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Abstract

Background: Oncogenesis in breast cancer is often associated with excess estrogen receptor
o(ERa) activation and overexpression of its coactivators. LRP16 is both an ERc. target gene and an
ERa coactivator, and plays a crucial role in ERa activation and proliferation of MCF-7 breast cancer
cells. However, the regulation of the functional availability of this coactivator protein is not yet
clear.

Results: Yeast two-hybrid screening, GST pulldown and coimmunoprecipitation (ColP) identified
the cytoplasmic intermediate filament protein keratin 18 (KI18) as a novel LRPIé-interacting
protein. Fluorescence analysis revealed that GFP-tagged LRP 16 was primarily localized in the nuclei
of mock-transfected MCF-7 cells but was predominantly present in the cytoplasm of KI8-
transfected cells. Inmunoblotting analysis demonstrated that the amount of cytoplasmic LRP 16 was
markedly increased in cells overexpressing KI8 whereas nuclear levels were depressed.
Conversely, knockdown of endogenous K18 expression in MCF-7 cells significantly decreased the
cytoplasmic levels of LRP16 and increased levels in the nucleus. ColP failed to detect any interaction
between KI8 and ERa, but ectopic expression of KI8 in MCF-7 cells significantly blunted the
association of LRP16 with ERa, attenuated ERo-activated reporter gene activity, and decreased
estrogen-stimulated target gene expression by inhibiting ERa recruitment to DNA. Furthermore,
BrdU incorporation assays revealed that K8 overexpression blunted the estrogen-stimulated
increase of S-phase entry of MCF-7 cells. By contrast, knockdown of K18 in MCF-7 cells significantly
increased ERa-mediated signaling and promoted cell cycle progression.

Conclusions: KI8 can effectively associate with and sequester LRP16 in the cytoplasm, thus
attenuating the final output of ERo-mediated signaling and estrogen-stimulated cell cycle
progression of MCF-7 breast cancer cells. Loss of KI8 increases the functional availability of LRP16
to ERa and promotes the proliferation of ERc-positive breast tumor cells. K18 plays an important
functional role in regulating the ERa signaling pathway.
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Background

Estrogen receptor o (ERa), a member of the nuclear recep-
tor (NR) superfamily of transcription factors, plays a cru-
cial role in the control of epithelial cell proliferation and
mammary gland development [1,2] as well as in the
development and progression of breast cancer [3,4]. Clas-
sically, ERa is activated by estrogen binding, and this
leads to receptor phosphorylation, dimerization, and to
recruitment of coactivators to the estrogen-bound recep-
tor complex [5]. Oncogenesis in breast cancer frequently
involves excessive activation of the ERa. signaling due pri-
marily to overexpression of ERa and/or its coactivators [6-
9]. Factors that affect the balance of ERa and its cofactors
in breast cancer cells can modulate ERa signaling and
thereby alter the cell growth response to estrogen stimula-
tion. Human MCF-7 breast cancer cells express functional
ERa and display estrogen-dependent growth, and have
been widely used as an in vitro model for studying the reg-
ulatory mechanisms of ERa action in estrogen-dependent
breast cancer [10,11].

Most coactivator proteins contain different activation
domains or enzyme activity modules that include classical
histone acetylase, bromo, chromo, Su(var) 3-9, Enhancer
of zeste, Trithorax and ATPase domains, by which coacti-
vators facilitate the assembly of the transcription initia-
tion complex through their chromatin remodeling
activities [12,13]. LRP16 is a member of the macro
domain superfamily with a simple structure compared to
other members because it contains only a single stand-
alone macro module in its C-terminal region [14,15].
LRP16 was previously identified as a target gene for both
ERa and the androgen receptor (AR) [15,16]. The proxi-
mal region (nt-676 to -24) of the human LRP16 promoter
contains a 1/2 ERE/Sp1 site and multiple GC-rich ele-
ments that confer estrogen responsiveness and is suffi-
cient for estrogen action [17,18]. LRP16 protein interacts
with both ERa and AR and enhances their transcriptional
activities in a ligand-dependent manner, thus establishing
a positive feedback regulatory loop between LRP16 and
ERo/AR signal transduction [15,19]. In addition, LRP16
has also been reported to act as a potential coactivator that
amplifies the transactivation of 4 other NRs [15]. Overex-
pression of LRP16 can stimulate the proliferation of MCF-
7 breast cancer cells by enhancing estrogen-stimulated
transcription mediated by ERa [16,19]. Inhibition of
LRP16 gene expression significantly suppresses the prolif-
erative activity and invasiveness of estrogen-responsive
epithelial cancer cells [19,20]. Consistent with findings in
cell culture, a positive correlation was found between
LRP16 mRNA levels and the progression of primary breast
cancers [21]. Although the mechanisms of estrogen regu-
lation of LRP16 expression and the functional role of
LRP16 in ERa-mediated transcriptional regulation are rel-
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atively well characterized, the regulation of the functional
availability of this coactivator protein is unclear.

