum test
was used for statistical analysis: *, P < 0.05; **, P < 0.01; NS - no significant change. The bars represent fold enrichment of the modified histones
relative to the control (CD34+ cells). Data is the mean + SD from three independent experiments.
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centrifugation at 200 x g for 10 min at 4°C, cell suspen-
sion was applied onto the LS column, unlabelled cell
fraction in the effluent was removed and labeled cells
were separated using MidiMACs separator. The purity
of isolated CD34+ cells was evaluated by flow cytometry
and fluorescence microscopy. Flow cytometric analysis
by the use of Becton-Dickinson FACS (Becton-Dickin-
son FACS Calibur, San Jose, CA) demonstrated a purity
of >65% CD34+ cells. For the analysis of histones, the
nuclear fraction was isolated from 2.5-3 x 10° CD34+
cells; genomic DNA was prepared from about 4 x 10
CD34+ cells.

Isolation of neutrophils from healthy human blood

Defibrinated fresh blood was carefully laid on Polymorph-
prep™ (Nycomed Pharma AS, Oslo, Norway): Lymphoprep
gradient (4:1) and centrifuged in swing-out centrifuge at
600 x g for 45 min at room temperature. The uppermost
layers down to the granulocyte band were aspirated, and

the very diffuse band with granulocytes (neutrophils) col-
lected and diluted with PBS, pH 7.3. After centrifugation
at 600 x g for 10 min at room temperature, erythrocytes
from the pellet were removed by lysis in water as de-
scribed above, the pellet of neutrophils resuspended in
PBS.

Histone isolation and analysis

Cells (5 x 10° to 107) were harvested by centrifugation
at 500 x g for 6 min, washed twice in ice cold PBS, sus-
pended in Nuclei EZ lysis buffer (Sigma, St. Louis, MO)
and nuclei isolated as described by manufacture. For
preparation of histones, isolated nuclei were suspended
in 5 vol. of 0.4 N H,SO, by stirring and incubated over-
night at 0°C. The supernatant was collected by centrifu-
gation at 15,000 xg for 10 min at +2°C and the sediment
was extracted once more. After centrifugation, both extracts
were combined and histones were precipitated by adding 5
vol. of ethanol at —20°C overnight. The precipitated histones
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Figure 7 Histone H4 hyperAc modification during hematopoiesis. A - Representative confocal images of fluorescence intensity of histone H4
hyperAc in CD34+ cells (CD34+), KG1 control (KG1_C), KG1 cells treated for 48 h with 4 mM PB (KG1_PB) or 25 uM RG108 (KG1_RG) and human
mature neutrophils (NF) from two of three experiments showing similar results; B - 3D profile of fluorescent intensity of corresponding bottom
image from (A); C - Ratios of median values of fluorescent intensities are presented. Total fluorescence intensity of each cell category (CD34+,
KG1_C, KG1_PB, KG1_RG, NF) was used for computation of median values. Ratios represent fold-change (increased intensity - positive fold-change;
decreased intensity - negative fold-change) of KG1_C, KG1_PB, KG1_RG, NF compared to CD34+. Wilcoxon rank sum test was used for statistical
analysis: ¥, P <0.05; **, P <0.01; NS - no significant change. The bars represent fold enrichment of the modified histones relative to the
control (CD34+ cells). Data is the mean + SD from three independent experiments.

were collected by centrifugation, washed several times with
ethanol and stored at —20°C until analysis.

Histones (5 pg) were dissolved in a buffer containing
0.9 M acetic acid, 10% glycerol, 6.25 M urea and 5%
B-mercaptoethanol, and separated on 15% polyacryl-
amide gel containing 6 M urea and 0.9 M acetic acid
by using 0.9 M acetic acid as a buffer [37]. Histones
were detected in AUT system (15% polyacrylamide,
6 M urea, 4 mM Triton X-100 and 0.9 M acetic acid)
[38]. After electrophoresis, the gel was stained with
Brilliant Blue G-colloidal (Sigma, St. Louis, MO) or
blots were probed with primary antibodies against
total histone H3 (Abcam, Cambridge PLC.) and sec-
ondary antibodies, or fractionated in SDS/PAGE sys-
tem. Immunoreactive bands were detected by enhanced
chemiluminescence according to the manufacturer’s in-
struction (Western Bright ECL, Advansta Corporation,
Menlo Park, CA).

