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Abstract

Background: Multiple profilin isoforms exist in mammals; at least four are expressed in the
mammalian testis. The testis-specific isoforms profilin-3 (PFN3) and profilin-4 (PFN4) may have
specialized roles in spermatogenic cells which are distinct from known functions fulfilled by the
"somatic" profilins, profilin-1 (PFN1) and profilin-2 (PFN2).

Results: Ligand interactions and spatial distributions of PFN3 and PFN4 were compared by
biochemical, molecular and immunological methods; PFNI and PFN2 were employed as controls.
B-actin, phosphoinositides, poly-L-proline and mDia3, but not VASP, were confirmed as in vitro
interaction partners of PFN3. In parallel experiments, PFN4 bound to selected phosphoinositides
but not to poly-L-proline, proline-rich proteins, or actin. Inmunofluorescence microscopy of PFN3
and PFN4 revealed distinct subcellular locations in differentiating spermatids. Both were associated
first with the acroplaxome and later with the transient manchette. Predicted 3D structures
indicated that PFN3 has the actin-binding site conserved, but retains only approximately half of the
common poly-L-proline binding site. PFN4, in comparison, has lost both, polyproline and actin
binding sites completely, which is well in line with the experimental data.

Conclusion: The testis-specific isoform PFN3 showed major hallmarks of the well characterized
"somatic" profilin isoforms, albeit with distinct binding affinities. PFN4, on the other hand, did not
interact with actin or polyproline in vitro. Rather, it seemed to be specialized for phospholipid
binding, possibly providing cellular functions which are distinct from actin dynamics regulation.

Background review, see [5]). Their ubiquity, abundance, and necessity
Profilins are small, ~ 14-kDa intracellular proteins which ~ for life in higher organisms underscore their general
are crucial for actin microfilament dynamics ([1-4]; for ~ importance ([6]; for review, see [7]). Despite their small
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size, their functions are amazingly diverse. Through bind-
ing to numerous protein ligands, profilins are compo-
nents of complex protein networks (for review, see [8]).
Interactions with components of the phosphatidylinosi-
tol cycle [9] and the rac-tho pathway [10,11] implicate
them as a link through which the actin cytoskeleton com-
municates with the major signalling pathways of the cell.
Accordingly, reducing the amount of profilin protein, e.g.
by gene deletion, often has severe or even fatal conse-
quences on the viability of the afflicted organism.

Profilins constitute a large and diverse protein family.
Multiple isoforms exist in many species, being encoded by
separate genes, or in some cases translated from mRNA
splice variants. In animals and higher plants, isoforms
may be expressed in a tissue-specific manner. Moreover,
profilins are found at different subcellular locations (for
review, see [7]). Enrichment at dynamic plasma mem-
branes was confirmed for various cells types. Also, profi-
lins were observed in association with internal
membranes involved in vesicular transport [12]. Finally,
profilins are constituents of the cell nucleus (for review,
see [7] and [8]). Although the overall structure is con-
served, sequence homologies between profilins from dif-
ferent species, and also between different isoforms from
the same organism, are low ([13]; for review, see [8]). It
was, nevertheless, reported that the overall functional
properties of different profilins are similar, and that one
isoform can be interchanged with another one from quite
a distant source [14]. On the other hand, structural differ-
ences, which determine in vitro affinities for various lig-
ands [15,16], preferential protein complex formation in
different cell types, and different subcellular locations
may be important clues of divergent, possibly non-over-
lapping in vivo functions of different isoforms.

Despite extensive studies, the significance of the multiple
profilins, their tissue-specificity and distinct subcellular
locations have remained enigmatic. At least four different
profilins were demonstrated to be present in the mamma-
lian testis [17-20], a complexity which was not observed
in somatic tissues. The mammalian testis may, thus, serve
as a model to question whether profilin isoforms may ful-
fil distinct functions. Profilin-1 (PFN1) is ubiquitous and
essential for cell viability [6]; its expression in all cell types
of the testis, including spermatogenic cells, thus seems
obvious. In comparison, profilin-2 (PFN2) is predomi-
nantly found in the nervous system and has acquired
more specialized functions in regulating neuronal activity
[21]; it may represent a cell type-specific isoform also in
the testis. While PFN1 and PFN2 were both demonstrated
in the somatic Sertoli cells [19], a third isoform, profilin-
3 (PEN3), is expressed solely in spermatids [18,20]. Most
recently, profilin-4 (PFN4) was characterized as a novel
isoform. It shows less than 30% amino acid identity with
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the other mammalian profilins; still, database searches
produced significant alignments with the conserved profi-
lin domain. PFN4 is also highly expressed during sperma-
togenesis, but is distinct from PFN3 in its temporal
expression pattern [20].

Based on sequence comparisons, it was speculated that
the testis-expressed PFN3 and PFN4 might have altered
binding capacities for actin and proline-rich ligands [13].
However, such diverse characteristics remained to be
experimentally shown. In the present study, using yeast
two-hybrid interaction assays and various biochemical
methods, the binding capacities of PFN3 and PFN4 for
proline-rich ligands, actin, and phosphoinositides were
studied in comparison with PFN1 and PFN2. Subcellular
locations in differentiating spermatids were studied by
immunofluorescence. Three-dimensional structural mod-
els were also built to explain the functional properties of
PFN3 and PFN4.

Results and Discussion

PFN3 and PFN4 have different in vitro dffinities for
protein ligands

Actin monomers, poly-L-proline (PLP), and proline-rich
proteins have been confirmed as in vitro ligands for each
profilin isoform tested so far. In addition, in vivo interac-
tions of various profilins have been verified with actin (for
review, see [3]), and proline-rich proteins, including the
vasodilator-stimulated phosphoprotein (VASP; [22]) and
the mammalian homologues of Drosophila diaphanous
(mDia), members of the formin gene family [23]. In anal-
ogy with this, several databases of known and predicted
protein-protein interactions suggested that the testis-
expressed isoforms PFN3 and PFN4 would likewise asso-
ciate with these ligands [24,25]. We asked whether PFN3
and PFN4 indeed shared these affinities.