The cytoskeleton of epithelial cells is predominantly
formed by intermediate filament protein keratins (KRTs)
that are subclassified into type I (acidic, KRT9 through
KRT20) and type II (neutral-basic, KRT1-KRT8) families
[22]. K18 (KRT18) is expressed in single-layer epithelial
cells of the human body and is localized in the cytoplasm
and perinuclear region. In the normal mammary epithe-
lium, K18 is expressed in the luminal cells that represent
the differentiation compartment [23]. K18 has been rec-
ognized for many years as an epithelial marker in diagnos-
tic histopathology [24]. The level of K18 expression has
been inversely associated with the progression of breast
cancer: 25% to 80% of all breast carcinomas exhibit loss
of K18 expression and this is associated with significantly
poorer prognosis [25-30]. Transfection of K18 into ERa-
negative MDA-MB-231 breast cancer cells caused signifi-
cant reduction of malignancy both in vitro and in vivo [31].
Results from cell-culture experiments and clinicopatho-
logical parameter analyses have also revealed a relation-
ship between decreased amounts of K18 in the cytoplasm
and increased proliferative activity of breast cancer cells
[27,28]. These previous studies suggest that K18 plays an
important role in tumor progression in breast cancer
patients, but the molecular mechanisms are poorly under-
stood.

In the present study we first used the yeast two-hybrid sys-
tem to investigate proteins interacting with LRP16. This
revealed that K18 physically interacts with LRP16 through
its C-terminal region. Moreover, K18 binding sequesters
LRP16 in the cytoplasm and prevents its enhancement of
ERa-mediated transcription in MCF-7 cells. Using estro-
gen-responsive MCF-7 cells as a model we have demon-
strated that K18 modulates both estrogen activation of
ERa target genes and cell cycle progression. These results
suggest that loss of K18 expression in ERa-positive breast
cells, and failure of cytoplasmic sequestration of the ERa
coactivator LRP16, may contribute to tumor proliferation
by increasing ERa signaling in the nucleus.

Results

K18 is a novel interactor of LRP16

The yeast two-hybrid system was used to screen for new
polypeptides interacting with LRP16. Sequences from a
MCEF-7 breast cancer cell cDNA library were screened for
binding to LRP16; this identified nine clones correspond-
ing to 12 different potential LRP16-binding proteins. One
such cDNA clone was found to contain a full-length cod-
ing sequence (amino acids 1-430) for the cytokeratin K18.
The specificity of the interaction between LRP16 and K18
was demonstrated by chromogenic assay using X-Gal; no
staining developed using either factor alone or in pairwise
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controls containing only the Gal4 activation domain
(AD) or the Gal4 DNA binding domain (DBD) (Figure 1).

To confirm the specificity of the interaction between K18
and LRP16 we analyzed glutathione S-transferase (GST)
fusion proteins and in vitro-translated proteins by pull-
down assays. GST-LRP16 efficiently bound to in wvitro-
translated 35S-labeled full-length K18 (Figure 2). A series
of K18 deletion constructs were then used in GST pull-
down assays to identify the region within K18 that is
required for LRP16 binding. GST-LRP16 failed to bind to
either K18-N (amino acids 1-150) or K18-F (80-375) but
bound strongly to both K18-C1 (301-430) and K18-C2
(390-430) (Figure 2). We then tested N- and C-terminal
LRP16 deletion constructs for K18 binding. Full-length
K18 polypeptide bound strongly to GST-LRP16-C (amino
acids 161-324) but only weakly to GST-LRP16-N (1-160);
K18 failed to bind to GST alone (Figure 3). Together these
results indicate that the interaction between K18 and
LRP16 is mediated primarily by the C-terminal region of
K18 and the single macro domain of LRP16.

We then used co-immunoprecipitation (CoIP) to confirm
that K18 interacts with LRP16 in mammalian cells. A
pcDNAS3.1 expression vector directing the expression of
LRP16 (pcDNA3.1-LRP16) was transfected into MCF-7
cells; cell lysates were then immunoprecipitated with anti-
bodies directed against either K18 or LRP16. Precipitates
were resolved by gel electrophoresis and probed with anti-

pGBKT7-p534+pGADT7-SV4- large T antigen
pGBKT7-LRP16+pGADT7-K18

Figure |

K18 interacts with LRP16 in yeast cells. Yeast AH109
cells were transformed with the indicated GAL4-DBD (DNA
Binding Domain) and GAL4-AD (Activation Domain) chi-
meric constructs and (-galactosidase activity was measured
by a liquid o-nitrophenyl-B-D-galactoside (ONPG) assay. The
experiment was repeated 3 times, and 2 different yeast trans-
formants were used for each measurement. The interaction
of p53 with SV40 large T-antigen protein provided a positive
control.
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body against LRP16. The empty pcDNA3.1 expression
vector provided a negative control. An intense band corre-
sponding to LRP16 was detected in anti-K18 antibody
immunoprecipitates from LRP16-overexpressing MCF-7
cells (Figure 4A, lane 5). In addition, a weak band corre-
sponding to endogenous LRP16 was detected in anti-K18
immunoprecipitates from vector-transfected MCF-7 cells
(Figure 4A, lane 6). Nonspecific IgG antibody failed to
immunoprecipitate LRP16 (lanes 3 and 4 in Figure 4A).
To confirm the specificity of LRP16-K18 complex forma-
tion we transiently transfected Flag-tagged empty vector or
Flag-K18-C1 (amino acids 301-430) into MCF-7 cells for
ColP assays. As shown in Figure 4B, the exogenous Flag-
K18-C1 and the endogenous LRP16 could be reciprocally
coimmunoprecipitated by use of anti-Flag and/or anti-
LRP16 antibodies. These results confirm that K18 can
bind to LRP16 in MCEF-7 breast cancer cells.