Bisulfite modification and methylation-specific PCR

The methylation status of gene promoters was deter-
mined with the EZ DNA methylation-Direct™ kit (Zymo
Research, Irvine, CA). Briefly, cells (1-9x10°) were
digested in the reaction mixture with proteinase K at
50°C for 20 min. Bisulfite conversion of DNA was per-
formed according to the manufacturer’s instruction.
Thus after conversion of all unmethylated cytosines to
uracils, the modified DNA was purified using a Zymo-
Spin™ IC column and used for PCR amplification. The
primers, forward (F) or reverse (R), for methylated (M)
and unmethylated (U) promoters of the target genes
were as follows: E-cadherin (MF) 5'- CAA TTA GCG
GTA CGG GGG GC-3', E-cadherin (MR) 5'-CGA AAA
CAA ACG CCG AAT ACG-3'; E-cadherin (UF) 5'-TTA
GTT AAT TAG TGG TAT GGG GGG TGG- 3'; E-
cadherin (UR) 5'-ACC AAA CAA AAA CAA ACA CCA
AAT ACA-3’; p15 (MF), 5'-GCG TTC GTA TTT TGC
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GGT T-3; p15 (MR) 5'-CGT ACA ATA ACC GAA CGA
CCG A-3'; p15 (UF), 5'-TGT GAT GTG TTT GTATTT
TGT GGT T-3’; p15 (UR), 5'-CCA TAC AAT AAC CAA
ACA ACC AA-3'. pl6 (MF), 5'-TTA TTA GAG GGT
GGG GCG GAT CGC -3'; pI6 (MR) 5'-GAC CCC GAA
CCG CGA CCG TAA-3'; pI6 (UF), 5'-TTA TTA GAG
GCT GGG GTG GAT TGT-3'; p16 (UR), 5'-CAA CCC
CAA ACC ACA ACC ATA A-3'. RARB (MF), 5'-GGA
TTG GGA TGT CGA GAA C-3'; RARB (MR) 5'-TAC
AAA AAA CCT TCC GAA TAC G-3'; RARS (UF), 5'-
AGG ATT GGG ATG TTG AGA ATG-3'; RARS (UR),
5-TTA CAA AAA ACC TTC CAA ATA CA-3". Cycling
conditions: 95°C for 5 min, 40 cycles (95°C for 30 s, an-
nealing temperature 66°C (for E-cadherin and pI15 Met),
62°C (for E-cadherin Unmet and p16 Met), 57°C (for p15
and p16 Unmet, RARpP) for 30 s, 72°C for 30 s), 72°C for
10 min. The products were electrophoresed on 3% agarose
gel, stained with ethidium bromide, and photographed.
The product sizes were as follows: for p15, 150 bp; for E-
cadherin, 170 bp, p16, 150 bp, RARS 93 bp. The methyla-
tion status of DNA was determined in duplicate samples
of three independent experiments.

Immunofluorescence labeling and confocal laser scanning
microscopy (CLSM) of cells