Protein lysates containing pET-expressed ("untagged")
PFN3 and PFN4 proteins were employed in PLP affinity
chromatography. PFN3 bound to the PLP affinity column
(Figure 1A, upper panel); however, compared to PFN1
and PFN2, the association was weaker, since PFN3 was
eluted from the PLP column at 2 to 4 M urea (compare
PLP affinity chromatography data presented in [26]).
Under the same experimental conditions, PFN4 failed to
interact with PLP (Figure 1A, lower panel), suggesting that
different from the above predictions proline-rich protein
ligands may not be targets for this isoform. Since PLP
affinity chromatography is routinely employed to purify
native as well as recombinant profilins, the lack of poly-
proline interaction caused complications in the purifica-
tion of untagged PFN4.

Selective pair wise tests for yeast two-hybrid (Y2H) inter-

action ("minimatings"), assaying potential differences of
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Figure |

Poly-proline interaction of PFN3 and PFNA4. (A) Poly-L-proline (PLP) affinity chromatography. PLP interaction of PFN3
(upper panel) and PFN4 (lower panel) was examined by column chromatography and fractions analysed on SDS gels of which
only the 14-20 kDa regions are shown. PFN3 bound to the PLP-column and was eluted by 2 M and 4 M urea (protein bands
highlightened by frame), while PFN4 failed to interact with PLP and was washed from the column during initial washing steps
(protein bands highlightened by frame). L: cell lysate before column; F: flow-through, W: wash without urea (I-9 indicate frac-
tion numbers); E2: 2 M urea eluate; E4: 4 M urea eluate; E8: 8 M urea eluate; M: low mass ladder, Ps: pre-stained marker. (B)
Quantitative -galactosidase assay for selective pair wise Y2H interaction of PFN2, PFN3, and PFN4 with polyproline-rich
VASP and DIAPH3. Diploids containing PFN2 and VASP or PFN2 and Diaph3 showed significant activity, reflecting the ability of
PFN2 interact with these proteins. PFN3-containing diploids revealed significant but weaker binding to DIAPH3, and no binding
to VASP. PFN4 failed to interact with both proteins. Bars show quantitative 3-galactosidase activity [milliunits/(ml x cells)] of
colonies grown in SD/-LTHA (Leu- Trp- His- Adenine-) high stringency medium. The red line marks the level of the negative
control. * designates significant 3-galactosidase activities. Positive control: diploids from SD/-LTHA medium containing p53
(pGBKT7-53) and SVA40 large T-antigen (pGADT7-T). Negative control: diploids with HE6/GPR64-C-terminus (pGBKT7-H21-
21-1) und SV40 T-antigen (PGADT7-T) showing no interaction.
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PFN3 and PFN4 in their affinities for specific proline-rich
proteins, i.e. VASP and mDia3 (Figure 1B), were per-
formed as an independent method. PFN2a, which is
known to bind VASP and p140mDia [15,22,23], was
included as a positive control. Expression of the LacZ
reporter was used as a more quantitative indicator for the
strength of protein-protein interactions. mDia3, but not
VASP, was confirmed as an in vitro binding partner of
PFN3 (Fig. 1B). The interaction of mDia3 with PFN3 was
weaker compared to PFN2a; parallel Y2H assays employ-
ing PFN4, in comparison, were negative (Figure 1B), con-
firming the results of the PLP affinity chromatography.
Notably, our previous microarray analyses of human tes-
tis tissue ([27] and own unpublished results) had shown
that at least five mDia3-encoding mRNAs variants, includ-
ing the one employed in the Y2H assays here, were highly
expressed in the testis and were most abundant in tissue
samples, which contained post-meiotic germ cells. Thus,
mDia3 proteins may still represent in vivo interaction part-
ners of PFN3.

Binding of the testis-specific profilin isoforms to B-actin
was similarly tested by a pair wise Y2H interaction, con-
firming PFN3 as an actin-binding isoform (Figure 2A).
Parallel assays employing PFN4 were all negative (Figure
2A), suggesting that neither proline-rich proteins nor
actin were targets of this unusual isoform. The failure of
PFN4 to interact with actin contrasts with all other profi-
lins studied thus far, most of which bind actin monomers
with micromolar affinity. The Y2H method, however, is
prone to false-negative discovery. By attaching domains
from a transcription factor to the bait and prey proteins,
true interactions may be missed if fusions place these
attachments at important interacting actin and/or profilin
interfaces [28]. To confirm the Y2H results by two inde-
pendent methods, co-immunoprecipitation of f-actin
and actin polymerization assays were performed. For co-
immunoprecipitation PFN2, PEN3, and PFN4 were trans-
lated in vitro as N-terminal fusions to a c-myc-tag; a c-myc-
antibody was employed to immunoprecipitate the profi-
lins in the presence of HA-tagged B-actin. While PFN2 and
PFN3 effectively co-precipitated with B-actin as evidenced
by their retention by protein A beads, PFN4 failed to asso-
ciate with B-actin also under these experimental condi-
tions (Figure 2B). In a control experiment, in the absence
of profilins, B-actin was not precipitated with protein A
beads (data not shown).

We probed the influence of recombinantly expressed GST-
fusions of PFN3 and PFN4 on salt-induced actin polymer-
ization using the pyrenyl fluorescence assay [29]. Labelled
skeletal muscle G-actin was incubated with or without the
purified GST-fused profilins (Figure 3). GST-PFN1, which
served as a control, showed a significant retardation of
actin polymerization. Under the same experimental con-
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ditions, PFN3 also markedly reduced polymerization
kinetics, albeit to a lesser extent. PFN4, on the other hand,
did not influence the actin polymerization kinetics at all
(Figure 3). In summary, concerning PFN3 protein interac-
tion partners, our results confirmed and extended the
results by Hu et al. [17], suggesting that PFN3 showed
major hallmarks of the well characterized profilins. PFN4,
on the other hand, did not bind the tested protein ligands
in vitro and thus may have in vivo functions different from
regulating actin dynamics. It should be noted that sper-
matids contain several actin-related proteins [30].
Recently, the actin-related protein ArpM1 was identified
as an interaction partner of PFN3 [31]. The interaction of
PFEN4 and actin-related proteins expressed in spermatids
deserves further evaluation.