K18 modulates the nucleo-cytoplasmic localization of
LRP16 in MCF-7 cells

K18, a member of the family of intermediate filament
keratins, is localized to the cytoplasm and is not generally
found in the nucleus. By contrast, LRP16 acts as a com-
mon coactivator for the nuclear receptors ERa and AR,
and this implies that LRP16 is present in the nucleus. The
physical association between K18 and LRP16 therefore
suggested the possibility that K18 might modulate the
nucleo-cytoplasmic distribution of LRP16.

To address this possibility we examined whether increased
K18 expression in MCF-7 cells might alter the subcellular
distribution of a LRP16-GFP fusion protein. As expected
for a nuclear protein, LRP16-GFP fluorescence was found
primarily in the nucleus, and nuclear fluorescence was
detected in 78% of GFP-positive cells; cytoplasmic fluo-
rescence was only detected in 22% of GFP-positive cells
cotransfected with empty vector (Figure 5A and 5C).
However, the distribution was reversed when cells
expressing LRP16-GFP were cotransfected with a construct
directing the expression of K18. Here nuclear fluorescence
was detected in only 32% of GFP-positive cells whereas
68% exhibited cytoplasmic localization (Figure 5B and
5C). These results suggest that the ectopic expression of
K18 can sequester LRP16 into cytoplasm.

To further confirm this finding transfected cells were phys-
ically separated into cytoplasmic and nuclear fractions
and the distribution of LRP16 was analyzed by immuno-
blotting. MCF-7 cells were transfected with a K18 expres-
sion construct, Flag-K18, or with empty vector, and total,
cytoplasmic and nuclear extracts were analyzed using anti-
body to LRP16. As shown in Figure 6A, total LRP16 pro-
tein levels were not altered by ectopic expression of K18 in
MCEF-7 cells; by contrast, K18 expression significantly
increased LRP16 levels in the cytoplasm and reduced the
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Figure 2

K18 interacts with LRP 16 protein by its C-terminal region mediation. Top panel, schematic illustration of K18 and its
mutants. GST-pulldown assays were performed with in vitro-translated [35S]-labeled K18 and its mutants in the presence of
GST-LRP16 fusion protein (bottom panel). GST protein was used as a control. KI8-Cl was run on a 21% SDS-PAGE gel; the
others were run on 12% gels.
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Figure 3

LRP16 interacts with K18 by its macro domain mediation. Left panel schematic illustration of LRPI6 and its mutants.
Middle panel, Coomassie blue-stained GST, GST-LRP16-N and GST-LRP16-C. Right panel, GST alone, GST-LRP |6 mutants or
GST-LRP16 were used to pull down full-length KI8.
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Figure 4

K18 interacts with LRP16 protein in vivo. A, MCF-7
cells were transfected with the LRP16 expression vector or
empty vector. Cell lysates were immunoprecipitated (IP) and
immunoblotted (IB) with the indicated antibodies. B, MCF-7
cells were transfected with Flag-tagged K18-CI| (301-430 aa)
expression vector or the corresponding empty vector. Cell
lysates were immunoprecipitated and immunoblotted with
the indicated antibodies.

proportion present in the nucleus, a finding consistent
with K18 sequestration of LRP16 in the cytoplasm.

To address whether endogenous K18 polypeptide also
sequesters LRP16 in the cytoplasm we studied the effects
of inhibiting endogenous K18 expression on the distribu-
tion of LRP16. Three different small interfering RNA
(siRNA) duplexes directed against human K18 mRNA,
siRNA361, 609 and 908, were designed and transfected
into MCF-7 cells; levels of LRP16 in the total, nuclear, and
cytoplasmic fractions were measured by immunoblotting
as before. Levels of K18 polypeptide were significantly
reduced by transfection with all three K18 siRNAs as com-
pared to cells transfected with a control siRNA; knock-
down activity declined in the order siRNA361, 609, 908
(Figure 6B). None of the siRNAs affected the total levels of
LRP16, but knockdown of endogenous K18 expression
with the three siRNAs led to a significant and graded
decrease in cytoplasmic LRP16 levels and a corresponding
graded increase in nuclear levels (Figure 6B). Similar
effects of K18 overexpression and knockdown on the sub-
cellular distribution of endogenous LRP16 protein were
also observed in human cervical cancer Hela cells (data
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not shown). Together these data indicate that endogenous
K18 sequesters LRP16 in the cytoplasm.