Cover-slips with the captured cells were rinsed three times
in phosphate buffer (PBS, pH 7.6) and fixed for 15 min in
phosphate buffer supplemented with 3.3% (w/v) paraformal-
dehyde. Then cells were rinsed three times in PBS, pH 7.6,
and permeabilized with 3.3% Triton X-100 for 15 min. The
cells were blocked with phosphate buffer containing 5% (v/v)
goat serum (DAKO) for 60 min at room temperature. Then,
the cover-slips were rinsed and incubated with the indicated
primary antibodies against H3K4Me3, H3K9Ac, H3K9Ac/
S10Ph (Upstate Biotechnology Inc., Lake Placid, NY) and
anti-cd34"-FITC (Miltenyi Biotec Inc., Bergisch Gladbach,
Germany) for 90 min at 37°C and three times rinsed with
PBS, pH 7.6. Finally, the cover-slips that needed were incu-
bated with secondary antibodies, i.e. Alexa 564-coupled goat
anti-rabbit or Alexa 488-coupled goat anti-rabbit Fab frag-
ments (Molecular Probes, Eugene, OR) at a concentration
15 pg/ml for visualization.

For confocal imaging, we used a Bio-Rad Radiance 2100
and Radiance 2000MP (Carl Zeiss, Jena, Germany). Images
were taken in sequence after inserting the signal enhancing
lenses by activating channel 1 (blue); not used: Mai-Tai laser
(815 nm), with dichroic beam -splitter 500DCLPXR, block-
ing filter BGG22 and emission filter D488/10; channel 2
(green): Argon laser (488 nm), no blocking filter and emis-
sion filter HQ545/40; and channel 3 (red): Argon laser (488
and 514 nm), no blocking filter and the emission filter E600
LP. The microscope was a Nikon Eclipse TE2000U (Tokyo,
Japan), equipped with PlanApo DicH x60 oil immersion
objective (NA 1.40).
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For visualization of modified histones in CD34+,
KG1 and NF three independent biological experiments
were carried out. Through observation of the samples
around 70-80% of the cells displayed a positive mark-
ing of modified histones. Images of representative 4—9
cells from each experiment for each histone modifica-
tion were taken and summarized in the graphs of the
Figures 4, 5, 6 and 7.

Statistical analysis

Data provided by fluorescence image analysis were not
normally distributed, so Wilcoxon rank sum test was
used as nonparametric alternative to the two-sample
t-test used for independent samples. The Wilcoxon
rank — sum test allows a hypothesis test of the equal-
ity of two samples medians. *P <0.05 and **P <0.01
were considered as statistically significant, and NS de-
scribes no significant change. The bar graphs in Figures 4,
5, 6 and 7 represent fold- enrichment of the modified his-
tones relative to the control (CD34+ cells). Data is the
mean + SD from three independent experiments.

Image analysis

In this research, suit of custom image analysis functions
were used. Functions have been implemented in Matlab™
environment (The MathWorks, Natick MA, USA) and
were built based on our prototype for 2-Dimensional
Electrophoresis gel image analysis [39].

The developed tools were used for fluorescent image ana-
lysis, i.e. image preprocessing, segmentation, fluorescent in-
tensity data mining and statistical data analysis. During
image preprocessing Gaussian image smoothing is per-
formed for noise reduction. Purpose of segmentation is to
acquire spot boundary that delineates cell area from back-
ground and other cells. Segmented cell area is used as re-
gion of interest (ROI) for spot volume calculations. During
segmentation, all available cell layers, that were acquired
from microscope, are used. Key tools in segmentation algo-
rithm are symmetrical feature detector and Watershed
transformation. Symmetrical feature detector generates
map of second order symmetries by the use of the Johans-
son method [40]. Watershed transformation is used for
splitting of symmetry map. After isolation of individual
cells, total fluorescent intensity of each cell was obtained.

The protein quantity V in a cell is defined as the total
fluorescent intensity in a segmented region of correspond-
ing cell. The total intensity of an object is the sum of the
intensities of all the pixels that make up the object:

V= 3 Iy)

(2,)ecell

After quantifying all cells, median values of total fluor-
escence intensities of each cell grouped by class were
computed. The ratios between median values represent
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fold-change in protein expression. An increase of fluor-
escent intensity yields a positive fold-change and a de-
crease, accordingly a negative fold-change. Wilcoxon’s
rank sum test was used to evaluate statistically signifi-
cant changes.
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