PFN3 and PFN4 differentially interact with phospholipids
Profilins interact with anionic phospholipids ([32]; for
review, see [8]). Individual phospholipids show distinct
subcellular distributions and perform distinct biological
roles (for review, see [33]), with steady-state concentra-
tions of PtdIns(4,5)P, predominating at plasma mem-
branes, PtdIns(3)P on endosomes, and PtdIns(4)P on the
Golgi. Thus, through differential binding to these phos-
pholipids in vivo, profilin isoforms may be selectively
directed to functionally appropriate subcellular sites.
Selective interaction with phosphoinositides was indeed
the first functional difference reported between different
profilin isoforms [34,35]. Moreover, it was shown that
binding to PtdIns(4,5)P, may effectively compete for PLP
interaction of profilin 1 [36]. More recently, neighbouring
binding sites for these competing ligands have emerged
which may explain the competing interactions [37,38].

Phospholipid interactions of GST-fusion proteins of
PEN1, PEN3, and PFEN4, respectively, were assayed by pro-
tein-lipid overlay [39]. Each of the recombinant fusions
strongly bound to PtdIns(3)P, and to a lesser extent to its
phosphorylated products and PtdIns(4,5)P, (Figure 4).
Unlike GST-PFN1 (and also other profilins), GST-PFN3
and GST-PFN4 both showed in vitro affinity towards
PtdIns(4)P, suggesting that in vivo, in addition to endo-
somes, PFN3 and PFN4 may be associated with the Golgi
apparatus. For GST-PFN4, a weak but reproducible bind-
ing to phosphatidic acid (PA) was additionally observed
(Figure 4). PA is an abundant component (1-4%) of most
cellular membranes. It is also a signalling lipid, since its
regulated formation can constitute an important signal for
many downstream responses, including actin polymeriza-
tion in spermatozoa [40]. In addition to this role, PA
appears to regulate enzymes in phospholipase D path-
ways directly. The list of PA-binding proteins is rapidly
expanding (for review, see [41]); however, PA-binding of
profilins has not been previously reported. The specificity
of the observed interaction must be considered critically
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Figure 2

In vitro interaction of PFN3 and PFN4 with actin. A) Yeast two-hybrid (Y2H) interaction assays of PFN2, PFN3, and
PFN4 with B-actin (left panel). Plate growth assays were performed on minimal media in the absence of histidine (SD/-LTH) or
adenine (SD/-LTA) or both (SD/-LTHA). Interaction is indicated by growth of diploid colonies. Upper panel shows assay for
profilin-pGADT7 % actin-pGBKT7 on SD/-LTHA medium. Lower panel shows positive control (actin-pGBKT7 X huProfilin-2-
pGADT?7) on the left;, negative control (actin-pGBKT7 x pGADT7) on the right. Quantification was carried out by [3-galactos-
idase assay (right panel) using diploids from SD/-LTHA-medium Red line marks the negative value; * designates significant activ-
ities. Positive control: diploids containing p53 (pGBKT7-53) and SV40 large T-antigen (P GADT7-T). Negative control: diploids
with HE6/GPR64-C-terminus (pGBKT7-H21-21-1) und SV40 T-antigen (pGADT7-T). B) Western blot analysis of hemaggluti-
nin epitope (HA)-tagged B-actin co-immunoprecipitated with c-myc-tagged PFN2, PFN3, and PFN4. Analyses employing the c-
myc- antibody showed that the three profilin isoforms (~14 kDa) were precipitated (upper panel; highlightened by arrow).
Analyses employing the anti-HA- antibody showed that actin-HA (~45 kDa) was co-precipitated with PFN2 and PFN3, but not
with PFN4 (bottom panel; highlightened by arrow). The ~28 kDa and ~50 kDa protein bands resulted from the light and heavy
chains of the c-myc-antibody.
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as the isoelectric point of PFN4 is basic (pI 8.8); still, GST-
PFN3 did not bind PA under the same experimental con-
ditions, despite of the highly basic character of PFN3 (pl
9.5).

PFN3 and PFN4 localize in the acroplaxome-manchette
complex in spermatids

Cross-reactivity of the profilin antisera employed in
immunostaining procedures was initially studied by
Western blot analysis using in vitro translated profilins
(Figure 5A). Antisera generated against PFN3 and PFN4
did not cross-react; weak cross-reactivity of the anti-PFN3
antiserum was observed only with in wvitro-translated
PFN2. In protein extracts of human adult testis tissue (Fig-
ure 5B), and also in rat testis samples collected during the
first wave of rat spermatogenesis (Figure 5C), anti-PFN3
and anti-PFN4 immunoreactive bands of » 14-kDa were
seen only in those tissue samples which contained sper-
matids, confirming at the protein level the previously
reported stage- and cell-type specific expression patterns

http://www.biomedcentral.com/1471-2121/10/34

of PFN3 and PFN4 [20]. In comparison, anti-PFN1 and
PFN2 immunoreactive bands were obvious in each testis
sample analysed (Figure 5C).

Our previous studies suggested that PFN3 and PFN4 accu-
mulated near the acrosome-acroplaxome-manchette com-
plex of differentiating spermatids ([2]0 and data not
shown). The acroplaxome is an F-actin/keratin 5-contain-
ing cytoskeletal plate, which anchors the acrosome to the
spermatid nucleus [42]. Pro-acrosomal vesicles derived
from the Golgi apparatus [43] are transported by F-actin-
and microtubule-based molecular motors and dock and
fuse along the acroplaxome (for review, see [44]). The
manchette is a transient structure developed subjacent to
the marginal ring of the acroplaxome. It consists of a peri-
nuclear ring with inserted microtubules as well as associ-
ated F-actin. The manchette participates in the transport
of cargoes to the developing spermatid tail and in nucleo-
cytoplasmic trafficking during spermatid head shaping
[45].
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Effect of GST-tagged profilin isoforms on 3-actin polymerization kinetics. 5 1M actin and |5 uM each of GST-PFNI,
GST-PFN3, and GST-PFN4 were pre-incubated prior to induction of actin polymerization by addition of KCl and MgCl,. Time
courses of actin alone (red) or in the presence of GST-PFN| (green), GST-PFN3 (blue) or GST-PFN4 (orange) are shown.
PFN1 markedly delayed actin polymerization, PFN3 influenced polymerization kinetics to a lower extent, and PFN4 had no