K18 binding to LRP16 modulates ER signaling

Our previous studies demonstrated that LRP16 is a coacti-
vator of ERa in the nucleus and that knockdown of LRP16
in MCF-7 cells can significantly attenuate estradiol (E2)-
stimulated ERa signaling [19]. Because K18 can sequester
LRP16 from the nucleus into the cytoplasm it is possible
that K18 expression might modulate ERa signaling. To
explore this possibility we assayed E2-activation of a con-
struct in which expression of a luciferase gene (Luc) is
under the control of three estrogen-response elements
(EREs). Cotransfection of MCF-7 with the 3x ERE-TATA-
Luc reporter construct and with ERa and the pcDNA3.1
empty vector revealed background luciferase activity (Fig-
ure 7A, lane 1). Reporter gene activity increased by 2.3-
fold on treatment with E2 (100 nM) (Figure 7A, lane 2).
However, activation was significantly attenuated by
cotransfection with a construct directing K18 expression
(Figure 7A, lane 3). Consistent with our previous report
[19], the E2-activated reporter system was further aug-
mented by LRP16 transfection (Figure 7A, lane 4), but this
LRP16-enhanced reporter gene activity was also markedly
impaired by cotransfection with the K18 expression con-
struct (Figure 7A, lane 5). Comparison of reporter gene
activities in lanes 3 and 5 revealed that K18 suppression of
E2-stimulated ERa transcriptional activity was efficiently
antagonized by overexpression of LRP16. We next used
RNA interference in the cotransfection system to explore
K18 suppression of reporter gene expression in MCF-7
cells. siRNA directed against K18 was found to enhance
ERa-mediated transactivation in the presence of E2. In the
absence of E2, however, knockdown of endogenous K18
failed to increase reporter gene expression (Figure 7B).
Furthermore, ColP analysis revealed that ectopic K18
expression in MCF-7 cells markedly attenuated the associ-
ation of ERa with LRP16; there was no evidence for any
direct interaction between K18 and ERa (Figure 7C, left
panel). Consistent with our previous observations [19],
E2 stimulation enhanced the interaction between LRP16
and ERa but had no effect on the interaction between K18
and LRP16 (Figure 7C, right panel). Together these results
indicate that K18 can suppress E2-stimulated ERa transac-
tivation by blunting the binding of LRP16 to ERa.

To address whether K18 affects E2 induction of ERa. target
genes in MCF-7 cells we used quantitative PCR to measure
mRNA expression levels of the pS2, cyclin D1, and c-Myc
genes whose expression is known to be E2-regulated in
MCEF-7 cells [19]. As shown in Figure 8A, E2 treatment
produced a marked increase in the mRNA levels of pS2,
cyclin D1, and c-Myc but not of the control gene HPRT.
However, this induction was attenuated by overexpres-
sion of K18. Overexpression of LRP16 efficiently relieved
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K18+LRP16-GFP

K18 sequesters LRP16-GFP fusion protein in the cytoplasm from nucleus. A, B, C, The LRP16-GFP expression vec-
tor was transfected or cotransfected with K18 into MCF-7 cells and the proportion of cells displaying LRP16-GFP in the
nucleus was determined. All experiments were performed in triplicate and were repeated at least 3 times; the results are
expressed as mean = SEM. A and B show representative fluorescence patterns.

K18 inhibition of E2-induced expression of these target
genes. We next analyzed E2 induction of these target genes
in MCF-7 cells transfected with K18 siRNAs. As shown in
Figure 8B, knockdown of endogenous K18 expression
greatly increased the level of E2-induced up-regulation of
pS2, cyclin D1, and ¢c-Myc mRNA.

To confirm that the effects of K18 are mediated at the tran-
scriptional level we used chromatin immunoprecipitation
(ChIP) assays to analyze ERa recruitment at the pS2 pro-
moter region. As shown in Figure 8C, ERa binding at the
pS2 promoter was significantly increased in the presence
of E2, but binding was substantially blunted by overex-
pression of K18.

We previously reported that knockdown of LRP16 can
markedly inhibit E2-stimulated growth of MCEF-7 cells
[19]. To determine whether the K18-LRP16 association

might modulate the E2-stimulated transition from the G1
to S phase of the cell cycle, MCF-7 cells were transfected
with constructs directing the expression of K18 and/or
LRP16 as well as with a GFP expression plasmid. The
extent of DNA synthesis was assessed by incorporation of
BrdU into GFP-positive cells. As shown in Figure 9A (lane
1), S-phase entry was 13% greater in E2-treated cells than
in control cells (lane 2), whereas in cells transfected with
a construct expressing K18 there was only a 4% increase in
S-phase entry in K18-transfected cells (lane 3). Further-
more, overexpression of LRP16 substantially increased
E2-stimulated S-phase entry (lane 4); however, this
increase was blocked by K18 overexpression (lane 5). We
next performed BrdU incorporation assays on MCF-7 cells
transfected with K18 siRNA. As shown in Figure 9B, trans-
fection of K18-specific siRNAs greatly increased E2-pro-
moted S-phase entry compared to controls. Together these
data indicate that, by sequestering LRP16 in the cyto-
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Differential expression of K18 regulates the nucleo-
cytoplasmic distribution of the endogenous LRP16
protein in MCF-7 cells. A, MCF-7 cells were transiently
transfected with Flag-tagged K18. Total, nuclear and cyto-
plasmic proteins were extracted 48 h after transfection and
were subjected to immunoblotting analysis with the indicated
antibodies. B, MCF-7 cells were transiently transfected with
K18-specific siRNAs or the control siRNA. Total, nuclear
and cytoplasmic proteins were extracted 48 h after transfec-
tion and were subjected to immunoblotting analysis with the
indicated antibodies. -actin was used as a loading control for
total protein extracts and cytoplasmic extracts. Transcrip-
tion factor Sp| expressed constitutively in the nucleus was
used as a loading control for nuclear protein extracts.

plasm, K18 can effectively inhibit estrogen-promoted cell-
cycle progression of estrogen-sensitive MCF-7 breast can-
cer cells.

Discussion

Regulation of transcription factor and cofactor activity by
subcellular compartmentalization is well documented
[32-34]. A common mechanism is sequestration of the
factor into inactive compartments, and this typically takes
place via direct or indirect association with the cytoskele-
ton [35-38]. LRP16 is a new type of ERa coactivator that
augments the receptor's transcriptional activity in a lig-
and-dependent manner and can have a profound impact
on the final output of cellular signaling [19]. LRP16 is
though to modulate ERa activity in the nucleus; in the
present paper we have confirmed that a LRP16-GFP fusion
protein localizes primarily to MCF-7 cell nuclei. We also
report a new LRP16 ligand, K18, identified by yeast two-
hybrid screening. K18 is a member of the family of inter-
mediate filament proteins that contribute to cytoskeletal
architecture. In the present study we report that K18 binds
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to and sequesters LRP16 in the cytoplasm, thus preventing
its nuclear action and attenuating both E2-induction of
ERa target genes and E2-stimulated cell cycle progression
of MCEF-7 cells. These findings underscore the functional
role of K18 in regulating the ERa signaling pathway.

LRP16, a member of the macro domain protein super-
family, contains a single stand-alone macro module in its
C-terminal region [14,15]. We recently demonstrated that
LRP16 is a non-redundant coactivator of both ERa and AR
[15,19]. LRP16 was also able to interact with another 4
nuclear receptors (NRs) in vitro, including estrogen recep-
tor B(ERP), the glucocorticoid receptor, and peroxisome
proliferator-activated receptors o and y, and can efficiently
amplify the transactivation of these NRs in a ligand-
dependent manner [15]. Our finding that K18 binds to
and sequesters LRP16 in the cytoplasm suggests that dif-
ferential tissue expression of K18 could constitute a new
layer in the regulatory cascade of signaling pathways in
which LRP16 participates.

Keratins (KRTs) provide mechanical stability to tissues, as
evidenced by the range of pathological phenotypes seen
in patients bearing mutations in epidermal keratins [39].
The intermediate filament network in simple glandular
epithelial cells predominantly consists of heterotypic
complexes of KRTs K8 and K18. Additional evidence for a
more widespread role of KRTs comes from mouse gene
knockout studies. Double deletion of the genes encoding
K18 and K19 results in complete loss of a functional
cytokeratin skeleton and embryonic lethality [40]. The
assembly of intermediate filament involves several steps
during which the a-helical rod domain of the cytokeratin
molecules plays a central role [41-43]. The head and the
tail domains are not thought to be part of the filamentous
backbone, and instead these protrude laterally and con-
tribute to profilament and intermediate filament packing
and to intermediate filament interaction with other cellu-
lar components [44-46]. By associating with signal trans-
duction factors K18 may modulate both intracellular
signaling and gene transcription. For example, K18 is
known to bind specifically to the tumor necrosis factor
(TNF) receptor type 1(TNFR1)-associated death domain
protein (TRADD) through its N-terminal region and pre-
vent TRADD from binding to activated TNFR1, thus atten-
uating TNF-induced apoptosis in simple epithelial cells
[44].

We report here that K18 binding to LRP16 is primarily
mediated by the C-terminal region of K18 and the single
macro domain of LRP16. We used two independent
approaches, including subcellular localization analysis of
GFP-tagged LRP16 and cytoplasmic/nuclear LRP16 pro-
tein expression analyses, to demonstrate that ectopic K18
expression in MCF-7 cells sequesters LRP16 in the cyto-
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Figure 7

K18 modulates E2-activated reporter gene activity and the binding of LRP16 to ERa in MCF-7 cells. A, MCF-7
cells were grown in phenol-red free media stripped of steroids for at least 3 days, then cotransfected with 3XERE-TATA-Luc
reporter, ERo expression vector and the indicated vectors. 36 h after transfection, cells were treated with E2 (100 nM) or
dimethyl sulphoxide (DMSO) for 6 h before luciferase assay. The relative luciferase activity levels were normalized by use of
mock effector transfection and arbitrarily assigned a value of |. All experiments were performed in triplicate and were
repeated at least 3 times; results are expressed as means * SEM. *, P < 0.05. B, MCF-7 cells were grown in phenol red-free
media stripped of steroids for at least 3 days, then cotransfected with the indicated siRNA oligonucleotides, 3x ERE-TATA-Luc
reporter and the ERa expression vector. 42 h after transfection, cells were treated with E2 (100 nM) or vehicle (DMSO) for 6
h before luciferase assay. Relative luciferase activity levels were normalized to transfections with control siRNA and were arbi-
trarily assigned a value of |. All experiments were performed in triplicate and were repeated at least 3 times; results are
expressed as means + SEM. C, MCF-7 cells were transiently transfected with K18 expression vector or the corresponding
empty vector. Cell lysates were immunoprecipitated and immunoblotted with the indicated antibodies (left panel). MCF-7 cells
were cultured in phenol-red free media stripped of steroids for at least 3 days, then treated with E2 (100 nM) for | h and sub-
jected to ColP analysis by the use of the indicated antibodies (right panel). Ns-IgG, non-specific IgG.
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Figure 8

K18 modulates E2-stimulated expression of ERa target genes and the recruitment of ERa to its target DNA in
MCF-7 cells. A, MCF-7 cells were grown in phenol-red free media stripped of steroids for at least 3 days, then cotransfected
with the indicated vectors and cultured for the indicated times. Before total RNA was extracted, the cells were treated with E2
(100 nM) or vehicle (DMSO) for | h. Expression of the indicated transcript abundance was analyzed by quantitative RT-PCR
(qPCR). HPRT was used as the internal control. All experiments were repeated at least 3 times; results are expressed as means
x SEM. B, MCF-7 cells were grown in phenol-red free media stripped of steroids for at least 3 days, then cotransfected with
the indicated siRNAs. After 47 h, cells were treated with E2 (100 nM) or vehicle (DMSO) for | h and were subjected to qPCR
analysis. Transcript abundance was analyzed by qPCR. HPRT was used as the internal control. All experiments were repeated at
least 3 times; results are expressed as means + SEM. C, MCF-7 cells, grown in phenol-red free media stripped of steroids, were
transiently transfected with K18 expression vector or empty vector. 40 h post-transfection, cells were treated with E2 (100
nM) for | h and were subjected to ChIP analyses with the indicated antibodies.

plasm. Conversely, knockdown of K18 gene expression
increased the nuclear localization of LRP16. By binding to
and sequestering LRP16 in the cytoplasm, K18 prevents
the nuclear action of LRP16 and attenuates ERa. signaling,
thus blunting estrogen-stimulated cell-cycle progression
of ERa-positive breast cancer cells.