obvious effect.
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Indirect immunofluorescence of spermatids isolated from
spermatogenic stage-specific rat seminiferous tubules was
used to determine the localization of PFN3 and PFN4
throughout spermiogenesis. Phalloidin-Texas Red was
used to monitor the F-actin-containing acroplaxome;
tubulin monoclonal antibody was used to determine the
position of the manchette with respect to the acroplax-
ome. PFN3 immunoreactivity was mainly observed in the
acroplaxome of round spermatids and may be correlated
with the presence of F-actin (Figure 6/1, panels A-L). Dur-
ing the progression of spermiogenesis, PEN3 acroplaxome
immunoreactivity gradually disappeared and became
apparent in the developing manchette of spermatids step
8 (S8) (Figure 6/1, panels D-F). Coinciding with the initi-
ation of manchette disassembly in S14 spermatids, PFN3
immunoreactivity was seen in the cytoplasm subjacent to
the disassembling manchette (Figure 6/1, panels G-1). At
this stage, the phalloidin-stained acroplaxome was devoid
of PFN3 (Figure 6/1, panels J-L). A similar immunoreac-
tive staining pattern was observed with anti-PFN4 serum

GST PFN-1
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in rat (Figure 6/2, panels A-L) and also in human sperma-
tids (Additional File 1). In agreement with the immunob-
lotting data, normal rabbit IgG controls did not generate
a fluorescence signal (data not shown). Panel M in Figure
6/2 summarizes diagrammatically the localization of
PFN3 and PFN4, first in the acroplaxome and later in the
manchette during spermatid head development. These
observations suggested that, despite their differing func-
tional characteristics in vitro, the location sites of PFN3
and PFN4 proteins in spermatids were similar. In vivo
functions of the tissue- and cell type-restricted isoforms,
however, remain obscure. Transgenic mouse models may
help to clarify whether and how PFN3 and PFN4 impact
on acrosome formation and/or spermatid head shaping.

Structural models explain the observed biochemical
properties of PFN3 and PFN4

In order to gain a deeper understanding of the observed
functional differences, homology models were built for
human PFN3 and PFN4, and compared to the known
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Figure 4

Protein-lipid overlay assay of profilins. Phosphoinositide (PIP) overlay assay of Glutathione-S-transferase (GST)-fusion
proteins showed selective binding of GST-PFNI, GST-PFN2, and GST-PFN4 to nitrocellulose-bound phosphoinositides (100
picomoles per spot). GST alone did not bind. PIP strips™ were incubated with 0.5 pg/ml of each fusion protein as indicated.
Layout of strips (according to Molecular Probes product information) was as follows. Spot # |: Lysophosphatidic acid; # 2: Lys-
ophosphatidylcholine; # 3: Phosphatidylinositol (PtdIns); # 4: Ptdins(3)P; # 5: PtdIns(4)P; # 6: PtdIns(5)P; # 7: Phosphatidyleth-
anolamine; # 8: Phosphatidylcholine; # 9: Sphingosine |-phosphate; # 10: Ptdins(3,4)P2; # | 1: Ptdins(3,5)P2; # 12:
PtdIns(4,5)P2; #13: PtdIns(3,4,5)P3; #14: Phosphatidic acid; #15: Phosphatidylserine; #16: Blank.
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structures of human PFN1 and PFN2a. The sequence
alignments of all known human profilins are shown in
Figure 7A, and those used for modelling in additional file
2. Both PFN3 and PFN4 are predicted to be folded like
other profilins, with a central 7-stranded antiparallel beta-
sheet covered on both faces by two alpha helices. The
PFN4 sequence, however, is ten amino acids shorter
which is structurally reflected by three loops, i.e. 12,
B4B5, and B5B6, being shorter in the PFN4 protein (Figure
7B). One of the loops, B5p6, is also shorter in PFN3.

The poly-L-proline binding site

The PLP binding site of profilins is formed by conserved
aromatic amino acids located in the N- and C-terminal
helices, such that the proline-rich peptide will bind to a
groove between the two helices, interacting closely with

http://www.biomedcentral.com/1471-2121/10/34

the aromatic residues via hydrogen bonds and CH-pi
interactions [15,38,46]. For example, five conserved aro-
matic residues (Trp3, Tyr6, Trp31, Tyr133, and Phel39)
and also Asn9 are responsible for the PLP interaction of
PEN2a (Figure 6C), and PEN1 is highly similar. The two
aromatic residues on the C-terminal helix (Tyr133 and
Phe139 in PFN2a) are not present in PFN3, which could
lead to an altered specificity and/or lower affinity towards
proline-rich sequences, as also evidenced by our binding
assay. In PFN4, of the abovementioned aromatic residues,
only Tyr122 is conserved (corresponding to His133 of
PEN1 and Tyr133 of PFN2a). Thus, in this isoform, the
aromatic surface of other profilins necessary for PLP bind-
ing is not present at all, which is in line with its observed
inability to bind proline-rich sequences. While the overall
sequence of PFN4 is more similar to the profilins of lower
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Figure 5

C

Specificity of anti-profilin antibodies. A) Western blot analysis of in vitro translated profilins employing antibodies directed
against PFN2 (left panel), PFN3 (middle panel), and PFN4 (right panel). Note that there is no cross-reactivity of anti-PFN3 and
anti-PFN4 antibodies. B) Western blot analysis of PFN2 (left panel), PFN3 (middle panel), and PFN-4 (right panel) protein
expression in human testes showing varying degrees of spermatogenetic failure. Lane |: Sertoli-cell-only appearance; lane 2:
maturation arrest at meiosis; lane 3: hypospermatogenesis; lane 4: full spermatogenesis; lane 5: full spermatogenesis; lane 6: sal-
ivary gland as control. Note that PFN3 and PFN4 immunoreactive protein bands of ~ 14 kDa were solely observed in tissue
samples containing sufficient amounts of spermatids while PFN2 was detected in each tissue analysed. C) Western blot analysis
of PFN | and PFN2 (upper panels), PFN3 (middle panel), and PFN4 (lower panel) proteins in rat testis at various stages of post-
natal development. Lane I: day-15; lane 2: day-18; lane 3: day-20; lane 4: day-24; lane 5: day-26; lane 6: day-28; lane 7: day-30;
lane 8: day-45; lane 9: day-60 testes. Note that PFN3 and PFN4 immunoreactive protein bands of = 14 kDa were solely
observed in testes at developmental stages, which contained sufficient amounts of elongating spermatids (high lightened by
arrows). PFN| and PFN2 immunoreactive bands, in comparison, were observed at all stages analysed.
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eukaryotes than to the other human/mammalian profi-
lins [13], PFN4 seems to be the only family member so
far, in which the entire PLP binding site is lacking, suggest-
ing that it may have other binding partners instead.