Accumulating evidence from clinicopathological observa-
tions has shown that the level of K18 gene expression cor-

relates inversely with the progression of breast cancer [25-
31,47]. Several reports have proposed that downregula-
tion of K18 might increase the invasiveness of breast can-
cer cells [25-30,47]. It was previously demonstrated that
overexpression of K18 in the ERoa-negative and highly
invasive MDA-MB-231 breast cancer cell line caused a
marked reduction in the aggressiveness of the cells in vitro
and in vivo but had no significant effect on cell growth
rate. This change was accompanied by complete loss of
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Figure 9

K18 modulates E2-promoted cell cycle progression
of MCF-7 cells. A, MCF-7 cells were grown in phenol-red
free media stripped of steroids for at least 3 days, then tran-
siently cotransfected with the indicated vectors. The pEGFP-
NI plasmid was included to identify transfected cells. After
36 h, cells were treated with or without E2 (100 nM) for an
additional 12 h, then labeled with BrdU (10 uM) for 2 h and
immunostained for BrdU with a Cy3-conjugated secondary
antibody. Cells were assessed for GFP and BrdU, and the
proportion of transfected cells positive for BrdU was scored.
B, MCF-7 cells were grown in phenol-red free media
stripped of steroids for at least 3 days, then transiently
cotransfected with the indicated siRNA duplexes. After 36 h,
cells were treated with or without E2 (100 nM) for an addi-
tional 12 h and assessed for BrdU incorporation as in A. All
experiments in A and B were performed in triplicate and
were repeated at least 3 times; results are expressed as
means + SEM.

the previously strong vimentin expression in the parent
cell line and upregulation of adhesion proteins such as E-
cadherin [31]. However, experimental studies and clinico-
pathological observations also revealed a significant asso-
ciation between K18 expression and the proliferation rate
of breast cancer cells. Analysis of the association between
K18 expression and different clinicopathological risk fac-
tors revealed that K18 expression is highly and signifi-
cantly correlated with size (pT1-3), differentiation grade,
and mitotic index of the primary tumor [27]. These
parameters are a function of the proliferation rate of the
primary tumor, and this suggests that there is a relation-
ship between downregulation of K18 expression and
increased proliferative activity. In addition, the expression
of the proliferation-associated antigen Ki-67 is signifi-
cantly associated with the downregulation of K18 in a
subset of primary breast carcinomas [27]. Moreover, cell
culture experiments on bone-marrow micrometastases of
breast cancer have indicated that most proliferating tumor
cells lack detectable expression of K18 protein [28]. These
previous data suggested that K18 might make an impor-
tant contribution to tumor metastasis as well as to tumor
cell growth. In the present study we have demonstrated
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that, by blunting estrogen-stimulated ERa. signaling activ-
ity, K18 can significantly suppress the growth response of
MCEF-7 cells to estrogen. We propose that the regulatory
mechanism of ERa transactivation by the K18-LRP16
association might explain in part the relationship between
K18 downregulation and increased proliferative activity of
breast cancers. However, K18 loss is also associated with
the metastasis of ERa-negative breast cancers (47), and it
therefore appears likely that K18 can modulate breast can-
cer progression by more than one mechanism.

Oncogenesis in breast cancer commonly involves excess
activation of ERa signaling. We previously reported that
LRP16 mRNA is overexpressed in nearly 40% of all pri-
mary breast cancer samples [21]. LRP16 overexpression in
breast cancer cells is tightly linked with cell proliferation
and enhanced ERa activation [16,19,21]. As a functional
suppressor of LRP16, K18 is frequently absent from differ-
ent types of breast carcinoma [25-30]. Excess activation of
ERa function in tumor cells is commonly mediated by
overexpression of ERa and/or its coactivators including
LRP16 [6-9,21]. We now propose a further level of regula-
tion that can modulate ERa function in breast cancer. Loss
of K18 from ERa-positive breast tumor cells releases the
functional activity of LRP16, and is thus likely to promote
tumor cell proliferation. Tests that evaluate the subcellular
localization of LRP16 in ERa-positive breast tumor cells
therefore have potential in the categorization of different
clinopathological stages.

Conclusions

In summary, these findings provide evidence that K18
binding to LRP16 leads to cytoplasmic sequestration of
LRP16. By determining the nuclear availability of the
receptor coactivator LRP16, K18 can not only modulate
the transcriptional activity of ERa in response to estrogen
but can also govern estrogen-stimulated cell cycle progres-
sion of MCF-7 cells. Loss of K18 from ERa-positive breast
tumor cells releases the functional activity of LRP16, and
such loss is thus likely to promote tumor proliferation.
These findings underscore a functional role for K18 in reg-
ulating the ERa signaling pathway.

Methods

Chemicals, cell lines and small interfering RNA (siRNA)
17p-estradiol (E2) was purchased from Sigma (St Louis,
MO, USA). Steroid-deprived serum was prepared as
described previously [18]. Phenol-red free Dulbecco's
modified Eagle's medium (DMEM) was from the Institute
of Basic Medicine, Beijing Union Hospital (Beijing). MCF-
7 cells were originally obtained from the American Type
Culture Collection (ATCC, Rockville, MD, USA) and cul-
tured according to ATCC instructions. Duplexes of K18
specific siRNAs 361 (sense strand, 5'-GACCAT-
GCAAAGCCTGAAC-3"), 609 (sense strand, 5'-GAGT-
CAAGTATGAGACAGA-3') and 908 (sense strand, 5'-
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GAGGAGCTAGACAAGTACT-3') were chemically synthe-
sized by Shanghai GeneChem Co. (Shanghai). The unre-
lated  siRNA  sequence (sense  strand, 5'-
GACGAACGTGTCACGTATC-3') was used as a control.

Plasmids

The pcDNA3.1-LRP16 and the pcDNA3-Flag plasmid
were described previously [15]. The human ERa expres-
sion vector pSG5-hERa was kindly provided by Dr.
Hajime Nawata (Kyushu University, Japan). The reporter
3x ERE-TATA-Luc was provided by Prof. Donald P.
McDonnell (Duke University Medical Center, Durham,
NC, USA). The LRP16-GFP fusion expression vector was
constructed by inserting the full-length LRP16 cDNA at
the Kpnl and BamHI sites of the pEGFP-N1 vector. The
yeast expression plasmid pGBKT7-LRP16 (Gal4 BD:bait
gene fusion) was generated by inserting the full-length
LRP16 cDNA in-frame at the EcoRI site of pGBKT7. To
generate the GST-LRP16 fusion plasmid and its mutants
GST-LRP16-N (1-160) and GST-LRP16-C (161-324) the
corresponding fragments were PCR-amplified and
inserted at the EcoRI/HindllII sites of plasmid pGEX-6p-1
(Amersham Biosciences, Freiburg, Germany). The full-
length coding region of human K18 was amplified from
GAL4 AD:K18 (pGADT7-K18) and then cloned at the
BamHI/EcoR1 sites of pcDNA3.1. To generate K18 deletion
mutants K18-N (amino acids 1-150), K18-F (80-375),
K18-C1 (301-430) and K18-C2 (390-430), the corre-
sponding fragments were PCR-amplified and inserted at
the EcoRI/Xhol sites of the pcDNA3.1 or pcDNA3-Flag vec-
tors.

Generation of the cDNA library and yeast two-hybrid
screening

Total RNA from MCF-7 cells was extracted using TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) and a cDNA
library was generated using the BD SMART™ kit (Clon-
tech, Palo Alto, CA, USA) according to the manufacturer's
instructions. Yeast two-hybrid screening for the identifica-
tion of LRP16-interacting proteins involved the MATCH-
MARKER two-hybrid system 3 kit (Clontech) according to
the manufacturer's instructions.

GST pull-down assay

GST and GST fusion proteins were prepared as described
previously [15]. 35S-labeled proteins were produced with
use of a TNT-coupled in vitro transcription and translation
system (Promega Corporation, Madison, WI, USA) with
the expression vector K18 and its derivatives in
pcDNA3.1.

Extraction of cytoplasmic/nuclear proteins, co-
immunoprecipitation (ColP) and immunoblotting

Cells were cultured in 10 cm dishes and transfected with
expression vectors or siRNA duplexes. 48 h after transfec-
tion, cells were harvested and lysed for CoIP or immuno-
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blotting assays. Extraction of total, cytoplasmic, or nuclear
proteins employed the ReadyPrep™ protein extraction kit
(Bio-Rad Laboratories, Hercules, CA, USA) according to
the instruction manual supplied by the manufacturer. For
ColP assays, cells were lysed in 500 pl lysis buffer (20 mM
Tris [pH 7.4], 50 mM NaCl, 1 mM EDTA, 0.5% NP-40,
0.5% SDS, 0.5% deoxycholate, and protease inhibitors).
To efficiently solubilize keratins, cells were treated with
2% Empigen BB (Sigma) as described previously [48].
Lysate aliquots (500 pg; 1 pg/ul) were precleared with 50
pl of protein A-Sepharose beads (Upstate Biotechnology,
Lake Placid, NY, USA) for 2 h at 4°C. Appropriate
amounts of rabbit anti-LRP16, rabbit anti-Flag (Sigma),
rabbit anti-ERo(Santa Cruz Biotechnology, Santa Cruz,
CA, USA) or rabbit nonspecific IgG (Clontech) was then
added and incubated overnight at 4°C. Preblocked agar-
ose beads (100 pl) were then added to the antibody/lysate
mixture and incubation was continued for a further 2 h at
4°C. After washing (3x), bound proteins were eluted in
SDS sample buffer, resolved by SDS-PAGE, and analyzed
by immunoblotting. The rabbit and mouse anti-LRP16
antibodies were as described previously [15]. Antibodies
used for immunoblotting were mouse anti-K18 (Abgent,
San Diego, CA, USA), mouse monoclonal anti-Flag
(Sigma), rabbit anti-ERa, mouse anti-Sp1 and rabbit anti-
B-actin (Santa Cruz Biotechnology).