The actin-binding site

In PEN1, residues centrally involved in actin binding
include Phe59, His119, Arg74, Arg88, Lys90, Lys125, and
Tyr128 (Figure 7D; [47]); these are fully conserved in
PFN2a. In PFN3, this site is conserved, with some rather
conservative amino acid sequence differences, such as the
replacement of Phe59 and Tyr128 by Leu59 and His125,
respectively, compared to PFN2a. These structural differ-
ences may have lowered or altered the affinity of PFN3
towards actin to some degree, when compared to PFN1
and PFN2a. In the PFN4 sequences, in contrast, there is no
conservation of the known actin-binding residues of other
profilins, which is well in line with our experimental data
described above.

The Ptdlns(4,5)P, binding site

Based on mutagenesis studies and the localisation of sul-
phate and phosphate ions in crystal structures, the bind-
ing site for PtdIns(4,5)P, has been approximately mapped
in human PFN1 [37]. It involves several conserved basic
amino acid residues on the profilin surface, generating a
large binding surface of positively charged residues. In
PFN2a, residues likely to contribute to PtdIns(4,5)P,
binding include arginines 74, 88, 104, 107, and 135, and
these binding determinants are largely conserved in PFN1.
Interestingly, Arg74 and Argl35 are among the few resi-
dues, which are conserved throughout the known human
profilin isoforms, including PFN4 (Figure 7A). In PFN3,
the putative common PtdIns(4,5)P, binding site is well
conserved. In PFN4, many basic residues are present as
well, but the putative phospholipid binding site seems to
have shifted (Figure 7E). This structural difference may
explain the distinct phospholipid binding characteristics
of PFN4 (see above).

Conclusion

We report functional differences between the testis-
expressed profilins PFN3 and PFN4 as revealed by in vitro
assays. At the same time, structural homology models
were built for human PFN3 and PFN4, which explained
their different functional characteristics. By various meth-
ods, mDia3, but not VASP, was identified as a novel in
vitro binding partner of PFN3, while PFN4 did not bind
PLP or proline-rich proteins. So far, PFN4 seems to be the
only profilin family member in which the entire PLP
binding site is lacking. Moreover, different from PFN3,
PFN4 did not interact with actin in three different in vitro
assays deviating from all other profilins analysed thus far.
Actually, the structure of PFN4 does not retain the actin-
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binding site of other profilins. A much lower affinity for
actin or actin-related proteins is thus conceivable, suggest-
ing that PFN4 may perform in vivo functions, which are
distinct from regulating actin dynamics. PEN3 and PFN4
were both capable of in vitro phosphoinositide interac-
tion, but differed in their selectivity towards specific phos-
pholipids. In PEN3, the putative common PtdIns(4,5)P,
binding site of profilins is conserved while it seems to
have shifted in PFN4. PFN3 and PFN4 coexist in the acro-
plaxome and the manchette of spermatids in a sequential
developmental manner. They vanish gradually from the
acroplaxome when the manchette fully assembles and
spermatid head shaping is in progress. Although the pres-
ence of PFN3 can be correlated with the presence of F-
actin and actin-related proteins in the acroplaxome, and
to a lesser extent in the manchette, the visualization of
PEN4 in the acroplaxome-manchette complex is intrigu-
ing in light of our finding that it does not interact with
actin in vitro. An F-actin independent role of PFN4 may
suggest novel functions related to the process of spermatid
head shaping, and may have significant clinical implica-
tions in understanding idiopathic causes of male infertil-
ity associated with abnormal sperm head shaping.

Methods

Tissues and spermatogenic cells

Human testis tissue was obtained surgically from patients
undergoing a testicular sperm extraction procedure (cour-
tesy of Professor Dr. med. Wolfgang Schulze, Department
of Andrology, University Hospital Hamburg-Eppendorf,
Germany). Informed consent and Ethic Committee
Approval was obtained (OB/X/2000), and the ethical
principles for research involving human tissues as stated
in the 52nd World Medical Association Declaration of Hel-
sinki were strictly observed. For protein extraction, tissue
samples were submerged immediately in a cryoprotectant
and snap-frozen in liquid nitrogen.

All animal housing and operation practices were in com-
pliance with German Animal Welfare laws, and the Guid-
ing Principles in the Care und Use of Laboratory Animals
(DHEW Publication, NIH, 80-23) were observed in all
cases. For protein extraction, male Wistar rats were
obtained from the UKE animal house. Animals were sac-
rificed at days 10, 15, 20, 22, 26, 28, 30, 45, and 60 (n =
10 per age group) by decapitation (5- and 10-days-old
animals) or CO, inhalation (all others). Control tissues
were taken from 60-days-old animals. Tissues were snap-
frozen in liquid nitrogen immediately after removal. For
the preparation of germ cells, adult male Sprague Dawley-
rats (n = 3) were obtained from Charles River Inc. Animals
were killed by CO,-asphyxiation, the testes removed,
transferred to 32°C PBS solution and decapsulated.
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Figure 6