Quantitative analysis of LRP16-GFP subcellular
localization

MCEF-7 cells were grown in 35 mm culture dishes and
cotransfected with LRP16-GFP and K18 or pcDNA3 empty
vector. 24 h after transfection cells were fixed with 3% for-
maldehyde (15 min) and nuclei were counterstained with
4',6'-diamidino-2-phenylindole dihydrochloride (DAPI).
Cells were visualized under an inverted fluorescence
microscope (IX-71; Olympus) equipped with a digital
camera. The proportion of cells displaying LRP16-GFP in
the nucleus was determined by counting at least 500 cells
from each plate. The means and SEM were calculated from
3 separate plates from 3 independent experiments.

Luciferase assays

MCF-7 cells were cultured in phenol-red free media
stripped of steroids for at least 3 days and were then
seeded into 35 mm culture dishes. Cells at 50% conflu-
ence were cotransfected by use of Superfect (Qiagen,
Valencia, CA, USA). Cells were cotransfected with 0.5 pg
of the reporter construct and 0.25 pg of ERa- and/or 0.5
pg of K18- or LRP16-expression vectors. Cotransfaction
with plasmid pRL-SV40 (1 ng/per well) was used to con-
trol for transfection efficiency. Total DNA was adjusted to
2 ug per well with pcDNA3.1 empty vector. 36 h after
transfection cells were treated with or without E2 (100
nM), cultured for a further 6 h, and cell extracts were pre-
pared and relative luciferase activities were measured as
described previously [19]. For knockdown experiments, 1
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pg of siRNA duplexes, 0.5 pg of the reporter construct,
0.25 pg of the ERa-expression construct and 1 ng of pRL-
SV40 were cotransfected using Lipofectamine 2000
according to the manufacturer's recommendations (Invit-
rogen). The total amount of nucleotides was adjusted to 4
ug per well with pcDNA3.1 empty vector. 42 h after trans-
fection cells were treated with or without E2 (100 nM)
and cultured for a further 6 h, harvested, and the relative
luciferase activity was measured as described previously
[19].

Quantitative RT-PCR (qPCR)

Total RNA was extracted with use of TRIzol reagent (Invitro-
gen) and qPCR analysis was performed as described previ-
ously [15]. cDNA was prepared by use of Superscript II
RNase H-reverse transcriptase (Invitrogen) and 1-2 ug total
RNA. The optical density was measured and equal amounts
of cDNA were used in a normalization reaction with primers
for HPRT. Oligonucleotide primers were as follows: HPRT
sense, 5 TTGCTCGAGATGTGATGAAAGGA-3'; HPRT anti-
sense, 5 TTCCAGTTAAAGTTGAGAGATCA-3'; pS2 sense, 5'-
ATGGCCACCATGGAGAACAA-3'; pS2 antisense, 5'-
TAAAACAGTGGCTCCTGGCG-3'; cyclinD1  sense, 5'-
CTGGCCATGAACTACCTGGA-3'; cyclinD1 antisense, 5'-
GTCACACTTGATCACTCTGG-3'; c-Myc sense, 5'-GACTATC-
CTGCTGCCAAGAG; and c¢c-Myc antisense, 5'-TCGCCTCIT-
GACATTCTCCT-3'. Reactions were run on a LightCycler
(Roche, Indianapolis, IN, USA). Experiments were per-
formed in triplicate and repeated at least 3 times.

Chromatin immunoprecipitation (ChIP) assays

MCEF-7 cells (1 x 10°) were grown in 10 cm tissue culture
plates in phenol-red free DMEM supplemented with 10%
(v/v) steroid-depleted FBS. After 24 h the cells were trans-
fected with 10 pg of pcDNA3.1-K18 or empty vector DNA
using the Superfect reagent. 40 h later, transfected cells
were treated with E2 (100 nM) for 1 h and were then ana-
lyzed by ChIP. Briefly, immunoprecipitation was carried
out overnight at 4°C with ERa (Santa Cruz Biotechnol-
ogy) antibody or nonspecific IgG antibody. DNA frag-
ments were purified with use of a QIAquick Spin Kit
(Qiagen). The presence of target gene promoter sequences
in both input and recovered DNA immunocomplexes was
detected by PCR. The promoter region (nt -353 to -30) of
the pS2 gene was amplified.

G|1IS checkpoint assay

MCEF-7 cells were cultured in phenol-red free medium
stripped of steroids for at least 3 days, and were then
seeded in 35 mm culture dishes and cotransfected with
plasmids pcDNA3.1, pcDNA3.1-K18 and/or pcDNA3.1-
LRP16 or K18-siRNA/control-siRNA. A vector expressing
enhanced green fluorescent protein (EGFP) was used to
identify transfected cells as described previously [49].
After 36 h, cells were treated with or without E2 (100 nM)
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for a further 12 and were then labeled with 10 uM BrdU
for 2 h. Immunostaining was performed using anti-BrdU
antibody (Becton Dickinson, Franklin Lakes, NJ, USA).
The ratios of BrdU and EGFP double-positive cells to
EGFP-positive cells were determined using an Olympus
fluorescence microscope. At least 350 cells from each
plate were counted. The means and SEM were calculated
from 3 separate plates from 3 independent experiments.

Statistical analysis

Results were expressed as the means + standard error of
the mean (SEM). Statistical analysis involved use of
Statview 5.0 software. P < 0.05 was considered statistically
significant.
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