Localization of profilin 3 (panels I) and profilin 4 (panels 2) during rat spermiogenesis. |, panels A-C: S9 sperma-
tids display profilin 3 immunoreactivity (A) in acroplaxome (F-actin component stained with phalloidin-Texas Red) and man-
chette (detected with tubulin monoclonal antibody). Manchette is caudal to acroplaxome (B). Arrows in B and C indicate
tubulin immunoreactive spermatid tail. Arrowhead in C (Pha-Co microscopy: phase-contrast microscopy) points to acrosomal
granule. Apx: acroplaxome. Man: manchette. Panels D-F: S10 spermatid. Profilin 3 is predominant in manchette. Panels G-I: S14
spermatid. Profilin 3 extends into cytoplasm caudal to manchette. Panels J-L: S|4 spermatid. Panel K illustrates position of acro-
plaxome. Note that profilin 3 is not associated with the acroplaxome but with the manchette. 2, panels A-C. Early S8 (eS8).
Profilin 4 is predominant in acroplaxome (A) at the initiation of the manchette (B). C indicates positions of acroplaxome (Apx)
and manchette (Man). Panels D-F. S|4 spermatid. Profilin 4 is seen in manchette but not in acroplaxome. Panels G-I. S9 sper-
matid. Profilin 4 is predominant in manchette (G). Position of acroplaxome is shown in H. Note that adjacent Golgi is slightly
stained. | indicates acroplaxome (Apx), manchette (Man) and Golgi resolved by phase-contrast. Panels J-L. S|4 spermatid. Pro-
filin 4 is restricted to manchette (]) and not seen in acroplaxome (seen in K). L indicates manchette (Man) and acroplaxome
(Apx). Panel M provides diagrammatic summary (not to scale) of profilin 3 and profilin 4 localization sites during S6 to S10. The
acroplaxome is immunoreactive in S6 spermatids. Acrosomal immunoreactivity decreases in apical region in S7 spermatids pre-
ceding the onset of manchette assembly (S8). Profilin 3 and profilin 4 are predominant in the manchette of S9 and SI10 sperma-
tids. Note migration of Golgi from apical to caudal position in spermatid cytoplasm. Scale bars: 2 pm.
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Antibodies

Polyclonal rabbit antisera against synthetic peptides were
generated as described [20]. 14- and 15-mer linear oli-
gopeptides from PFN2 and PFN3, i.e. CAYSMAKYL-
RDSGF and CEVGVLTGPDRHTFL, respectively, were used
as antigen (Bioscience, Gottingen, Germany; Pineda-Anti-
bodies Service, Berlin, Germany). Other antibodies used
included a rabbit polyclonal anti-PEN1 (Novus Biologi-
cals, Littleton, USA), rabbit anti-PFN4 peptide antiserum
[20], monoclonal anti-a-tubulin DM1A (Sigma, Munich,
Germany), monoclonal anti- actin JLA20 (Calbiochem,
Schwalbach, Germany), rabbit anti-VASP [22], goat anti-
GST (GE Healthcare, Freiburg, Germany) and mono-
clonal anti-ccmyc (BD Biosciences, Heidelberg, Ger-
many). Peroxidase-conjugated secondary antibodies were
AffiniPure Fc-fragment goat anti-rabbit IgG and Affin-
iPure rabbit anti-mouse IgG (H+L), respectively (both
from Jackson ImmunoResearch, Newmarket, UK). Anti-
bodies used for immunocytochemistry are indicated
below.

Protein extraction

Tissue samples were homogenized three times for 10 s
with the UltraTurrax (Art Labortechnik, Mithlheim) in 10
mM Tris, 1 mM EDTA, 0.5 mM DTT, 50 mM NacCl, 0.4%
NP-40, 0.2% NaDOC, 0.04% SDS, Protease-inhibitor-
cocktail (complete mini EDTA-free, Roche), pH 7.8 (100
pl solubilisation buffer per 30 mg tissue). After 30 min of
solubilisation at 4°C on a rotating wheel, debris was
removed by centrifugation (30 min, 13000 rpm, 4°C) and
the supernatants collected. Protein concentrations were
estimated employing the BioRad Protein-Assay according
to the suggestions of the supplier (BioRad, Miinchen, Ger-
many).

In vitro translation and co-immunoprecipitation

C-myc-tagged profilins and HA-tagged B-actin were syn-
thesized from pGBKT-7 and pGADT-7 plasmid constructs
using the TNT®-T7 Quick Coupled Transcription, Transla-
tion System (Promega, Mannheim, Germany) according
to manufacturer's instruction. 25 ul of B-actin in vitro
translation reaction was co-incubated with 25 pl of profi-
lin in vitro translation reaction at room temperature for 2
h. After incubation, 3 pl of anti c-myc-antibody (BD Bio-
sciences) and 200 pl protein A-agarose (Roche Diagnos-
tics, Penzberg, Germany) in PBS were added and the
mixtures incubated overnight at 4°C. Protein A beads
were then washed three times (10s, 4°C, 7000 rpm) with
500 pl co-immunoprecipitation buffer containing 50 mM
Tris (pH 8.0), 100 mM NaCl, 1 mM EDTA, 0.5% NP-40.
Proteins were eluted at 95°C for 5 min in sample buffer
(40 mM Tris, pH 6.8, 2% SDS, 100 mM DTT, 1 mM EDTA,
8% glycerol). After removal of protein A beads by centrif-
ugation, 25 pl of protein supernatant were separated on a
4-12% gradient SDS-PAGE (see below), and profilins and
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actin visualized employing c-myc monoclonal antibody
(BD Biosciences) and anti-HA-high affinity monoclonal
antibody (clone 3F10, Sigma).

Western blot analysis

Western blot analysis of in vitro translated proteins and
protein extracts was carried out by standard procedures.
Briefly, approximately 80 pg proteins per lane were sepa-
rated on 4-12% NuPage®Novex Bis-Tris gradient gels
(Invitrogen, Karlsruhe, Germany) and transferred to poly-
vinylidene difluoride membranes (Amersham) in a dis-
continuous buffer system using a semi-dry blotter.
Immunodetection was carried out by blocking for 1 h in
1% Western-blocking reagent (Boehringer Mannheim,
Germany) or in 5% ECL-blocking agent when using the
ECL-Plus-system (GE Healthcare, Freiburg, Germany),
followed by incubation with the first antibody over night
at 4°C. Antibody dilutions were 1:1000 for anti-PFN1,
1:10000 for anti-PFN2, 1:700 for anti-PFN3 and 1:500 for
anti-PFN4. Antibody binding was detected either by Cy5-
conjugated AffiniPure goat anti-rabbit IgG or a peroxi-
dase-conjugated AffiniPure Goat anti-rabbit IgG (both
from Jackson Immuno Research, Newmarket, UK).

Profilin expression in E. coli and PLP dffinity
chromatography

2xYT with kanamycin was inoculated 1:50 from a fresh
ON culture of BL21(DE3)pLys cells harbouring the mouse
PEN3 or -4 gene under control of the bacteriophage T7-
promoter in the vector pET28a(+). At an ODg,, of 0.5,
protein expression was initiated by adding IPTG to a final
concentration of 1 mM. After induction, the bacteria were
grown for 4 h at 42°C. Then, the cells were pelleted by
centrifugation (15 min at 6000 rpm, 4°C), resuspended
in 25 ml of lysis buffer (50 mM Tris-HCI, 10 mM NacCl, 10
mM EDTA, 1.5% TritonX-100, 1:1000 Trasylol, 1 uM Pep-
statin A, 50 pM Pefabloc SC) and incubated for 20 min on
ice. After adding lysozyme, the solution was frozen over-
night at -80°C. Next day, the solution was thawed at 37°C
and then sonicated on ice 10 times 30 s at 80 W probe
energy with 30-s intervals. The lysate was centrifuged at
4°C for 50 min at 14000 rpm. The supernatant was
loaded onto a poly-L-proline column, washed and equili-
brated with washing buffer (20 mM Tris-HCI, 150 mM
NaCl). The column was washed with 5-10 column vol-
umes of washing buffer and then with washing buffer
including 2 M urea, to remove unbound protein. To ana-
lyze the binding affinity, profilins were then eluted with 4
M and 8 M elution buffer (4 M/8 M Urea in washing
buffer). Fractions were collected and checked by standard
SDS-PAGE.

Yeast Two-Hybrid Interaction
Yeast strains AH109 and Y187 and pGBKT7 and pGADT?7
plasmids were from the Matchmaker Two-Hybrid System 3
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Figure 7

Three-dimensional models of PFN3 and PFN4. A. Sequence alignment between human profilins. Fully conserved resi-
dues are on dark background. Key residues of PLP binding are indicated by asterisks, those involved in binding actin with trian-
gles. Secondary structures are derived from bovine PFN 1 crystal structure. For compatibility with most publications, the first
methionine is not considered in sequence numbering. B. Superposition of bovine PFN | (yellow), mouse PFN2a (magenta),
human PFN3 (green), and human PFN4 (cyan). PFN I structure is from the profilactin complex (PDB core IHLU) and PFN2a
from the complex with a VASP peptide (PDB code 2V8C). Loops variable in length in PFN3 and/or PFN4 are marked. C. Com-
parison of the PLP-binding sites of PFN2a, PFN3, and PFN4. Shown is also the PFN2a-VASP complex, colouring as in 6B. Only
half of the binding site is conserved in PFN3, no conservation is seen in PFN4. Key residues for peptide binding are indicated.
D. Actin-binding sites of PFN 1, PFN3, and PFN4, colouring as in 6B. For clarity, actin is not shown; view is from the direction
of actin onto the actin-binding surface on profilin, side chains of key profilin residues are shown. E. Comparison of
PtdIns(4,5)P2 binding surfaces of PFNI, 2a, 3, and 4 (left to right, respectively). Profilins are coloured as in 6A, and all arginine
residues, crucial for PtdIns(4,5)P2 binding, are highlighted in blue; lysine residues are shown in gray.
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(Clontech), providing HIS3, ADE2 and lacZ reporters and
allowing high stringency assays. For bait and prey con-
struction from human and mouse testes cDNAs, oligode-
oxynucleotide primers as given in table 1 were employed
in RT-PCR amplification and amplicons subcloned into
the multiple cloning site of pGBKT7 and pGADT?7 vectors.
The coding region of the human VASP cDNA was likewise
subcloned into pGADT7 and pGBKT7. The yeast strains
were transformed with the constructs ([48]; Quick and
Easy Transformation Protocol) and colonies grown accord-
ing to the Yeast Protocols Handbook (Clontech, Heidelberg,
2001). Plasmid selection was maintained by growing cells
in minimal medium (0.67% yeast nitrogen base, 2% glu-
cose) supplemented with lysine, histidine, adenine and
tryptophan (for pGADT7 selection) or leucine (for
pGBKT7 selection). Mating tests were performed under
conditions of increasing stringency according to the man-
ufacturer's suggestions. Diploid colonies were replica-
plated on minimal medium with high stringency and
grown at 30°C for 4-8 days. Colonies were isolated and
tested for the expression of the lacZ reporter using the £
Galactosidase Assay Kit (Pierce). Prey plasmids were iso-
lated, transformed into Escherichia coli, and inserts verified
by sequence analysis (MWG). Interactions were verified
by plate growth assays on minimal mediums in the
absence of histidine or adenine or both.

Actin polymerization assay

Muscle actin was purified from rabbit skeletal muscle as
described [49] and labelled with pyrene according to
Kouyama and Mihashi [29]. Recombinant profilins were
expressed as glutathion-S transferase (GST) fusion pro-
teins in Escherichia coli ER2566 (New England Biolabs,
Heidelberg, Germany) and purified by glutathione sepha-
rose affinity chromatography according to the manufac-
turer's instructions (GE Healthcare). Eluted profilins were
dialysed against 20 mM Tris-Cl, pH 7.4, 0.2 mM CaCl,, 1
mM dithiothreitol and stored on ice. To determine their
influence on actin polymerization, 5 pM a-actin (5%
pyrene-labelled) in G-buffer (2 mM Tris-HCI, pH 7.5, 0.2
mM ATP, 0.1 mM CaCl,, 0.5 mM DTT) was incubated for
10 min at 20°C with or without 15 uM recombinant GST-
fused profilins. Polymerization was initiated by the addi-
tion of MgCl, and KCI (final concentration 1 mM and 50
mM, respectively). Fluorescence was monitored for 2 h at
366 nm excitation and 407 nm emission using a LS50B
fluorimeter (Perkin Elmer, Langen, Germany).

Protein-lipid overlay assay

PIP Strips™ membranes (Molecular Probes, Eugene, USA)
were employed following the manufacturer's instructions.
Briefly, after blocking with 3% bovine serum albumin
(BSA) in TBS-T (10 mM Tris-Cl, ph 8.0, 150 mM Na(Cl,
0.1% (v/v) Tween 20) the lipid-containing membranes
were incubated with 0.5 pg/ml GST fused profilins for 2.5
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h. Membranes were washed three times with TBS-T + 3%
BSA and the bound proteins detected by anti-GST anti-
body in conjunction with HRP-labelled secondary anti-
body and enhanced chemiluminescence.

Immunofluorescence microscopy

Spermatogenic cells were collected from mechanically dis-
sociated seminiferous tubular fragments (identified with a
dissecting stereomicroscope as corresponding to stages I-
XIV of rat spermatogenesis according to their transillumi-
nation pattern). Cells were placed in a drop of 3.7% para-
formaldehyde (electron microscopy grade) in 0.1 M
sucrose in phosphate buffer, pH 7.4, on microscope slides
coated with Vectabond (Vector Laboratories, Burlingame,
CA). This fixation procedure results in the preservation of
the Golgi-acrosome-acroplaxome-manchette-nuclear
relationship in spermatids, a condition that facilitates
structure identification and access of antigenic probes.
After 15-min fixation at room temperatures a coverglass
was placed on top of the preparation. The glass coverslip
was removed and the microscope slide- containing fixed
spermatogenic cells was used for immunocytochemistry
(see below). Cells were immunoreacted with affinity puri-
fied PFN3 and PFN4 (working dilution: 1:200) and o-
tubulin monoclonal antibody (working dilution 1:100;
Sigma-Aldrich, St. Louis, MO), followed by anti-rabbit
IgG-conjugated with fluorescein isothiocyanate or anti-
mouse IgG conjugated with rhodamine (working dilution
1:200; Jackson Immunoresearch Laboratories, West
Grove, PA), respectively. Phalloidin-Texas Red-X was used
to detect F-actin according to the manufacturer's protocol
(Molecular Probes, Eugene, OR). Specimens were
mounted with Vectashield (Vector Laboratories) and
examined in a Zeiss Universal phase-contrast/fluores-
cence microscope equipped with episcopic illumination.
Images were recorded using a Magnafire digital CCD cam-
era (Optronics, Goleta CA).

Generation of 3-dimensional models

Homology models for both PEN3 and PFN4 from mouse
and man were generated using the SWISS-MODEL server
[50], based on the closest sequence homologues found
from the PDB for each protein. For PEN3, the model is
based on bovine profilin 1 (PDB entry 1PNE) [51], and
for PFN4, the template was Acanthamoeba profilin 1I
(PDB entry 2ACG) [35]. The structures were superim-
posed with each other and profilins 1 and 2 using the SSM
method [52] in Coot [53]. Protein structure figures were
generated using Pymol, Dino, and POV-Ray.

Abbreviations

The abbreviations used are: A: Adenine; BSA: bovine
serum albumin; CCD: charge-coupled device; DTT: Dithi-
othreitol; EDTA: ethylenediaminetetraacetic acid; ELISA:
enzyme-linked immunosorbent assay; FITC: fluorescein
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Table I: Primers employed in RT-PCR
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Primer T product Accession-No.
5'-CAGTGAATTCATGGCCGGT TGGCAGAG-3' 68°C 446 bp huProfilin2a
5'-CGATGGATCCAGCAGCTAGAACCCAGAGTC-3' 71°C ORF NM_053024
(bp 99 — 526)
5-TTGAATTCATGAGTGACTGGAAGGGCTACA-3' 65°C 467 bp mProfilin3
5-TTGGATCCGTTCACGGTTTATTCTGGTCTCC-3' 68°C ORF NM_029303
(bp 59 — 524)
5'-CAGTGAATTCAGCATGAGTCACTTGCG-3' 63°C 405 bp mProfilin 4
5'-GATGGATCCTTAGTTTCCCTTTTTCCTTAG-3' 64°C ORF NM_028376
(bp 861 — 1250)
5'-AGTGAATTCGGGAACATGAGCCATT-3' 61°C 406 bp huProfilin4
5'-GATGGATCCCTCTGATGACTTAACTTCCT-3' 65°C ORF (bpl71 — 557) BC029523
5-TAGAATTCATGGATGGATGATATCGCCGCGC-3' 67°C 1236 bp hu B-actin,
5'-AAGGATCCAAGCCATGCCAATCTCA-3' 70°C ORF (bp74 — 1282) NM_001 101
5'-CAGTGAATTCTTTACCGACCACCAAGAAACTCAG-3" 68°C 668 bp, FHI + part. FH2-domain (bp904 — 1551) huDiaphanous3
5'-CGATGGATCCTCATATGGCACCCGAAAAGAGC-3' 71°C NM_030932

isothiocyanate; GST: glutathione S-transferase; H: Histi-
dine; HRP: horse reddish peroxidase; L: Leucin; mDia3:
mammalian homologue of Drosophila diaphanous, iso-
form 3; OD: optical density; ON: Over night; PA: phos-
phatidic acid; PBS: phosphate-buffered saline; PFN:
profilin; Pha-Co: phase contrast; pl: isoelectric point; PLP:
poly-L-proline; PRD: proline-rich domain; PtdIns(4,5)P,:
Phosphatidylinositol  4,5-bisphosphate;  PtdIns(3)P:
Phosphatidylinositol 3-Phosphate; PtdIns(4)P: Phos-
phatidylinositol 4-Phosphate; SD: single dropout (syn-
thetic minimal medium); T: Thymidin; TBS-T: Tris-
buffered saline with Tween-20; VASP: vasodilator-stimu-
lated phosphoprotein; Y2H: Yeast two-hybrid.
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Additional material

Additional File 1

Immunolocalization of PFN4-related protein in spermatids and testic-
ular spermatozoa isolated from human testis. A1-A3) and B1-B3)
show dual labelling and confocal microscopy of human round and elon-
gating spermatids employing indirect PEN4 immunofluorescence (green)
and PNA lectin binding (red); nuclei were stained with DAPI (dark
blue). A4 and B4 show corresponding phase contrast image. Note PFN4
immunofluorescence in acroplaxome and manchette (high lightened by
yellow arrows); spermatocyte shows weak cytoplasmic staining. Scale bars
correspond to 5 um. C1-C3 and D1-D3 show dual labelling and confocal
microscopy of human testicular spermatozoa employing indirect PEN4
immunofluorescence (green) and PNA lectin binding (red); nuclei were
stained with DAPI (dark blue). C4 and D4 show corresponding phase
contrast image. Scale bars correspond to 20 pm and 5 um, respectively.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-10-34-S1.pdf]

Additional File 2

Sequence alignments for homology modeling. A. Sequence alignment
used for the generation of the human PFN3 model. B. Sequence align-
ment for making the human PFN4 model.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-10-34-S2.jpeg]
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